
Gaussian Grouping: Segment and Edit Anything
in 3D Scenes

—– Supplementary Material —–

Mingqiao Ye, Martin Danelljan, Fisher Yu, and Lei Ke ♠

Computer Vision Lab, ETH Zurich

In this supplementary material, we first conduct additional experiment anal-
ysis of our Gaussian Grouping in Section 1, including multi-granularity, seg-
mentation efficiency, quantitative editing evaluation and robustness. Then, in
Section 2, we describe the detailed process of annotating our proposed LERF-
Mask datasets with the visualization of annotation examples. We further pro-
vide a more detailed 3D object inpainting and style transfer pipeline description
in Section 3. Finally, we illustrate the algorithm pseudocode of our Gaussian
Grouping and more implementation details in Section 4, including the method
limitation analysis. Please refer to the attached Gaussian-grouping-supp.mp4 for
an extensive 3D results comparison.

1 Supplementary Experiments

Segmentation Efficiency In Fig. 1, we compare the segmentation results with
SA3D [2] on the proposed LERF-Mask dataset for open-world 3D segmentation.
Our Gaussian Grouping shows great advantages in segmentation efficiency. Using
the same machine, our Gaussian Grouping jointly segments all objects of the
3D scene in 9 minutes, while SA3D requires 35 minutes for each object due
to its inverse rendering design in 3D voxel grids. To segment each object of the
3D scene, SA3D repeatedly needs separate new training, which makes SA3D
time-consuming and not user-friendly in multi-object segmentation or editing
scenarios.
Multi-Granularity of Masks As in Fig. 2, our method can process SAM’s
anything masks at different granularity levels in the multiple views as follows:

Step 1). Firstly, SAM predicts dense anything mask proposals (including
both large-granularity and small-granularity ones) for each frame.

Step 2). Then, these masks are scored and sorted based on their mask areas.
Masks are ranked in descending (from large to small) or ascending (from small
to large) order to pick varying levels of granularity for the label of each pixel.

Step 3). Furthermore, we filter large-area or small-area masks through their
overlapping IoU with a threshold.

Step 4). For mask association, masks are temporally propagated in a bi-
direction to obtain in-clip consensus. Refer to Sec 3.2 of Deva [3] for details.

♠ Corresponding Author

2 M. Ye et al.

Prompt:
Green apple

SA3D
(NeurIPS’23, 35min for a single object)

Mask Rendering
(Ours, 9 min for all objects)

Anything Masks Rendering
(Ours)

PCA Feature Visualization
(Ours)

Prompt:
Red toy chair

SA3D
(NeurIPS’23, 35min for a single object)

Mask Rendering
(Ours, 9 min for all objects)

Anything Masks Rendering
(Ours)

PCA Feature Visualization
(Ours)

Fig. 1: Segmentation comparison between SA3D [2] and our Gaussian Grouping on the
rendering view. We adopt PCA to visualize the rendered Identity Encoding features in
the rightmost column. Note that SA3D does not support concurrent multi-object seg-
mentation due to its design limitation in the inverse rendering, which requires training
and rendering for each segmentation target for around 35 minutes (∼20min for training
and ∼15min for rendering). In contrast, our Gaussian Grouping shows great efficiency
by segmenting all objects in the scene only in 9 minutes.

Fig. 2: Consistent tracking results at multi-granularity masks. The 1st row is in coarse
granularity, and the 2nd row is fine-grained.

Title Suppressed Due to Excessive Length 3

Table 1: Quantitative comparison on three Scene Editing Tasks using the CLIP Text-
Image Direction Similarity [5].

Task Dataset Model CLIP Text-Image Direction Similarity

3D Object Inpainting MipNeRF360/Kitchen SPIN-NeRF [11] 0.126
Ours 0.153

3D Object Style Transfer Instruct-NeRF2NeRF/Bear Instruct-NeRF2NeRF [5] 0.171
Ours 0.178

3D Object Removal Tandt/Truck DFFs [9] 0.166
Ours 0.183

Fig. 3: Tracking results for a new object in subsequent frames. The red circle highlights
the new chair appearing in the 2nd frame.

Quantitative Evaluation of Editing Following Instruct-NeRF2NeRF [5],
we provide the CLIP Text-Image Direction Similarity evaluation for three of
our editing tasks in Table 1. Gaussian grouping supports versatile scene editing
tasks, including 3D Object Inpainting, 3D Object Style Transfer and 3D Object
Removal. For each of these editing tasks, Gaussian Grouping outperforms the
corresponding SOTA method specifically designed for it. For inpainting, the
descriptions of original and edited scenes are "Lego toy on the table" and "A
flat table". For style transfer, the descriptions are "A bear statue" and "Turn
the bear into a panda". For object removal, the descriptions are "A truck on
urban street" and "Urban street".
Robustness of New Objects SAM+Tracking can process new objects on
subsequent frames. When new high-confident segmentation doesn’t match the
previous objects and has high confidence, a new instance ID is assigned to it
(see the new chair in the red circle in Fig. 3).
Sparse View Input For few-shot or sparse-view input, video tracking still ob-
tains a good result for pre-processing, since it is visual feature-based and camera-
motion robust. In Figure 4, we use a 3-view input for DEVA pre-processing and
still get a decent tracking result. 3D reconstruction of the original Gaussian
Splatting is not good with sparse-view input, but it is beyond the scope of this
paper. It is retained as a component for sparse-view Gaussian Splatting recon-
struction, intended for further research in the future.

2 Details on the LERF-Mask Annotation

Annotation Pipeline To measure the segmentation or fine-grained localization
accuracy in the open-wold 3D scene, we construct the LERF-Mask dataset based
on the existing LERF-Localization [7] evaluation dataset, where we manually

4 M. Ye et al.

T
ra

c
k

in
g

（
D

E
V

A
）

R
e

c
o

n
s

tr
u

c
ti

o
n

(3
D

-G
S

)

Fig. 4: Sparse 3-view tracking and reconstruction comparison.

annotate three scenes from LERF-Localization with accurate masks instead of
using coarse bounding boxes. For each 3D scene, we provide 7.7 text queries with
corresponding GT mask labels on average. We use Roboflow [4] platform for label
annotation, and it uses SAM [8] as an auxiliary tool for interactive segmentation.
Similar to the annotation used in LERF, for each of the 3 scenes, we choose 2-4
novel views for testing and annotating the rendering of novel views.

Annotation Examples All language prompts used for our LERF-Mask dataset
evaluation are listed in Table 2, which contains 23 prompts in total. Also, we
provide visualization on the mask annotations in Figure 5.

Scene Text queries

green apple green toy chair old camera
Figurines porcelain hand red apple red toy chair

rubber duck with red hat

Ramen chopsticks egg glass of water
pork belly wavy noodles in bowl yellow bowl

apple bag of cookies coffee mug
Teatime cookies on a plate paper napkin plate

sheep spoon handle stuffed bear
tea in a glass

Table 2: Prompt labels used during segmentation experiments in our proposed LERF-
Mask dataset (23 total).

Title Suppressed Due to Excessive Length 5

Fig. 5: Annotation visualization of our proposed LERF-Mask dataset. We manually
annotate three scenes from LERF-Localization [7] with accurate masks instead to re-
place the coarse bounding boxes in [5]. The text queries are detailed in Table 2.

3 Local Gaussian Editing: Steps of Object Inpainting &
Style Transfer

3.1 3D Object Inpainting Pipeline

For inpainting, we remove the 3D Gaussians of the selected target by using a
Gaussian Grouping model well-trained for 3D reconstruction and segmentation
and add new Gaussians for finetuning. The steps are as follows:

Step 1). Train the Gaussian Grouping model with our proposed 2D and 3D
Identity Grouping loss.

Step 2). Select the target object for inpainting. For each Identity Encoding
associated with a 3D Gaussian, we acquire its linear layer classification result.

6 M. Ye et al.

Subsequently, we remove those 3D Gaussians that are classified as the label of
the selected object. Also, we remove the 3D Gaussians with position inside the
convex hull of the object Gaussians.

Step 3). On the rendering views after the deletion of the object, we detect
the “blurry hole" with Grounding-DINO [10] as the mask for 2D inpainting and
use DEVA [3] for association. We use LAMA [12] inpainting on each view as the
target for finetuning.

Step 4). After the 3D Gaussians of the target object are deleted, we clone
200K new Gaussians near the deletion region. We freeze the other Gaussians,
and only finetune the newly introduced 3D Gaussians.

Step 5). During the finetuning, we employ L1 loss only in the outside regions
of the object mask, and adopt LPIPS loss inside the bounding box of the object
mask.

3.2 3D Object Style Transfer Pipeline

For style transfer, we finetune the 3D Gaussians belonging to the corresponding
target by using a Gaussian Grouping model well-trained for 3D reconstruction
and segmentation. The steps are as follows:

Step 1). Train our Gaussian Grouping model with our proposed 2D and 3D
Identity Grouping loss.

Step 2). Select the target object for style transfer. For each Identity Encoding
associated with a 3D Gaussian, we acquire its linear layer classification result.
Subsequently, we only finetune those 3D Gaussians that are classified as the label
of the selected object. Also, we finetune the 3D Gaussians with position inside
the convex hull of the selected object. The Gaussians irrelevant to the editing
target are frozen. During finetuning, we freeze the 3D position of Gaussains and
make other Gaussian parameters (color, variance, opacity, etc.) trainable.

Step 3). During the finetuning process, we dynamically update the target im-
ages using an image-level style transfer model that has been pre-trained. Specif-
ically, we employ InstructPix2Pix [1], introducing a noise input composed of
the rendered view combined with random noise. This approach involves condi-
tioning the diffusion model on a ground truth image to enhance accuracy and
consistency.

Step 4). To preserve the spatial details of the background regions, rendering
losses are exclusively performed within the mask of the style transfer target. On
the 2D rendered view, we employ L1 loss inside the object mask and LPIPS loss
within the bounding box that encloses the object mask.

4 More Implementation Details

4.1 More implementation details

We implement Gaussian Grouping based on Gaussian Splatting [6]. We add a
16-dimension identity encoding as a feature of each Gaussian, and implement

Title Suppressed Due to Excessive Length 7

forward and backward cuda rasterization similar to the direct current of Spher-
ical Harmonics. The 3D Identity Encoding has a shape of N ∗ 1 ∗ 16, where N
is the number of Gaussians. We set the degree of Spherical Harmonics to zero
since instance identity does not change across views. The rendered 2D Identity
Encoding has a shape of 16 ∗ H ∗ W . 3D Identity Encoding and 2D Identity
Encoding share the same identity classification linear layer with (16, 256) input
and output channels.

During training, we set λ2d = 1.0 and λ3d = 2.0. We use the Adam optimizer
for both Gaussians and the linear layer, with a learning rate of 0.0025 for identity
encoding and 0.0005 for the linear layer. For 3D regularization loss, we set the
nearest neighboring number to k = 5, and the sampling points number to m =
1000. To improve efficiency and avoid calculating loss at boundary points, we
downsample the point cloud to 300K to calculate the loss. 3D regularization
loss only affects the segmentation of identity encoding and does not affect the
density of the Gaussians. We use the same adaptive density control as Gaussian
Splatting. All datasets are trained for 30K iterations on one A100 GPU.

4.2 Algorithm Pseudocode

We outline the pseudocode for our Gaussian Grouping in Algorithm 1, where we
highlight the introduced core components in both red and bold texts. This idea of
our Gaussian Grouping is simple to implement, and straightforward but produces
an effective 3D representation to efficiently support versatile downstream scene
editing tasks.

4.3 Limit Analysis

Our Gaussian Grouping segments “anything masks” with the assistance of SAM.
But the “anything mask labels" by original SAM [8] have no direct semantic
language information. We adopt the Grounding-DINO [10] for open vocabulary
segmentation to pick the 2D object, and match our anything masks rendering.
When some language prompts are very complicated, the Grounding-DINO can
not acquire the correct mask from the input text prompt and will give a wrong
mask prediction. In this case, even if we provide the correct mask in anything
mask rendering, we do not obtain explicit category information. Also, the zero-
shot 2D association accuracy of DEVA [3] will also limit the open-world 3D
segmentation performance of Gaussian Grouping. This can be solved by fur-
ther improvement of the vision language detection model and better association
schemes in the future.

8 M. Ye et al.

Algorithm 1 Gaussian Grouping
p← SfM Points ▷ 3D Positions
m = (m1,m2, . . . ,mK)← SAM ▷ SAM’s Masks at Various K Views
(M̂1, M̂2, . . . , M̂K)← Zero-shot Tracking(m) ▷ Multi-view Associated Masks
s, α, c, e← InitAttributes() ▷ Covariances, Opacities, Colors, Identity Encodings
i← 0 ▷ Iteration Count
while not converged do

V, Î, M̂ ← SampleTrainingView() ▷ Camera View V , Image and Mask
I,Eid ← Rasterize(p, s, a, c, e ,V) ▷ Rendered Image and Identity Encoding
Limage ← L(I, Î) ▷ Original Image Rendering Loss
Lid ← λ2dL2d(Eid, M̂) + λ3dL3d(e) ▷ Identity Grouping Loss, Eq. ??
L ← Limage + Lid ▷ Total Loss
p, s, a, c, e ← Adam(∇L) ▷ Backprop & Step
if IsRefinementIteration(i) then

for all J Gaussians (pj , sj , αj , cj , ej) in (p, s, a, c, e) do
if α < ϵ or IsTooLarge(pj , sj) then ▷ Pruning

RemoveGaussian()
end if
if ∇pL > τp then ▷ Densification

if ∥S∥ > τS then ▷ Over-reconstruction
SplitGaussian(pj , sj , αj , cj , ej)

else ▷ Under-reconstruction
CloneGaussian(pj , sj , αj , cj , ej)

end if
end if

end for
end if
i← i + 1

end while

Title Suppressed Due to Excessive Length 9

References

1. Brooks, T., Holynski, A., Efros, A.A.: Instructpix2pix: Learning to follow image
editing instructions. In: CVPR (2023)

2. Cen, J., Zhou, Z., Fang, J., Yang, C., Shen, W., Xie, L., Zhang, X., Tian, Q.:
Segment anything in 3d with nerfs. In: NeurIPS (2023)

3. Cheng, H.K., Oh, S.W., Price, B., Schwing, A., Lee, J.Y.: Tracking anything with
decoupled video segmentation. In: ICCV (2023)

4. Dwyer, B., N.J.S.J.e.a.: Roboflow (version 1.0) [software]. https://roboflow.com.
(2022)

5. Haque, A., Tancik, M., Efros, A., Holynski, A., Kanazawa, A.: Instruct-nerf2nerf:
Editing 3d scenes with instructions. In: ICCV (2023)

6. Kerbl, B., Kopanas, G., Leimkühler, T., Drettakis, G.: 3d gaussian splatting for
real-time radiance field rendering. ACM TOG 42(4), 1–14 (2023)

7. Kerr, J., Kim, C.M., Goldberg, K., Kanazawa, A., Tancik, M.: Lerf: Language
embedded radiance fields. In: ICCV (2023)

8. Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., Xiao, T.,
Whitehead, S., Berg, A.C., Lo, W.Y., et al.: Segment anything. In: ICCV (2023)

9. Kobayashi, S., Matsumoto, E., Sitzmann, V.: Decomposing nerf for editing via
feature field distillation. In: NeurIPS (2022)

10. Liu, S., Zeng, Z., Ren, T., Li, F., Zhang, H., Yang, J., Li, C., Yang, J., Su, H., Zhu,
J., et al.: Grounding dino: Marrying dino with grounded pre-training for open-set
object detection. arXiv preprint arXiv:2303.05499 (2023)

11. Mirzaei, A., Aumentado-Armstrong, T., Derpanis, K.G., Kelly, J., Brubaker, M.A.,
Gilitschenski, I., Levinshtein, A.: Spin-nerf: Multiview segmentation and percep-
tual inpainting with neural radiance fields. In: CVPR (2023)

12. Suvorov, R., Logacheva, E., Mashikhin, A., Remizova, A., Ashukha, A., Silvestrov,
A., Kong, N., Goka, H., Park, K., Lempitsky, V.: Resolution-robust large mask
inpainting with fourier convolutions. In: WACV (2022)

	Gaussian Grouping: Segment and Edit Anything in 3D Scenes —– Supplementary Material —–

