
LiveHPS++: Robust and Coherent Motion Capture
in Dynamic Free Environment

Yiming Ren1, Xiao Han1, Yichen Yao1, Xiaoxiao Long2, Yujing Sun2⋆, and
Yuexin Ma1⋆

1ShanghaiTech University, 2The University of Hong Kong
{renym2022,mayuexin}@shanghaitech.edu.cn

Point Clouds

Our Results

Fig. 1: Visualization of the motion capture performance of LiveHPS++ in a real-time captured
scenario with complex human-object interaction. The left exhibits images for reference, the mid-
dle shows the noised point clouds (top) and our corresponding mesh model results (bottom). We
zoom in some cases on the right for clearer demonstration, where point clouds are drawn in white.

Abstract. LiDAR-based human motion capture has garnered significant inter-
est in recent years for its practicability in large-scale and unconstrained environ-
ments. However, most methods rely on cleanly segmented human point clouds
as input, the accuracy and smoothness of their motion results are compromised
when faced with noisy data, rendering them unsuitable for practical applications.
To address these limitations and enhance the robustness and precision of mo-
tion capture with noise interference, we introduce LiveHPS++, an innovative and
effective solution based on a single LiDAR system. Benefiting from three metic-
ulously designed modules, our method can learn dynamic and kinematic features
from human movements, and further enable the precise capture of coherent hu-
man motions in open settings, making it highly applicable to real-world scenar-
ios. Through extensive experiments, LiveHPS++ has proven to significantly sur-
pass existing state-of-the-art methods across various datasets, establishing a new
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benchmark in the field. https://4dvlab.github.io/project_page/
LiveHPS2.html

1 Introduction

Capturing accurate and natural human motions in large-scale dynamic environments is
pivotal for the modeling and analysis of human behaviors, as well as for enhancing the
understanding of 3D scenes. This foundational work significantly benefits many down-
stream applications, ranging from digital filmmaking and delivering immersive experi-
ences in AR/VR gaming to training robots to emulate human-like behaviors and effec-
tively collaborate with humans. Previous motion capture methods are usually based on
optical devices [1,5,12,31,35,36,40] or wearable devices [29,48,54,55]. However, the
former is sensitive to light conditions and not suitable for outdoor scenarios, and the
latter requires the actor to wear a body-mounted IMU suit, not applicable for daily-life
usage and fails to capture human shapes.

LiDAR has emerged as a foundational sensor in the realms of robotics and au-
tonomous driving [8, 53, 60, 61], due to its exceptional long-range depth-sensing capa-
bilities. Notably, LiDAR point clouds can offer precise 3D geometry and location infor-
mation of the human body without limitation of light conditions or wearable devices.
This makes LiDAR very promising for tracking how people move and act in free en-
vironment. Recently. some advancements [6, 20, 27] have already underscored the effi-
cacy of single-LiDAR systems for capturing human motion. However, these techniques
are primarily effective with clean human point clouds within controlled experimental
settings, and they often fall short when confronted with the intricacies of real-world
application scenarios with noise and occlusions.

To address these problems, LiveHPS [33] has collected a vast dataset of human mo-
tion captured in real-world settings, featuring natural interactions with other people, and
has also put forth an effective strategy to solve the varying point distributions stemming
from occlusions and noise. Nevertheless, it treats features from real human points and
noise points equally and ignores the coherence of global poses and translations, causing
the accuracy and consistency of its predicted motions to face limitations in complex sce-
narios, where the noise does not just come from the sensor accuracy but also arises from
the horrible segmentation results by upstream perception algorithms. As illustrated in
Fig.1, distinguishing clean human point clouds becomes particularly challenging when
individuals are in close proximity or interacting with objects. This usually results in dis-
astrous inputs with much noise for motion capture algorithms, leading to inaccurate and
jerky motion outcomes. Enhancing the robustness and precision of LiDAR-based mo-
tion capture methods in any complicated situation becomes very crucial for real-world
deployment and applications.

In this paper, we introduce LiveHPS++, an innovative and effective approach for
capturing precise and coherent human motions across vast, unregulated environments
using a single LiDAR system. Our method consists of three specially designed modules
to tackle above challenges. Beginning with sequential point cloud inputs, the first mod-
ule, the Trajectory-guided Body Tracker, subtly captures the dynamic characteristics
of human movement through their trajectories, ensuring consistency across adjacent
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poses. Following this, the second module, the Noise-insensitive Velocity Predictor,
employs a cross-attention mechanism to make each human joint engage with the most
relevant point features, minimizing the impact of extraneous noise. This module fore-
casts the velocity of each joint, explicitly modeling the kinematic details of the human
motion, which is very valuable for refining the global pose and translation in the third
module, the Kinematic-aware Pose Optimizer. Here, a sophisticated system of can-
didate generation and feature interaction is implemented to achieve more precise pose
adjustments. In particular, we propose a synthesized motion dataset, NoiseMotion, built
on SURREAL [43] and ShapeNet [7] to enlarge the challenging noised data in complex
scenarios by simulating human interactions with various objects. Benefiting from both
the new dataset and our effective algorithm, we significantly enhance the robustness and
accuracy of motion capture in complex settings, where noise interference is prevalent,
thereby facilitating the practical deployment of this technology.

Extensive experiments are conducted on multiple LiDAR-based motion datasets,
including NoiseMotion, FreeMotion [33], FreeMotion-OBJ [33], and Sloper4D [10].
Compared with the state-of-the-art method, LiveHPS++ has improved the performance
by a large margin, e.g. 6.28% and 69.29% for the global vertex error and the jitter on
FreeMotion-OBJ, the most challenging real human motion dataset, and 23.05% and
13.54% for the global vertex error and the jitter on NoiseMotion, the most challenging
synthetic human motion dataset. Moreover, detailed ablation studies and discussions
are also provided to verify the effectiveness of detailed designs in our network. Contri-
butions of this work can be summarized as follows.

• We propose a robust human motion capture method, LiveHPS++, which can elim-
inate the effect of severe noises and produce precise and natural human motions in
dynamic free environment, which is very practical for real-world applications.

• We design three effective modules in our method, which can implicitly and ex-
plicitly model dynamic and kinematic features of human motions to facilitate the
coherence and accuracy of motion capture results.

• LiveHPS++ achieves state-of-the-art performance on various datasets and signifi-
cantly outperforms existing methods.

2 Related Work

2.1 Optical-based Motion Capture

Early systems of optical-based motion capture, characterized by their reliance on camera-
tracked markers to reconstruct 3D meshes [30, 44, 45], laid the groundwork for high-
quality motion capture, becoming a staple in professional settings. The field has seen
substantial advancements with the introduction of markerless mocap technologies [4,
11,17,21,28,38,39,41,42,49,50,58]. These innovations offer a less intrusive and often
more cost-effective solution, leveraging multi-view algorithms to maintain robustness
even in uncontrolled environments [1, 5, 12, 31, 35, 36, 40]. However, the complexity
of synchronizing and calibrating multi-camera setups remains a challenge. In response,
monocular mocap methods have been developed, employing a range of techniques from
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optimization and regression [3, 18, 22–26, 59] to template-based and probabilistic ap-
proaches [14–16, 51, 52]. To address depth ambiguity, some researchers have turned to
depth cameras [2,13,37,47,57], which, despite their benefits, are limited by their sens-
ing range and perform poorly in outdoor settings. Nonetheless, optical-based motion
capture methods remain constrained by lighting conditions, limiting their applicability
in outdoor scenes.

2.2 Inertial-based Motion Capture

Inertial motion capture systems offer a distinct advantage over traditional optical sys-
tems by being impervious to occlusions and unrestricted by lighting conditions or
recording environment volume. However, the commercial solutions typically require
performers to wear form-fitting suits equipped with a large number of IMUs, lead-
ing to setups that are intrusive and cumbersome for the wearer. Some recent meth-
ods [19, 34, 46, 54, 55] utilize sparse IMUs to produce promising results. Despite it
improves the portability of actors during motion capture, it still suffers from drift er-
rors over time and is unable to accurately perceive other physical information, such as
human shape and translations.

2.3 LiDAR-based Motion Capture

LiDAR technology, known for its precise long-range depth-sensing capabilities, has be-
come increasingly pivotal in fields such as robotics and autonomous driving [9, 32, 56,
60,61]. Its ability to deliver accurate depth information across expansive environments,
irrespective of lighting conditions, marks it as an invaluable tool for robust 3D Human
Pose and Shape (HPS) estimation. PointHPS [6] showcases the potential of using cas-
caded network architectures for pose and shape estimation directly from point clouds,
but the network architecture relies on dense point cloud inputs and is not suitable for
sparse point cloud data captured in outdoor large-scale scenes. LiDARCap [27] intro-
duces a graph-based convolutional network approach tailored for interpreting daily hu-
man poses within the vast and variable scales of LiDAR-captured scenes. MOVIN [20]
explores generative methods for human pose and global translation estimation. How-
ever, these methods focus exclusively on human point clouds in noise-free environ-
ments. Recently, LiveHPS [33] propose a scene-level human pose and shape estimation
by fully utilizing the temporal and spatial information to solve the occlusion and noise
disturbance. However, the network tends to take features of all points, including both
true human points and noise points, as valid information. The severe noise in data will
greatly affect the accuracy of results. Moreover, it only contains the interaction between
joints, ignoring the global kinematic information, leading the incoherence in global mo-
tion capture outcomes. Advancing into this research domain, we aim to fully exploit the
dynamic and kinematic information available in human movements to capture more
coherent and accurate global human motions in noise environments.
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Fig. 2: The pipeline of LiveHPS++. It consists of three primary modules, including a trajectory-
guided body tracker to predict the human joint and translation, a noise-insensitive velocity pre-
dictor to regress the velocity, and the kinematic-aware pose optimizer to enhance the accuracy
and coherence of results. Finally, we use SMPL solver to regress the parameters of human poses
and shape. Detailed network structure of three modules is also shown under the upper pipeline.

3 Methodology

We introduce LiveHPS++, a novel single-LiDAR-based methodology to estimate the
robust and coherent human motions in dynamic free environment. The overview of the
pipeline is shown in Fig. 2. It takes the sequential noise point clouds as input and aims
to acquire the sequential SMPL parameters, including human poses, shapes and trans-
lations. The pipeline is structured in three critical components, including trajectory-
guided body tracker(Sec 3.2), noise-insensitive velocity predictor(Sec 3.3), and kinematic-
aware pose optimizer(Sec 3.4). Firstly, we employ trajectory-guided body tracker to
predict the human joints and translations with the assistance of global dynamic infor-
mation. Secondly, we propose the noise-insensitive velocity predictor to fully utilize the
potential association between the human joints and original point cloud for regressing
the velocity of each global joint, aiming to optimize the results and concurrently miti-
gate noise impacts. Then, we design the kinematic-aware pose optimizer to enhance the
coherence and accuracy of human motion by predicted velocity. Finally, we use SMPL
solver to predict the human poses and shapes from the coherent human joints.

3.1 Preliminaries

LiveHPS++ takes sequential single human point clouds as input interspersed with noise
from surrounding objects. We resample each input point cloud to a fixed Ninput =
256 by farthest point sample algorithm, then we subtract point clouds with each av-
erage location and record the location Loc(t) ∈ R3. We define θGT (t) ∈ R6NJ ,
βGT (t) ∈ R10, and TGT (t) ∈ R3 as the ground truth SMPL parameters, NJ = 24
and NV = 6890 represents the number of human joint and mesh vertex. We define
PC(t) and Loc(t) as the normalized point cloud and the mean average positions of
raw point cloud, we also follow LIP [34] to simplify the translation prediction as the
offset prediction T̂(t), and define T̂GT (t) as the ground truth, the equation is formu-
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Fig. 3: Normalized point cloud. The light green point represents the human root positions, while
the dark green point represents the origin of coordinate axis after normalization. The sequential
point cloud on the left without noise can be normalized to obtain a relatively stable data distribu-
tion, while the data on the right exhibits a more jittery data distribution after normalization due
to noise interference.

lated below:
T̂GT (t) = Loc(t)−TGT (t). (1)

We also define the KGT (n) and KGT
ts as the velocity supervision, the equation is for-

mulated below:
KGT (n, t) =JGT (n, t+ 1)− JGT (n, t),

KGT
ts (t) =TGT (t+ 1)−TGT (t).

(2)

3.2 Trajectory-guided Body Tracker

The general strategy of normalization for input data is subtracting the average location,
which aims to enhance the generalization capabilities of network and maintain stability
in the input data. Notably, the vertex-guided adaptive distillation mechanism, as pro-
posed by LiveHPS [33], relies heavily on this normalized input to achieve point repre-
sentations that closely align with the ground truth vertices, thereby facilitating more ac-
curate and consistent motion capture. However, this conventional normalization strategy
encounters significant challenges when dealing with dynamic noise point cloud data.
Noise introduced by objects or backgrounds in the scene can lead to substantial fluctu-
ations in the point cloud distribution between adjacent frames, as shown in Fig. 3. Such
fluctuations can disrupt the spatial continuity of the temporal trajectory information,
leading to instability in the input data. To restore stability in the normalized data amidst
noise disruptions, we introduce a dedicated encoder designed to capture trajectory em-
bedding to implicitly model the dynamic characteristics of human movement. We also
modify the mechanism as vertex-trajectory-guided adaptive distillation with extra
ground truth trajectory information, aiming to fully preserve the trajectory information,
thereby enabling to capture of more precise and coherent human motion. Additionally,
the transformation of point cloud features into vertex features in a high-dimensional
space potentially predicts the displacement between the point cloud’s average position
and the true central point. Consequently, we incorporate a decoder branch specifically
for predicting translations, further refining the accuracy of our motion capture process.

The distillation mechanism consists of two networks with the same architecture and
different input data. We follow LiveHPS to generate the sampling of vertices VGT

pc (t)

with consistent distribution with input point cloud and generate the trajectory TrajGT (t)
by Equation 5 with TGT (t). The guidance network takes VGT

pc (t) and TrajGT (t) as
input, we use an MLP encoder to extract the trajectory feature and the PointNet-GRU



LiveHPS++: Robust and Coherent Motion Capture in Dynamic Free Environment 7

structure to extract the global point feature. Then we fuse above two features by an
MLP layer to get fusion feature Fgt(t) ∈ R1024 and predict the translations T̂gt(t) and
human joints Jgt(t) by an MLP decoder. We train the guidance network by the mean
squared error loss for supervision and freeze the parameters.

Lmse(Jgt) =
∑
t

∥ Jgt(t)− JGT (t) ∥22, (3)

Lmse(Tgt) =
∑
t

∥ T̂gt(t)− T̂GT (t) ∥22 . (4)

We record the average location Loc(t) of input data and calculate the trajectory Traj(t)
relative to the first frame input data.

Traj(t) = Loc(t)− Loc(1). (5)

The learning network takes the input point cloud PC(t) and trajectory Traj(t) as in-
put and follows above steps to get the fusion feature Fpc(t) and predict the transla-
tions T̂pc(t) and human joints Jpc(t). The loss function of the trajectory-guided body
tracker(TBT) LTBT is formulated as below:

Ldistillation =
∑
t

Fgt(t) log(
Fgt(t)

Fpc(t)
), (6)

LTBT = λ1Ldistillation + λ2Lmse(Jpc) + λ3Lmse(T̂pc), (7)

where λ1 = 103, λ2 = 1 and λ3 = 1 are hyper-parameters. During inference, the
guidance network is not required.

3.3 Noise-insensitive Velocity Predictor

The trajectory-guided body tracker regresses human joint positions, which leverages
skeletal geometric information to enhance motion capture accuracy. This parent-children
joint structure allows for the correction of mispredicted joints when partial point cloud
data is missing. However, the dependency can lead to error accumulation if the parent
joint’s prediction is skewed by noisy point cloud data, cause the algorithm noise. To
address the challenge, we aim to enhance the motion feature and learn the kinematic
expressions to eliminate the impact of noise. As shown in Fig. 2, we design the noise-
insensitive velocity predictor to predict the velocity of each human joint which can
reflect the kinematic information of human motions and further refine the global pose
and translation.

Specifically, the module takes the human joints/translation and input point cloud
as the input, utilizes the cross-attention mechanism to make each joint search for truly
valuable point features from the original point cloud for feature enhancement, and pre-
dicts the velocity K(n)/Kts ∈ RL (L = 32 represents the temporal window size). The
loss function is formulated as below:

Lmse(K(n)) =
∑
n

∥ K(n)−KGT (n) ∥22,

Lmse(Kts) = ∥ Kts −KGT
ts ∥22 .

(8)
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By supervision, the network can learn to distinguish features between real human points
and noise points and then eliminate the noise effect.

3.4 Kinematic-aware Pose Optimizer

Leveraging the velocity values derived previously, we develop a kinematic-aware opti-
mizer to further correct motion outcomes. The predicted velocity provides the temporal
connection of each joint between t + 1 frame and t frame, while the predicted joints
Jpc(n, t) provide joint-wise spatial position of each frame, thus we can generate candi-
date joints Jcds(n, t, t) by:

Jcds(ni, ti, tj) = Jpc(ni, ti) +∆t

tj∑
t=ti

K(ni, t),

T̂cds(ti, tj) = Loc(t)− (Tpc(ni, ti) +∆t

tj∑
t=ti

Kts(t)).

(9)

Jcds(ni, ti, tj) represents the ti candidate joints for ni joint in tj frame, thereby we
can generate (L− 1) candidate joints. Considering that long-term kinematic optimiza-
tion causes inaccurate results at the extreme points of one motion sequence and causes
cumulative errors over time, meanwhile, short-term kinematic optimization with short-
change information can only refine minority mutation cases and can not keep the co-
herence of the whole sequence. We design the module with cross-attention architecture
to build the connection between the candidate joints with the original input data, facili-
tating the extraction of more pronounced features and further benefiting more accurate
joint correction. Finally, we get the coherent and accurate global human joints Jc(t)
and translations Tc(t), the loss function of the kinematic-aware pose optimizer(KPO)
LKPO is formulated as below:

LKPO = λ4Lmse(Jc) + λ5Lmse(T̂c), (10)

where λ4 = 1 and λ5 = 1 are hyper-parameters.

3.5 SMPL Solver

In the last stage, we follow the LiveHPS [33] to use the attention-based SMPL solver
to predict the human poses θ(t) and shape β. Finally, we use SMPL model to generate
the human joints and mesh vertex as below:

Ĵsmpl(t), V̂smpl(t) = SMPL(θ(t), β, T̂c(t)). (11)

The loss function of the SMPL solver Lsmpl is formulated as:

Lsmpl =λ6Lmse(Jsmpl) + λ7Lmse(Vsmpl)

+λ8Lmse(θ) + λ9Lmse(β),
(12)

where λ6 = 100
Nj

, λ7 = 100
Nv

, λ8 = 1/5 and λ9 = 1 are hyper-parameters. It is worth
noting that due to the large number of noise points in the input data, the SUCD loss
proposed by LiveHPS is not suitable.
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Fig. 4: The NoiseMotion dataset simulation pipeline, integrating dynamic human motion and
static object noise to simulate real-world human-object interactions.

4 Dataset

Previous LiDAR-based methods use extensive synthetic data in training to enhance the
generalization of network, however, existing synthetic data primarily simulate arbitrary
sensing noise and exhibit random human point cloud translations across sequences,
failing to accurately reflect the complexities encountered in real-world scenarios. Ac-
knowledging the limitations of existing synthetic datasets, we propose the NoiseMotion,
which leverages human motion data from SURREAL [43] and 3D object models from
ShapeNet [7] to meticulously simulate complex noise patterns resulting from human-
object interactions. The pipeline of data augmentation is shown in Fig. 4, which cate-
gorizes noisy objects as either dynamic or static. Dynamic objects, which can appear
unexpectedly and significantly alter the point cloud distribution, contrast with static
objects that introduce noise through human-object interaction or proximity, a preva-
lent noise type in everyday settings. To further diversify the noise types and their dis-
tribution, we employ data augmentation techniques like random rotation and scaling.
This approach is critical for accurately reflecting real-world complexities, significantly
boosting the network’s generalization capability. Compared to the real human motion
dataset FreeMotion-OBJ [33], NoiseMotion offers a vastly richer collection, including
51,300 unique 3D object models from ShapeNet and 1,021,802 human motions from
SURREAL. In contrast, FreeMotion-OBJ provides fewer than ten types of dynamic
objects. This stark difference underscores NoiseMotion’s importance and necessity for
advancing LiDAR-based applications.

5 Experiment

In this section, we present comprehensive experiments to validate the effectiveness,
robustness, and coherence of our method, LiveHPS++, against current state-of-the-
art (SOTA) methods, including LiDARCap [27], LIP [34], and LiveHPS [33]. Ad-
ditionally, we present detailed ablation studies to assess the contribution of our net-
work architecture’s components. Following LiveHPS, our evaluation metrics include
J/V Err(PS/PST)(mm) and Ang Err(degree). Notably, scene-level unidirectional Cham-
fer distance in millimeters(SUCD) is not suitable for noisy input data, so we don’t use
SUCD for metrics. To provide deeper insight into the effect of our method on the accu-
racy and coherence of human motion trajectories, we introduce two additional metrics:
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Fig. 5: Qualitative comparisons. The point cloud matches the result better, representing more
accurate estimation for pose, shape, and translation. Each point in the visualization of coherence
evaluation represents the frame-wise global human translations in the bird’s-eye view.

1) Acceleration Error(Accel Err)(m/s2)↓: which quantifies the mean acceleration error
across global human joints, calculated against ground truth data to gauge the trajec-
tory accuracy of human motion; 2) Jitter(102m/s3)↓: which evaluates the average jerk
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Table 1: Comparison with state-of-the-art methods on various datasets. Lower values represent
better performance for all metrics. FreeMotion-OBJ means the human-object interaction part of
FreeMotion. Notably, LiveHPS∗ is trained on the real dataset and previous clean synthetic data,
which contains the same human motion as the NoiseMotion.

NoiseMotion [43] [7] FreeMotion-OBJ [33]

J/V Err(PS)↓ J/V Err(PST)↓ Ang Err↓ Accel Err↓ Jitter↓ J/V Err(PS)↓ J/V Err(PST)↓ Ang Err↓ Accel Err↓ Jitter↓

LiDARCap [27] 52.63/64.65 400.66/402.58 10.87 42.48 765.89 84.11/100.61 181.82/189.32 16.61 7.21 62.47
LIP [34] 62.41/77.97 192.79/198.66 14.07 25.31 451.74 87.50/108.28 158.38/170.90 20.16 7.09 60.19

LiveHPS [33] 48.37/60.42 74.70/83.84 12.19 5.78 68.65 70.73/88.43 146.78/158.00 17.81 8.82 117.79
LiveHPS∗ [33] 370.29/432.93 561.49/611.40 27.32 49.74 884.24 83.33/101.70 133.82/146.12 16.84 8.38 100.82

Ours 34.00/42.75 58.53/64.51 10.63 3.48 59.35 58.11/72.55 128.60/136.94 15.85 7.01 30.96

FreeMotion [33] Sloper4D [10]

J/V Err(PS)↓ J/V Err(PST)↓ Ang Err↓ Accel Err↓ Jitter↓ J/V Err(PS)↓ J/V Err(PST)↓ Ang Err↓ Accel Err↓ Jitter↓

LiDARCap [27] 86.28/104.17 180.36/188.58 15.51 6.28 70.57 71.64/84.23 138.71/147.79 13.72 6.16 88.50
LIP [34] 85.49/104.05 141.36/153.25 19.73 6.16 68.11 74.38/91.89 134.69/146.90 20.53 6.59 96.16
LiveHPS 74.71/90.79 130.41/141.08 16.96 7.27 85.38 53.37/63.15 88.35/95.85 13.08 5.88 73.56
LiveHPS∗ 69.38/83.86 119.22/128.55 15.80 6.99 86.07 48.28/59.02 77.73/85.83 12.77 5.64 97.41

Ours 61.91/75.27 112.13/120.39 15.40 5.42 33.16 42.70/50.62 76.98/81.67 11.92 4.34 59.97

across global human joints, assessing coherence of motion trajectories independently
of ground truth data and offering a measure of the fluidity of captured movements.

5.1 Implemantation Details

Our network structure is implemented by PyTorch version 1.10.0 and CUDA 11.4,
trained over 200 epochs with batch size of 64, sequence length of 32, and learning
rate of 10−3, on an Intel(R) Xeon(R) Gold 5318Y CPU and 4 NVIDIA A40 GPUs.
Other training configuration aligns with the settings established by LiveHPS. As for
the dataset, we use FreeMotion [33], Sloper4D [10], and our NoiseMotion. FreeMo-
tion and Sloper4D are LiDAR-based human motion datasets, some of the data contains
noise points from objects. Our NoiseMotion dataset is based on the SURREAL [43]
and ShapeNet [7], we generate the synthetic data consisting of human motion dataset
SURREAL and object dataset ShapeNet, which simulate the challenge human-object
interaction case in dynamic free environment with severe noise. The dataset splitting
is followed by LiveHPS. All methods are trained on the training set of NoiseMotion,
FreeMotion, and Slopher4D.

5.2 Comparison

We evaluate LiveHPS++ on the testing sets of NoiseMotion, FreeMotion, and Sloper4D.
To specifically assess our network’s resilience to noise, we additionally show the eval-
uation results on the human-object interaction sequences from the FreeMotion testing
set, referred to as FreeMotion-OBJ. This allows for a focused assessment of noise-
handling capabilities. LiveHPS++ is benchmarked against leading LiDAR-based meth-
ods to underscore its state-of-the-art (SOTA) performance, as detailed in Tab. 1. The ex-
perimental results demonstrate our LiveHPS++’s exceptional performance across var-
ious metrics, with notable advancements in Acceleration Error (Accel Err) and Jitter
especially in NoiseMotion, underscoring our method’s adeptness at handling dynamic
motion coherence in complex environments with severe noise. We can observe that,
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after training on NoiseMotion, LiveHPS exhibits enhanced performance on NoiseMo-
tion and FreeMotion-OBJ dataset characterized by high noise levels compared with
LiveHPS∗, which is trained on real data and previous clean synthetic dataset, which
provides the same human motion as the NoiseMotion. This demonstrates the value of
our synthetic data NoiseMotion. However, LiveHPS can not achieve stable generaliz-
ability and shows a relative decline in FreeMotion and Sloper4D when compared to
LiveHPS∗. Our LiveHPS++ can achieve SOTA performance in both cases with severe
noise or not, highlighting the robustness and generalization capabilities of our method.

The qualitative comparisons in Fig. 5 further accentuate LiveHPS++’s proficiency in
sustaining stability and delivering coherent outcomes under significant noise conditions.
Through visualizations of global human motion by each method on the test datasets,
LiveHPS++’s superior noise immunity is evident. For instance, in challenging scenarios
such as those presented in FreeMotion-OBJ and NoiseMotion, our LiveHPS++ reliably
differentiates between human-related and noise points, unlike LiveHPS∗, which misin-
terprets noise as legitimate motion cues in noise environments, leading to inaccuracies.
While other methods trained on NoiseMotion dataset show some capacity to disregard
irrelevant noise, their performance is still noticeably impacted. Moreover, in scenarios
with occlusion, such as those within the Sloper4D’s second row where the hand is oc-
cluded, LiveHPS++ consistently outperforms competing methods in these scenarios. As
Fig. 1 shows, thanks to our effective network design which can implicitly and explicitly
model dynamic and kinematic features of human motions, our LiveHPS++ can capture
coherent and accurate human motion, even in a real-time captured noise scenario.

We also visualize the bird-eye-view of global human translations in Fig. 5. Our
method showcases superior performance in predicting both accurate and coherent global
human translations, a capability that is particularly evident in handling the complex
and challenging motions in FreeMotion-OBJ dataset. In contrast, LiDARCap derives
translation estimates from the average locations within point clouds, which can result
in inaccuracies and jerkiness due to variations in point distribution, occlusions, and
noise interference. Although LiveHPS effectively leverages temporal and spatial data
for enhanced accuracy, it falls short of maintaining coherence across its predictions.
Our method, on the other hand, achieves both coherent and precise global translations.

5.3 Ablation Study

To prove the superiority of each network module in our LiveHPS++, we conduct ab-
lation study for the network architecture on FreeMotion-OBJ to demonstrate the effec-
tiveness of each module and we also evaluate more details for each module as shown in
Tab. 2.
Network Architecture. The network without trajectory-guided body tracker(TBT) yields
coherent yet inaccurate results compared to the network without noise-insensitive ve-
locity predictor(NVP) and kinematic-aware pose optimizer(KPO). This discrepancy
highlights the critical role of the TBT module in enhancing the accuracy of local mo-
tion within noisy environments and the effectiveness of KPO module in optimizing the
coherence of sequential motions and translations. Together, the results underscore the
significant improvements in both accuracy and coherence brought about by the integra-
tion of TBT and KPO in our LiveHPS++’s network architecture.
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Table 2: Ablation studies for our network modules on FreeMotion-OBJ. We also evaluate the
internal details of each module.

J/V Err(PS)↓ J/V Err(PST)↓ Ang Err↓ Accel Err↓ Jitter↓

Network Module
w/o TBT 71.68/90.08 153.65/164.79 17.52 7.29 33.89

w/o NVP&KPO 68.37/84.92 134.11/145.01 17.23 7.79 71.82

Trajectory-guided Body Tracker
frame-wise 68.57/86.15 151.73/162.15 16.69 7.54 43.53

sequence-wise 85.42/106.91 165.71/179.41 19.40 7.10 31.32

Kinematic-aware Pose Optimizer
short-term optimizer 64.04/79.27 132.38/141.57 16.15 7.63 55.50
long-term optimizer 68.06/83.62 150.90/159.71 16.71 7.21 42.51

Translation Estimation
Average - 177.13/183.48 - 8.18 94.73

LIP - 132.82/140.94 - 8.85 93.56
LiveHPS - 130.56/138.71 - 8.12 78.09

Ours 58.11/72.55 128.60/136.94 15.85 7.01 30.96

Trajectory-guided Body Tracker. We conduct the detailed ablation study on Trajectory-
guided Body Tracker(TBT) module by exploring the performance of frame-wise and
sequence-wise data normalization. Frame-wise normalization, which does normaliza-
tion by subtracting point clouds with the average location of each frame, is often utilized
in previous LiDAR-based human motion caption methods. It is beneficial for mitigat-
ing sensitivity to scale and position variances and network convergence acceleration,
achieving accurate prediction but but falls short by omitting essential physical move-
ment information. Sequence-wise normalization, which is sequential normalization by
subtracting point clouds with the average location of the first frame, can retain the
real-world physical trajectory, achieving smooth but inaccurate results. Our trajectory-
guided body tracker facilitates both reduced sensitivity to scale and positional differ-
ences, while retaining real-world physical motion information, thus allowing accurate
and global human motion results to be obtained.

Kinematic-aware Pose Optimizer. The Kinematic-aware Pose Optimizer (KPO) mod-
ule refines human joint and translation predictions using velocities predicted by a noise-
insensitive velocity predictor. It integrates both short-term and long-term kinematic
information for joint-wise optimization. We contrast our method with two others: a
short-term approach, which optimizes each frame with the result and the velocity of the
previous frame, and a long-term strategy, which optimizes the entire sequence using
the results of the first frame and velocity. The short-term optimizer enhances adjacent
frame coherence but introduces jerkiness in long sequences and overlooks long-range
coherence. Conversely, the long-term optimizer maintains overall coherence but leads
to accumulated errors and dependency on the initial frame’s accuracy. Our KPO can
achieve accurate and coherent results by considering both short-term and long-term
kinematic optimization.

Translation Estimation. We further refine human translation estimation, achieving su-
perior accuracy and coherence by minimizing noise impact through trajectory embed-
ding in the TBT module and enhancing translation prediction in the KPO module by
leveraging temporal dynamics. This approach significantly surpasses translation esti-
mation methods proposed in LIP and LiveHPS in both acceleration error and jitter met-
rics, showcasing our method’s advanced capability in capturing precise and fluid human
motion translations.
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Fig. 6: Ablation study for the temporal window size selection and evaluate the impact of Noise-
Motion volume leveraged for training on model performance.

Window Size Selection of KPO. The selection of an optimal temporal window size
within the Kinematic-aware Pose Optimizer (KPO) module is crucial for enhancing
motion and translation coherence. We experiment with various window sizes 1, 4, 8,
16, and 32. Observing that a window size of 32 yields the best results, as depicted in
Figure 6. This configuration led to a slight but consistent decrease in Vertex Error (V
Err) and a more pronounced reduction in Jitter, indicating more accurate and coher-
ent sequences. This highlights the significance of a suitable receptive field for optimal
sequence coherence and accuracy and confirms our algorithm’s adaptability to various
temporal lengths.
NoiseMotion Data Volume. We use NoiseMotion to enhance the generalization ability
of the network, especially when dealing with noisy data. We discuss the impact of the
volume of the synthetic data on network performance in Fig. 6. When we only use
NoiseMotion for training, there still exists a domain gap between the real data and
synthetic data. We gradually add the NoiseMotion data volume(0%, 10%, 30%, 50%,
80%, and 100%) to real data for training, and the performance gradually improves,
which demonstrates the synthetic data is significant for the task.

6 Conclusion

In this paper, we introduce a novel and effective single-LiDAR-based approach, dis-
tinguished by its ability to precisely capture accurate and coherent 3D human motions
across various unconstrained environments. By fully harnessing the dynamic and kine-
matic attributes derived from global human movements, we effectively mitigate the
adverse effects of significant noise. Additionally, we present a new synthesized motion
dataset aimed at augmenting the network’s adaptability in noisy conditions. Compre-
hensive experiments demonstrate the obvious superiority of our method, particularly in
terms of local pose accuracy and global pose coherence, rendering our technique highly
suitable for practical applications.
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