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Abstract. In this paper, we introduce YONOS-SR, a novel stable dif-
fusion based approach for image super-resolution that yields state-of-
the-art results using only a single DDIM step. Specifically, we propose
a novel scale distillation approach to train our SR model. Instead of di-
rectly training our SR model on the scale factor of interest, we start by
training a teacher model on a smaller magnification scale, thereby making
the SR problem simpler for the teacher. We then train a student model
for a higher magnification scale, using the predictions of the teacher as
a target during the training. This process is repeated iteratively until
we reach the target scale factor of the final model. The rationale behind
our scale distillation is that the teacher aids the student diffusion model
training by i) providing a target adapted to the current noise level rather
than using the same target coming from ground truth data for all noise
levels and ii) providing an accurate target as the teacher has a simpler
task to solve. We empirically show that the distilled model significantly
outperforms the model trained for high scales directly, especially with
few steps during inference. Having a strong diffusion model that requires
only one step allows us to freeze the U-Net and fine-tune the decoder
on top of it. We show that the combination of spatially distilled U-Net
and fine-tuned decoder outperforms state-of-the-art methods requiring
200 steps with only one single step.1

1 Introduction

Diffusion models have shown impressive performance in various image generation
tasks [22, 42], including image super-resolution (SR) [3, 24, 25, 32]. However, the
large number of sequential denoising passes required by the sampling strategy re-
sults in extreme computational cost, even for stable diffusion-based models (SD)
that operate in the latent space of an autoencoder. Recently, several approaches
have been proposed to reduce the number of sampling steps [18, 26, 28, 29]. Un-
fortunately, such approaches usually compromise performance, especially for the
lower number of steps.

1 The code will be available here once all approvals are processed:
https://github.com/SamsungLabs/yonos
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Fig. 1: Qualitative comparison for ×4 and ×8 magnifications. Each column shows top
to bottom LR input image, 1 and 200 step SD-SR, 1-step YONOS-SR(ours). SD-SR
represents the standard Stable Diffusion-based SR model. The 1-step SD-SR method
lacks quality in terms of detailed textures compared to 200-steps of the same model;
see building texture in the first column and hairs in the middle column. In contrast,
our method outperforms 200-steps SD-SR with only one step, especially for ×8 mag-
nification where SD-SR fails to recover the details even with 200 steps. Samples are
taken from DIV2K validation set. Images are best seen in a display and zoomed in.
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Typically, diffusion-based models yield the best results on image patches of
similar sizes to those seen during training (e.g . 64×64 for SD [22]). On the other
hand, super-resolution applications require operating in high-resolution settings,
drastically exacerbating the computational issues of diffusion-based models. For
example, a SR model that aims for a magnification of ×4 going from 256× 256
to 1024× 1024 requires dividing the input image into 16 patches of 64× 64 and
running the model on each patch individually, making a large number of steps
prohibitive for realistic use cases. Using state-of-the-art step-reduction strategy,
such as more efficient samplers [18, 19, 28] can partially alleviate this issue but
still falls widely short of practical needs. For example, going down to the target
of 1 DDIM step results in a significant drop in performance compared to a typical
model that does 200 inference steps, as shown in Fig. 1.

One differentiating characteristic of the super-resolution task is that it is
conditioned on the low-resolution (LR) input image to yield the target high-
resolution (HR) image. Unlike the task of text-to-image generation, which relies
on text conditioning, the LR image provides closer content to the target HR im-
age, especially at lower scale factors. Therefore, conditioning the diffusion model
on the LR image at low-scale factors makes the task inherently simpler for the dif-
fusion model. In this paper, we take advantage of this peculiarity and introduce
a novel training strategy dubbed scale distillation. While typical diffusion-based
SR methods train the model for super-resolution by conditioning directly on the
LR image at the target scale factor, we instead propose a progressive training
approach, where we start by training a model for lower scale factors (i.e. where
the conditioning signal is closer to the target) and progressively increase to the
target scale factor using the previously trained model as a teacher.

More specifically, instead of using the raw data to train a model for large
scale factors, scale distillation obtains a rich and accurate supervisory signal
from a teacher trained for a smaller scale factor. We first train a teacher that
takes a less degraded image as input and, therefore, has an easier task to solve
during training. Then, we train a model for a larger scale factor as a student
while initializing it with the same weights as the teacher, which is now frozen.
For a given time step during the training, we feed both teacher and student
with the same noisy version of the HR image. However, we condition the teacher
with the less degraded LR image (i.e. using the same scale that was used during
teacher training), while we condition the student on the target (more degraded)
LR image. We then use the teacher’s prediction as a target to train the student.

This training strategy has two direct advantages: i) Unlike typical training
where the supervisory signal is somewhat ambiguous as the target is the same for
all noise levels, our student receives its target from the teacher and is therefore
adaptive to the noise level. ii) The target is more accurate, especially in terms
of the finer detail, because the teacher takes a less degraded LR image as input.

The proposed scale distillation approach allows the model to solve the SR
task in fewer steps as we have simplified the task for the student. In fact, we
show that models trained with our approach improve significantly when a few
steps are used during the inference, e.g . one step, see Fig. 3. Therefore, a direct
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advantage of the proposed approach is that fine-tuning the decoder directly on
top of the diffusion model becomes computationally tractable due to the single
inference step required. Taking advantage of this fine-tuning, we show that You
Only Need One Step (YONOS)-SR outperforms state-of-the-art diffusion-based
SR methods that require a large number (e.g . 200) of inference steps.

In summary, our contributions are threefold: I) We introduce scale distillation
to train SD models with a more accurate and fine supervisory signal for image
super-resolution tasks. II) We show that our proposed scale distillation strategy
yields more efficient SD models that allow for directly fine-tuning the decoder
on top of a frozen one-step diffusion model. III) We show that combining scale
distillation followed by decoder fine-tuning yields state-of-the-art results on the
SR task, even at high magnification factors, while requiring only one step.

2 Related work

Real image super-resolution. Image super-resolution entails restoring a High
Resolution (HR) image given its Low Resolution (LR) observation. Solving this
task for real images is especially challenging given the dramatic differences in
real-world image distributions [10, 11, 17, 38]. These differences arise from vary-
ing image degradation processes, different imaging devices, and image signal
processing methods, all of which are difficult to properly model and generalize.
For this reason, real image super-resolution (or blind super-resolution) has re-
ceived significant interest among the research community [11,16,32–34,37,38,41].
While some methods attempt to learn the degradation process [5,20,31,39], their
success remains limited due to the lack of proper large scale training data [17],
even while using some unsupervised methods [44]. In contrast, more popular ap-
proaches tackle the problem by explicitly modeling the degradation pipeline to
create synthetic LR-HR pairs to use for training [15,27,34,41]. Given, the wider
success of the explicit degradation modeling approach, we elect to rely on the
widely used RealESRGAN degradation pipeline [34] in training our model.

Diffusion-based super-resolution. Since the early SRCNN [4] method, many
deep learning-based solutions for blind super-resolution have been proposed
[2, 11, 22, 24, 25, 34, 37, 41, 44]. Early work took advantage of this space by us-
ing semantic segmentation probability maps for guiding SR [35]. Most recent
methods aim at taking advantage of learned generative priors to simplify the
inverse imaging problem of blind image super-resolution. Usually, methods fol-
lowing this paradigm [34,37,41] rely on GANs [6]. More recently, diffusion mod-
els showed remarkable generative capabilities yielding impressive results across
a range of applications [22, 42]. As such, in this paper, we follow several recent
works [22,24,25,32] and rely on diffusion-based generative models to tackle the
super-resolution problem. While diffusion-based models achieve impressive re-
sults, their main shortcoming is the long inference time. Diffusion-based models
require several inference steps through the model to yield a final output, thereby
limiting their practical use. Therefore, in this paper, we tackle the important
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problem of speeding up the inference of diffusion-based super-resolution.

Guided distillation. Recognizing the inference speed shortcoming of diffusion
models, several works have been proposed recently to address this issue [18, 19,
21,26,28]. These methods can be categorized into two main tacks. One approach
tackles this problem at inference time by either proposing more efficient samplers
[12, 28] or relying on higher-order solvers [18, 19]. More closely related to ours
are methods that aim at directly training a diffusion model that can solve the
generative problem at hand in fewer steps through temporal distillation [21, 26,
29]. Our method tackles the problem at training time as well but we propose
scale distillation. Our main idea is to reduce the inference speed by progressively
making the generative problem easier during training. Notably, our approach is
orthogonal to temporal distillation and can be used in tandem with it.

3 YONOS-SR

In this section, we describe YONOS-SR, our diffusion-based model for image
super-resolution. First, we present an overview of the image super-resolution
framework with the latent diffusion models in Sec. 3.1. We then discuss our
proposed scale distillation method that allows us to improve the performance
with fewer sampling steps, e.g . 1-step, in Sec. 3.2. Finally, in Sec. 3.3, we discuss
how the 1-step diffusion model allows for fine-tuning a decoder directly on top
of the diffusion model, with a frozen U-Net.

3.1 Super-resolution with latent diffusion models

Given a training set in the form of pairs of low and high-resolution images
(xh,xl) ∼ p(xh,xl), the task of image super-resolution involves estimating the
probability distribution of p(xh|xl). The stable diffusion framework uses a prob-
abilistic diffusion model applied on the latent space of a pre-trained and frozen
autoendoer. Let us assume that zh = E(xh), zl = E(xl) be the corresponding
projection of a given low and high-resolution images (xh,xl), where E is the
pre-trained encoder. The forward process of the diffusion model, q(z|zh) is a
Markovian Gaussian process defined as

q(zt|zh) = N (zt;αtzh, σtI), z = {zt|t ∈ [0, 1]} (1)

where z denotes the latent variable of the diffusion model and αt, σt define the
noise schedule such that the log signal-to-noise ratio, λt = log[α2

t /σ
2
t ], decreases

with t monotonically. During training, the model learns to reverse this diffusion
process progressively, i.e. estimate p(zt−1|zt), to generate new data from noise.

The super-resolution objective function is derived by maximizing a varia-
tional lower bound of the data log-likelihood of p(zh|zl) via approximating the
backward denoising process of p(zh|zt, zl). Note that, for super-resolution, the
denoising process is conditioned on the low-resolution input, zl, as well. This can
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be estimated by the function ẑθ(zt, zl, λt) parametrized by a neural network. We
can train this function via a weighted mean square error loss.

argmin
θ

Eϵ,t[ω(λt)||ẑθ(zt, zl, λt)− zh||22] (2)

over uniformly sampled times t ∈ [0, 1] and zt = αtzh + σtϵ, ϵ ∼ N (0, I).
There are several choices of weighting function ω(λt). We use the so called v

parameterziation [26], (1 + α2
t

σ2
t
), throughout this paper.

The inference process from a trained model involves a series of sequential
calls, i.e. steps, of ẑθ, starting from z1 ∼ N (0, I), where the quality of the
generated image improves monotonically with the number of steps as shown in
the qualitative examples of Fig .1 and quantitative results of Fig. 3. Several
methods have been proposed to reduce the number of required steps at inference
time [18, 19, 28]. Here, we use the widely used DDIM sampler [28], and yet see
that the performance drops drastically with an extremely low number of steps.
In the following, we introduce scale distillation to alleviate this shortcoming.

3.2 Scale distillation

The complexity of the image super-resolution task increases with the scale factor
(SF). For example, a model trained for a lower SF (e.g . ×2) takes as input a less
degraded image compared to a larger SF (e.g . ×4). Therefore, a diffusion model
trained for ×2 magnification should require fewer inference steps to solve the
HR image generation task compared to a model trained for the x4 scale factor.

To alleviate the training complexity for larger scale factors, we build on
this observation and propose a progressive scale distillation training strategy.
In particular, we start by training a teacher for a lower SF that takes a less
degraded image as input. We then use its prediction as a target to train the
model for a higher factor as a student.

Let N be the target SF of interest. Standard training involves making pairs
of low and high-resolution images, where the low-resolution image is smaller
than the HR image by a factor of 1/N . The common approach for generating
the training pairs is to gather a set of high-resolution images, perform synthetic
degradation to obtain the corresponding low-resolution image and train a model
that directly performs ×N magnification [22, 32, 34] using eq. 2. Instead, we
start by training a standard diffusion-based teacher for a lower SF, using a less
degraded LR image, e.g . 2/N , as input and use its prediction to train the student.

More precisely, Let us assume ẑϕ, ẑθ be the teacher and student denoising
models parameterized by ϕ, θ respectively. To train the student for a factor
of N , we generate two degraded images for a given high-resolution image with
factors 1/N, 2/N , with latent representations denoted by zl, z

′
l respectively. That

means z′l is less degraded compared to zl. Similar to the standard diffusion model
training, we sample random noise at t and add it to the high-resolution image
to obtain zt. The scale distillation loss will be:
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... ...

... ...

Fig. 2: Training pipeline of proposed scale distillation. For a given HR image (e.g . size
512×512) shown in green, we generate two degraded versions with factors of 2/N, 1/N
(e.g . sizes 256×256 and 128×128), shown in yellow and red respectively. Both degraded
images are resized back via bicubic upsampling to 512 × 512 to be used as input to
the encoder, which projects them to 4× 64× 64 tensors. The less and more degraded
LR image is used as input to the teacher and student respectively via concatenation
with the noisy version of the HR image, i.e. zt. The teacher’s output is used as the
target for training the student. Note that the teacher is first trained independently for
a smaller magnification scale and then frozen during student training.

argmin
θ

Eϵ,t[ω(λt)||ẑθ(zt, zl, λt)− ẑϕ(zt, z
′
l, λt)||22] (3)

where the teacher is trained for N/2 magnification and frozen, and the student
is initialized with the teacher’s weights before the training. Note that we are
using the latent diffusion framework that allows exactly the same architecture
and input shapes for both the teacher and the student. Although the input low-
resolution images for the student and teacher are of different sizes, they are both
resized to a fixed size and fed to the encoder, which projects them to a tensor
with a fixed size of 4× 64× 64. Fig. 2 illustrates the proposed scale distillation
process.

The idea of scale distillation is in line with that of progressive temporal
distillation [26]. While a standard denoising model would only use the final
image as the target irrespective of the sampled time step t (see Eq. 2), both scale
and progressive temporal distillation rely on the teacher to provide a supervisory
signal specific for step t (see Eq. 3). In this way, the supervisory signal is attuned
to the specific denoising step, providing stable and consistent supervision at every
denoising step. Fig. 3 provides empirical support for our hypothesis. We observe
a significant gap between the distilled models from ×2 to ×4 and ×2 to ×8
compared to the models that are directly trained for ×4 and ×8, respectively.
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Fig. 3: FID vs. number of DDIM steps on the DIV2K validation set obtained through
bicubic degradation using SD for ×4 and ×8 magnifications trained with scale dis-
tillation and standard training. We use ×2 → ×4 scale distillation for ×4 and
×2 → ×4 → ×8 for ×8, and compare with the standard training directly for ×4
and ×8 respectively. All results are obtained using the original SD decoder. The model
trained with scale distillation outperforms the standard training with large margin
when using fewer steps for ×4. The gap between scale distillation and the standard
training is significantly higher for small ×8 and remains steady for large numbers steps.

The gap is especially striking when evaluated with few inference steps and, as
expected, shrinks as the number of steps increases and quality saturates.

Similar to the temporal progressive distillation [26], the proposed scale distil-
lation process can be applied iteratively with higher scale factors at each training
step. The first student is initialized from scratch and trained on the raw data,
similar to the standard training. Consequently, this student becomes the new
teacher for training the next scale factor. In this paper, we consider three distil-
lation steps up to the scale factor of ×8 starting from ×2, i.e. ×2 → ×4 → ×8.
As it is shown in Fig. 3, scale distillation is significantly more effective for ×8
magnification where the LR image is of even lower quality, thereby reinforcing
the importance of our proposed progressive scale training strategy.

3.3 Decoder fine-tuning

While scale distillation improves the one-step inference noticeably, there is still
a gap between the one-step model and the saturated performance with a larger
number of steps, see Fig. 3. To fill this gap, we propose to fine-tune the decoder
on top of the frozen one-step diffusion model resulting from scale distillation.
That is, after training the diffusion model, we freeze the U-Net, apply one DDIM
step for a given LR image, and use it as input to fine-tune the decoder for the
SR task. We use the original loss that has been used for training the autoen-
coder [22]. Importantly, this fine-tuning strategy with the U-Net in place is only
possible with a diffusion model that can work properly with one step as enabled
by our scale distillation approach; see Table. 3. We empirically show that the
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combination of our scale distillation approach with decoder fine-tuning yields a
one-step model that can readily compete with models requiring a large number
of inference steps.

Implementation details. We use Stable diffusion v1.5 as our backbone and initial-
ize our teacher with the text-to-image model. We use our own implementation
of the v-parameterization with a cosine schedule. We use 4 A100 GPUs for all
our experiments and train with a batch size of 60 with a gradient accumulation
factor of 4.

4 Experiments

In this section, we evaluate our YONOS-SR against other methods targeting real
image super-resolution at the standard ×4 scale factor in Sec. 4.1 and demon-
strate that our proposed scale distillation approach generalizes to higher scale
factors of ×8 in Sec. 4.2. We then provide qualitative results for ×4 and ×8 in
Sec. 4.3. Finally, we perform ablation studies to highlight the role of our main
contributions in Sec. 4.4.

4.1 Evaluation on real image super resolution

We begin by evaluating the performance of our proposed YONOS-SR model in
the standard real image super-resolution setting targeting ×4 scale factor.

Datasets. Following previous work (e.g . [2,32,34,41]), we use DIV2K [1], DIV8K
[7], Flickr2k [30], OST [36] and a subset of 10K images from FFHQ training set
[13] to train our model. We adopt the Real-ESRGAN [34] degradation pipeline
to generate synthetic LR-HR pairs.

We then evaluate our model on both synthetic and real datasets. Similar
to [32], we use 3K LR-HR (128 → 512) pairs synthesized from the DIV2K
validation set using the Real-ESRGAN degradation pipeline as our synthetic
dataset. We also report results on the standard DIV2K validation split with
bicubic degradations for completeness. For the real dataset, we use 128 × 128
center crops from the RealSR [11], DRealSR [38] and DPED-iphone [10] datasets.

Evaluation metrics. We evaluate using various perceptual and image quality
metrics, including LPIPS [43], FID [9] (where applicable), as well as the no-
reference image quality metric, MUSIQ [14]. For the synthetic datasets, we also
report standard PSNR and SSIM metrics, for reference.

Baselines. As the main contribution of our paper targets improving the infer-
ence process of diffusion-based super-resolution, our main points of compari-
son are diffusion-based SR models, including the recent StableSR model [32],
ReshShift [40], and the original LDM model [22]. For completeness, we also in-
clude comparison to other non-diffusion-based baselines, including; RealSR [11],
BSRGAN [41], RealESRGAN [34], DASR [16] and FeMaSR [2].
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Datasets Metrics RealSR BSRGAN DASR Real-ESRGAN+ FeMaSR LDM ResShift StableSR YONOS (ours)

DIV2K Valid
RealESRGAN degradations

FID ↓ 49.49 44.22 49.16 37.64 35.87 26.47 30.45 24.44 21.86
LPIPS ↓ 0.5276 0.3351 0.3543 0.3112 0.3199 0.2510 0.3076 0.3114 0.2310
PSNR ↑ 24.62 24.58 24.47 24.28 23.06 23.32 24.62 23.26 24.74
SSIM ↑ 0.5970 0.6269 0.6304 0.6372 0.5887 0.5762 0.6210 0.5726 0.6428

MUSIQ ↑ 28.57 61.19 55.19 61.05 60.83 62.27 63.58 65.92 70.30
DIV2K Valid

bicubic degradations
LPIPS ↓ - 0.2364 0.1696 0.2284 - 0.2323 0.1775 0.2580 0.1703
PSNR ↑ - 27.32 28.55 26.65 - 25.49 27.24 21.90 26.26

RealSR LPIPS ↓ 0.3570 0.2656 0.3134 0.2709 0.2937 0.3159 0.3279 0.3002 0.2479
MUSIQ ↑ 38.26 63.28 41.21 60.36 59.06 58.90 59.87 65.88 69.21

DRealSR LPIPS ↓ 0.3938 0.2858 0.3099 0.2818 0.3157 0.3379 0.3870 0.3284 0.2721
MUSIQ ↑ 26.93 57.16 42.41 54.26 53.71 53.72 54.13 58.51 66.26

DPED-iphone MUSIQ ↑ 45.60 45.89 32.68 42.42 49.95 44.23 38.59 50.48 59.45
- # STEPS ↓ - - - - - 200 4 200 1

Table 1: Comparison to baselines. Results in Red and Blue correspond to best and
second best results, resp. Cells with − indicate that there were no previously reported
results using the considered baseline and corresponding metric.

Results. Results summarized in Tab. 1 show that YONOS-SR outperforms
all other diffusion-based SR methods, while using only one inference step,
whereas other alternatives use 200 inference steps. These results highlight the
efficiency of YONOS-SR in reducing the number of steps to one without com-
promising performance but indeed improving it further. Also, our model outper-
forms all considered baselines in 5 out of 7 metrics on the synthetic data and all
comparison points on the real datasets.

4.2 Generalization to higher scale factors

We now evaluate the generalization capability of our proposed scale distillation
approach. To this end, we train our YONOS-SR model with one more iteration
of scale distillation, thereby going from a model capable of handling ×4 mag-
nifications to ×8 magnifications. We then fine-tune the decoder on top of the
one-step ×8 diffusion model. To evaluate this model, we follow recent work [3],
and evaluate on the same subset of ImageNet and FFHQ for ×8 magnification,
i.e. 64 × 64 → 512 × 512. In particular, we select the same 1k subset of Ima-
geNet test set by first ordering the 10k images by name and then selecting the
1k subset via interleaved sampling, i.e. using images of index 0, 10, 20, etc. To
obtain the LR-HR pairs, we use ×8 average pooling degradations. In the case of
FFHQ, we use the first 1k images of the validation set. We also evaluate using
the same metrics and baselines reported in this recent work [3].

The results summarized in Tab. 2 demonstrate that our proposed one-step
method generalizes well to higher scale factors, where it is able to achieve good
results in terms of FID and LPIPS scores, which are known to better align
with human observation, especially at higher magnification factors [24]. Notably,
unlike baselines, our model has not been trained on ImageNet data. We use only
10k images of FFHQ in our training set.

4.3 Qualitative evaluation

In addition to extensive quantitative evaluations, we qualitatively compare one-
step YONOS-SR with 200-step StableSR and standard diffusion-based SR (SD-
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(a) (b) (c) (d)

(a) (b) (c) (d)

(a) (b) (c) (d)

Fig. 4: Qualitative comparison on the validation set of DIV2K dataset: (a) 200-step
StableSR (b) 200-step standard SD-SR (c) 1-step YONOS(ours) (d) the ground truth.
SD-SR represents the standard Stable Diffusion-based SR model. 200-step StableSR
and SD-SR tend to over-sharpen, adding artifacts that do not match the ground truth
content. Our SR images match the most with the corresponding ground truth image; see
the faces, Pepsi, and crocodile textures in the first, second, and third rows, respectively.
The images are best seen in a display and zoomed in.

SR) in Fig. 4. Our method generates the closest SR images to the ground truth in
terms of detailed textures while taking only 1-step during the inference. These
observations are in line with the numerical superiority of our method in the
quantitative evaluations above.

As it is clearly demonstrated in Fig. 3, scale distillation is even more effec-
tive for ×8 compared to ×4 magnification. As a qualitative support, we compare
the model trained directly for ×8 magnification without scale distillation to our
model trained with three iterations of scale distillation ×2 → ×4 → ×8 in Fig. 5.
Again, we use the validation set of DIV2K dataset. In line with the numerical
analyses in Fig. 3, we observe that the model trained with scale distillation out-



12 M. Noroozi et al.

(LR)
SD

-S
R

di
re

ct
×
8

(64 steps) (4 steps) (1 step)

(HR)

Sc
al

e
di

st
ill

at
io

n
×
2
→

×
4
→

×
8

(64 steps) (4 steps) (1 step)

(LR)

SD
-S

R
di

re
ct

×
8

(64 steps) (4 steps) (1 step)

(HR)

Sc
al

e
di

st
ill

at
io

n
×
2
→

×
4
→

×
8

(64 steps) (4 steps) (1 step)

Fig. 5: Qualitative comparison on the validation set of DIV2K dataset for ×8 magnifi-
cation when the model is trained directly for ×8 magnification without scale distillation
(top row) and with three iterations of scale distillation ×2 → ×4 → ×8 (bottom row).
We show the input LR image results with 1, 4, and 64 steps using the original decoder
and the corresponding HR image for both models. The model trained with scale distil-
lation outperforms the standard training with high margins. Specifically, due to poor
LR input, the standard training fails to recover the relevant content. The images are
best seen in a display and zoomed in.
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Imagenet FFHQ
FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑

LDPS 61.09 0.475 23.21 36.81 0.292 28.78
GML-DPS [23] 60.36 0.456 23.21 41.65 0.318 28.50
PSLD [23] 60.81 0.471 23.17 36.93 0.335 26.62
LDIR [8] 63.46 0.480 22.23 36.04 0.345 25.79
P2L [3] 51.81 0.386 23.38 31.23 0.290 28.55
YONOS (ours) 34.59 0.241 22.80 21.41 0.161 26.08

Table 2: Comparison to baselines on ImageNet subset with x8 magnification factor.
The results for other methods are taken from [3].

performs the standard training in terms of recovering the corresponding content
and details. Note that, the problem of ×8 magnification is of significantly higher
complexity compared to ×4 due to poor LR input. Notable for these ×8 qual-
itative evaluations we use the original decoder (i.e. these results are obtained
before the decoder finetunig stage) to emphasize the impact of scale distillation.

4.4 Ablation study

We now study the impact of the various components introduced in our work.
To this end, we use the standard DIV2K validation set with ×4 low-resolution
images obtained through bicubic degradation [1]. We use the FID metric as it
is a standard metric for assessing the quality of generative models. Our initial
investigation also revealed that FID correlates the most with the human evalua-
tion of the generated images. The validation set of the DIV2K dataset includes
only 100 samples. To obtain more reliable FID scores, we extract 30 random
128×128 patches and their corresponding 512×512 HR counterparts from each
image in the standard DIV2K bicubic validation set, resulting in a total of 3k
LR-HR pairs. For completeness, we also report LPIPS, PSNR, and SSIM scores.

Impact of scale distillation. We begin by evaluating the impact of our proposed
scale distillation on speeding up inference time. To this end, we run two stable
diffusion (SD) models trained for ×4 super-resolution (SR), with various num-
bers of inference steps. The first model is a standard SD super-resolution model
trained directly for target ×4 super-resolution (i.e. SD-SR), while the second
model is trained with our proposed scale distillation from ×2 magnification to
×4. We use the same model, training set, and degradation pipeline in training
both models. The only difference is the use of our scale distillation in the later
model. Specifically, we start with training a teacher for ×2 magnification using
raw data as a denoising target. We use the ×2 model as a frozen teacher and use
its prediction to train a student for ×4 magnification. The results summarized
in Fig. 3 speaks decisively in favor of our scale distillation approach. We can see
that the model trained with the proposed scale distillation performs significantly
better than direct ×4 training when using only one step.

Scale distillation outperforms the standard training more significantly for ×8
magnification where we perform three training iterations for scale distillation,
i.e. ×2 → ×4 → ×8. One reason for the larger gap for ×8 magnification is that
the SR task is more ambiguous for ×8 magnification due to lower quality input.
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As a result, the model benefits more from the more simplified supervisory signal
obtained from scale distillation. Note that we use the original SD decoder (i.e.
no decoder finetuning) for this experiment to analyze the impact of the scale
distillation independently of decoder fine-tuning.

Decoder Original Fine-tuned
Scale distillation ✗ ✓ ✗ ✓

×4

FID ↓ 27.93 23.96 16.26 15.54
LPIPS ↓ 0.227 0.207 0.163 0.159
PSNR ↑ 25.94 26.24 25.73 26.30
SSIM ↑ 0.711 0.714 0.713 0.727

×8

FID ↓ 102.92 66.90 41.54 28.47
LPIPS ↓ 0.541 0.403 0.305 0.243
PSNR ↑ 21.08 24.46 21.53 23.96
SSIM ↑ 0.541 0.647 0.528 0.632

Table 3: Role of scale distillation and de-
coder fine-tuning. All results reported here
are obtained with 1 inference step.

Impact of decoder fine-tuning. One of
the direct consequences of having a dif-
fusion model that can yield good re-
sults in one denoising step is that it
allows for decoder fine-tuning with the
U-Net in place, as it will directly give
a good starting point to the decoder.
To validate the importance of the in-
put given to the decoder prior to fine-
tuning and, thereby, the importance of
YONOS-SR, we experiment with the
standard SD-SR model and our scale
distillation model. In both cases, we
freeze the U-Net and only allow the
models to do 1 denoising step. We then feed their output to the decoder and
fine-tune it following the same loss used in the original stable diffusion model [22].

The results summarized in Tab. 3 validate the importance of having a good
initial input from the diffusion model prior to decoder fine-tuning. The left chunk
shows that the model trained with scale distillation outperforms the standard
training with a good margin when using the original decoder, indicating that the
scale distillation results in a U-Net that provides a higher quality input for the
decoder. Moreover, as we can see in the right chunk of Tab. 3, fine-tuning the
decoder on top of both 1-step models improves the performance. However, the
model with scale distillation yields significantly better results than the standard
SD-SR directly trained for the target magnification. Once again, the impact of
scale distillation is more sensible for ×8 magnification than ×4, which highlights
the importance of our approach in such difficult settings. Importantly, this fine-
tuning strategy is not computationally feasible with diffusion models that require
many denoising steps to give a reasonable starting point for the decoder.

5 Conclusion

In summary, in this paper, we introduced the first fast stable diffusion-based
super-resolution method. To achieve this, we introduced scale distillation, an
approach that allows us to tackle the SR problem in as little as one step. Having
a fast diffusion model allowed us to directly fine-tune the decoder, which we
show yields state-of-the-art results, even at high magnification factors and only
using a single step. We hope that the proposed distillation approach could be
adapted for other inverse imaging problems (e.g . image inpainting), which we
believe is an interesting direction for future research.
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