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Fig. 1: The MegaScenes Dataset is an extensive collection of around 430k scenes,
featuring over 100k structure-from-motion reconstructions and over 2 million registered
images. MegaScenes includes a diverse array of scenes, such as minarets (e.g., Qutb
Minar), building interiors (e.g., wooden church in Călines,ti Căeni), statues (e.g., Puits de
Moïse), bridges (e.g., Kapellbrücke), towers (e.g., Puerta de Europa), religious buildings
(e.g., Karmravor), and natural landscapes (e.g., Teide volcano). The images of these
scenes are captured under varying conditions, including different times of day, various
weather and illumination, and from different devices with distinct camera intrinsics.

Abstract. Scene-level novel view synthesis (NVS) is fundamental to
many vision and graphics applications. Recently, pose-conditioned diffu-
sion models have led to significant progress by extracting 3D information
from 2D foundation models, but these methods are limited by the lack
of scene-level training data. Common dataset choices either consist of
isolated objects (Objaverse), or of object-centric scenes with limited
pose distributions (DTU, CO3D). In this paper, we create a large-scale
scene-level dataset from Internet photo collections, called MegaScenes,
which contains over 100K structure from motion (SfM) reconstructions
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from around the world. Internet photos represent a scalable data source
but come with challenges such as lighting and transient objects. We
address these issues to further create a subset suitable for the task of
NVS. Additionally, we analyze failure cases of state-of-the-art NVS meth-
ods and significantly improve generation consistency. Through extensive
experiments, we validate the effectiveness of both our dataset and method
on generating in-the-wild scenes. For details on the dataset and code, see
our project page at https://megascenes.github.io.

Keywords: Novel view synthesis of scenes · Pose-conditioned diffusion
models · Dataset of Internet photo collections

1 Introduction

Our vast visual experience enables us to look at a single view of a scene and infer
what we cannot see. We can see a bridge from afar and imagine what it would
be like to stand under it, or view the front of a church and guess what it looks
like from other sides. Imagine a computer vision model that has similarly seen
countless scenes: like humans, it can infer other views of a scene from a single
image (i.e., it can perform single-view novel-view synthesis). Beyond connections
with human vision, such a vision model would allow us to explore new AR/VR
visualizations [67] or plan effectively in robotics [12,68].

Current state-of-the-art methods on single-view novel-view synthesis (NVS)
take 2D diffusion models trained on large internet datasets [39] and finetunes
them on multiview images with camera poses. Concretely, these models map
a reference image and a target pose to a target view [27, 56]. These methods
successfully produced consistent novel views at an object level, as they were
trained on object meshes. Unfortunately, attempts to generalize this approach to
scenes [6, 41] by training on existing scene-level datasets [25, 37, 45, 67] were held
back by the relatively small size and lack of diversity of these scene-level datasets.
As such, current scene-level NVS techniques fail to match the consistency of
object-level models and generalize to realistic, in-the-wild scenes.

To address the lack of diverse, scene-level data for training 3D-aware models,
we create MegaScenes, a large-scale 3D dataset. MegaScenes builds on eight million
free-to-use images sourced from Wikimedia Commons. We leverage structure
from motion (SfM) to extract 3D structure from internet images at scale. In total,
MegaScenes contains over 100K scene-level SfM reconstructions from around the
world, along with associated data like captions, as well as the estimated relative
poses of tens of millions of image pairs. Fig. 1 shows a few example scenes.

While we foresee a variety of 3D-related applications that could benefit
from MegaScenes, such as pose estimation [50], feature matching [52], and
reconstruction [53], in this paper we focus on NVS as a representative application.
Following prior work in NVS [27,41], our goal is to generate a plausible image at
a target pose given only one reference image. Therefore, from MegaScenes we
sample image pairs that have consistent lighting and visual overlap to create over
2 million training pairs. We validate MegaScenes’s effectiveness by finetuning
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MegaScenes 3

current state-of-the-art NVS models on our dataset, and find that new models
perform significantly better on multiple dataset benchmarks.

In these experiments, we also identify and mitigate failure cases of existing
methods by including additional conditioning that warps the input image to the
target view [25]. While our method is simple and builds on existing approaches,
it addresses fundamental issues in prior works, and we validate that it produces
significantly more consistent and realistic results.

We show extensive experiments in Sec. 4 and a large collection of uncurated
results in the supplement to demonstrate that our method and our training
dataset yield NVS models that are effective across multiple benchmarks. We will
release the dataset, code, and pretrained models.

2 Related Work

Datasets for 3D Learning. Datasets are the keystone of 3D learning. Recently,
many 3D datasets have provided increasing amounts of data for tasks such as novel
view synthesis, scene understanding, and 3D generation. Object-level 3D datasets
like ShapeNet [8], CO3Dv2 [37], and DTU [45] have been extensively utilized in
sparse view NVS [63] and 3D generation [69]. The emergence of larger-scale 3D
object datasets like MVImgNet [65] and Objaverse-XL [11] has enabled more
generalizable models [16,27,51] for 3D reconstruction and generation. However,
these datasets are confined to objects and do not extend to full scenes.

At the scene scale, existing datasets [7,10,19,22,25,38,61,62,67] have facilitated
scene-level view synthesis and generation, but are often limited to a constrained
set of categories, such as indoor scenes and drone shots of nature. DL3DV-10K [24]
is concurrent work that aims to create a diverse and large-scale 3D scene dataset
from videos, but features limited variation in camera poses.

In contrast, scene-level 3D datasets sourced from internet photos, such as
MegaDepth [20], present a diverse distribution of camera poses and intrinsics,
various lighting conditions and weather, different times of day, and transient
objects and is widely applied in monocular depth estimation [2,60] and learned
feature matching [13, 23, 47]. However, MegaDepth is limited in scale to just
196 landmarks. Two more recent scene-level datasets include Google Landmarks
v2 [57] and WikiScenes [59], which also gather images from Wikimedia Commons.
However, Google Landmarks only focuses on 2D retrieval (no 3D information),
and WikiScenes focuses on specific categories like cathedrals.

To address these limitations, MegaScenes incorporates diverse scene categories
that include indoor, outdoor, natural scenes, and object-like scenes such as statues.
It significantly extends the scale of 3D scene data, surpassing MegaDepth by
several orders of magnitude, and includes 3D annotations of camera poses and
reconstructions. Sourced from the Wikimedia Foundation, MegaScenes benefits
from rich metadata and a wide distribution of illumination and camera poses.
Our findings in novel view synthesis demonstrate that image diversity within the
same scene enhances model generalization capabilities, highlighting MegaScenes’s
value in advancing the field of 3D learning.
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Novel View Synthesis from Sparse Views. Novel view synthesis (NVS) is
the task of generating images from unseen views given some known images of a
scene. When many input views are available, one can reconstruct an explicit 3D
scene model, e.g., a neural radiance field [31] or 3D Gaussians [18]. However, given
only sparse views (or just one), methods must rely on heuristic priors such as
geometry smoothness [32,48] or data priors [6,46,58,63]. Recently, a popular line
of work uses foundation generative models [39,40] as prior knowledge. To work
around the lack of 3D data and instead use 2D foundation models, [33, 49, 54, 58]
generate 3D objects by enforcing rendered images from unseen viewpoints to
agree with generative models. [5, 9, 64] explicitly extract multiview images by
warping reference images and their depth given target poses following Liu et
al . [25], and use an inpainting model to fill in missing regions. However, since
these 2D generative models are not 3D-aware, methods can suffer from artifacts
such as the multiface problem [33] or inconsistent geometries [9, 64].

A promising alternative is to leverage generative models that can perform
novel-view synthesis conditioned on input view and change of camera poses [5,
6, 16, 17, 26–28, 34, 41, 44, 56, 69]. These methods produce consistent geometry
given sparse or even single views without artifacts from 2D models, and can
generalize to unseen scenarios thanks to their data priors. However, these works
are generally trained on data with limited diversity, such as on object meshes [11]
and object-centric scenes [37]. As we will show later, this limits their applicability
to realistic, in-the-wild scenes. In this paper, we create both a dataset and a
method that directly addresses scene-level novel view synthesis.

3 MegaScenes Dataset

In this section, we introduce the MegaScenes dataset, designed to capture a diverse
range of geometries for large-scale scenes—plazas, buildings, interiors, and natural
landmarks—using worldwide internet photos. We describe the dataset’s key
characteristic features in Sec. 3.1. We detail the data collection and reconstruction
pipeline of MegaScenes in Sec. 3.2 We provide dataset statistics in Sec. 3.3.

3.1 Dataset Characteristics

We describe several characteristics that highlight MegaScenes’s versatility for
future vision tasks, including category, image, and 3D information.

Wikimedia Commons Categories as Scenes. Each scene in MegaScenes
is based on single Wikimedia Commons category. Contributors from around
the world have uploaded millions of images to Wikimedia Commons, and have
organized images into representative groups. As shown in Fig. 3 we find that
Wikimedia Commons categories depict scenes that are distributed across Earth,
making it suitable as the foundation for a diverse dataset and future expandability.
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Fig. 2: MegaScenes curation pipeline. We first source and identify potential scene
categories from WikiData. Subsequently, images and metadata for each scene category
is downloaded. Finally, we reconstruct scenes using Structure from Motion (SfM) and
clean them using the Doppelgangers [4] pipeline.

Images, Subcategorization, and Licensing. Images within a single scene
are further classified into subcategories determined by Wikimedia Commons
contributors. This enables future dataset applications to create subsets of data
with greater granularity. This also proves to be helpful in cleaning the dataset,
as described in the supplement on the dataset pipeline. Most importantly, like
the similarly-sourced Google Landmarks v2 dataset [57], these images possess
open content licenses or are in the public domain. Consequently, depending on
the specific license, these images are free to reuse and alter for downstream tasks,
so long as the original source is attributed.

3D Data. For each scene, we contribute SIFT [29] keypoints and descriptors, as
well as calculated two-view geometries for pairs of images. We also contribute
sparse point clouds and camera poses for a subset of scenes with ample image
overlap. We use COLMAP [42] to compute this data.

Class Hierarchy. Similar to hierarchical extension of Google Landmarks v2 [36],
the MegaScenes Dataset contains a hierarchy of class labels for each scene directly
sourced from Wikidata. Wikidata is a large database of structured data connecting
topics between Wikimedia Commons and Wikipedia. We use this class hierarchy
to aid in dataset curation, as described in Sec. 3.2.

3.2 Dataset Curation

Fig. 2 depicts our dataset curation pipeline, which has three main steps: identifying
scene categories, downloading images, and reconstructing scenes. We provide an
overview of our pipeline below, and supply additional details in the supplement.
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Our first goal is to identify Wikimedia Commons categories that may be
considered as scenes. We take a top-down approach to identify scenes by utilizing
the class hierachy described in Sec. 3.1, as follows. First, we select several broad
classes from Wikidata, such as “bridges” or “religious buildings”, that relate to
collections of scenes. We choose these classes based on commonly seen places in
everyday life. From these classes, we use the class hierarchy to identify Wikimedia
Commons categories that are instances of these classes.

Next, we download all images associated with a Wikimedia Commons category
that is identified as a scene, contingent on a subcategory filter we put in place to
avoid downloading unrelated images. This filter is described in the supplement.

Lastly, for each scene, we run structure from motion on its corresponding
collection of images using COLMAP [42] to produce sparse point clouds and
camera poses. We use default parameters for feature extraction, vocabulary tree
matching [43], and sparse reconstruction. We identify incorrect SfM reconstruc-
tions due to visual ambiguities (e.g., repeated patterns) by manual inspection
guided by historically problematic scenes described in prior work [4,14]. For these
scenes, we run Doppelgangers [4] to get a corrected reconstruction.

3.3 Dataset Statistics

In total, MegaScenes consists of approximately 430K scenes derived from Wikime-
dia Commons. Across these categories, we download 9M images which results in
over 30M image pairs with estimated two-view geometries. Around 80K of these
scenes led to at least one sparse COLMAP reconstruction, resulting in over 100K
reconstructions and 2M registered images. In these sparse reconstructions we tri-
angulate 400 million 3D points, with a mean track length of 5 images and a mean
of 8,700 observations per registered image. Similar to Google Landmarks [57],
MegaScenes has a wide range of scenes, with as many as 18K images to as few
as zero per scene. As shown by Fig. 3, our scenes covers a diverse set of classes
ranging from buildings and outdoor spaces, to statues and streets.

(a) (b)
Fig. 3: Distribution of the MegaScenes Dataset. On the left, we depict the frequency
of scenes grouped by Wikidata class. This includes only select classes with more than
3,500 scenes; note that a single scene may be an instance of multiple classes. On the
right, we visualize the geospatial distribution of collected scenes worldwide.
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4 MegaScenes Applied to Novel View Synthesis

reference image target image
warped image at

target pose
estimated depth aligned depth unprojected mesh

SfM points

Fig. 4: We create over 2 million pairs of training images for novel view synthesis. Each
pair contains relative pose and a warping from the reference to target image which
we use for both training and evaluation. We align estimated monocular depths with
sparse point clouds from COLMAP [42], and unproject the RGBD images to a mesh
for viewpoint rendering. See Sec. 4.1 for details and Fig. 5 for more examples.

In this section, we explore MegaScenes on a representative application: novel
view synthesis (NVS) from a single image. The goal is to take a reference image
and generate a plausible image at a target pose that is consistent with the reference
image. Following Sargent et al . [41], we train and evaluate on image pairs with
pseudo-ground-truth relative poses obtained via SfM. In the supplement, we
provide videos obtained through autoregressive generation.

We start with testing state-of-the-art novel-view synthesis models, namely
Zero-1-to-3 [27] and ZeroNVS [41], on MegaScenes, and demonstrate that these
approaches fail to generalize to in-the-wild scenes. We then improve these models
in two ways. First, simply fine-tuning these methods on large numbers of training
pairs from MegaScenes leads to dramatically improved results on both Internet
photos of scenes and three out-of-domain datasets. Second, we observe that these
fine-tuned models still demonstrate inconsistencies between the requested pose
and the synthesized image. We show that by adding an additional conditioning
image approximately warped from input view to target view, we improve pose
consistency and novel view quality.

In Sec. 4.1, we describe our setup. Then, we show results of finetuning baseline
models on MegaScenes in Sec. 4.2. In Sec. 4.3, we analyze failure cases of existing
methods and propose our method to improve pose consistency. Finally, we evaluate
our method on multiple datasets in Sec. 4.4 and Sec. 4.5.

4.1 Setup: Data Mining and Evaluation

Data Mining. We first identify a subset of image pairs from MegaScenes suitable
for training novel view synthesis methods using two conditions. First, each pair
should have similar lighting, since diffusion models operate on a pixel-wise loss.
Using metadata, we find pairs of images taken within three hours of each other,
as a proxy for lighting similarity. Second, we find pairs with sufficient visual
overlap of at least 50 3D SfM points, so the model can learn view synthesis
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based on visual cues. As shown in Fig. 5, we still observe both small and large
pose changes with this threshold. Finally, we require that pairs have the same
aspect ratio. Most previous works [39,41] center crop images, but we find that
many landmarks, such as statues, can have highly varied aspect ratios and lose
information through center cropping. Thus, we resize the long side to 256 and
pad the short side, to obtain images with size 256×256.

reference 
image

target 
image

warped 
condition

SD 
inpainting

ZeroNVS 
released

ZeroNVS 
(MS) Ours

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11

Fig. 5: We evaluate multiple baselines on MegaScenes, which contains diverse scenes,
poses, and object compositions. Prior methods exhibit many failure modes in this
challenging setting. Our method identifies and addresses these failure modes.

As a final check, we manually inspect all scenes and remove 298 scenes that
we determine have too many occlusions in the majority of images; most of these
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occlusions were people. In total, we obtain 2,086,036 pairs from 32,259 scenes
and 475,277 unique images. We hold out 800 scenes that contain 51,240 pairs
and 11,852 unique images. We form our validation set from the first 10,000 pairs,
which we use to determine model convergence, and our test set with the remaining
41,240 pairs, which we use to report numbers.

Evaluation metrics. We evaluate each method using standard reconstruction
and generation metrics. For reconstruction, we calculate LPIPS [66], PSNR, and
SSIM [55]. LPIPS measures perceptual similarity, while PSNR and SSIM operate
mainly on a pixel basis. However, generative models should only be expected
to remain consistent in the target image where pixels from the reference image
are present, and remain free to generate diverse samples, which could mean a
lower reconstruction score. Thus, we propose “masked” versions of these metrics.
We warp the input view to the target view using the target relative pose. Only
pixels in the reference are present in the warped image; we only compare the
copied pixels to the same location of the generated images. Our pipeline to create
warpings is shown in Fig. 4. First, we use Depth-Anything [60] to estimate the
reference image’s monocular depth. We project the COLMAP sparse point cloud
to the reference image’s coordinate frame to obtain the ground-truth sparse
depth, and use RANSAC to align the two. With this aligned dense depth, we
unproject the reference RGBD to a mesh and render it from the target pose. For
generative metrics, we use FID [15] and KID [3]. Both assess generated image
quality by comparing their feature distributions to those of real images. Lower
scores indicate that generated images are more similar to real images.

In general, we find LPIPS, FID, and KID reliable metrics for assessing quality
and realism in generated images. We find Masked PSNR and Masked SSIM
reliable for assessing consistency, i.e. whether generated images follow the target
pose and retain details from the reference images. Still, we encourage readers to
view qualitative results for a more comprehensive understanding.

4.2 Finetuning Pose-Conditioned Models on MegaScenes

Zero-1-to-3 [27] is finetuned from Stable Diffusion on Objaverse [11]. ZeroNVS [41]
is finetuned from Zero-1-to-3 on CO3D [37], ACID [25], and RealEstate10K [67].
Our goal is to evaluate whether finetuning these models on MegaScenes improves
generalization to in-the-wild scenes.

Finetuning details. Zero-1-to-3 conditions on poses in spherical coordinates,
which is only suitable for objects placed in a canonical coordinate frame. Thus,
we condition poses based on ZeroNVS, which flattens the extrinsic matrix and
field of view as input to cross-attention, for both models. The scale of translation
is determined by the 20th quantile of the depth of the reference image [41].
Additionally, both models concatenate the target and reference images and
provide the reference image’s CLIP [35] embedding to cross-attention so that the
output remains consistent with the reference. We compare released and finetuned
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models to verify whether our dataset improves generalization to in-the-wild scenes.
We provide training details in the supplement.

Table 1: We evaluate whether models trained on MegaScenes generalize to in-the-wild
scenes. Zero-1-to-3 / ZeroNVS (released) are released checkpoints. We finetune both
on MegaScenes (models denoted with (MS)). SD-inpainting uses image warping and a
pretrained diffusion inpainting model without finetuning, following the setup in [9, 64].
Our method takes warped images as input, and we condition with and without (w/o
ext) the extrinsic matrix. ↑ means higher is better and ↓ means lower is better.

LPIPS(↓) PSNR(↑) SSIM(↑) Masked
LPIPS (↓) Masked

PSNR (↑) Masked
SSIM (↑) FID(↓) KID(↓)

Pose-Conditioned (Sec. 4.2)
Zero-1-to-3 (released) 0.5476 9.0896 0.2413 0.2777 14.132 0.6320 86.892 0.0634
ZeroNVS (released) 0.6156 7.4711 0.1508 0.3229 11.041 0.5421 69.097 0.0487
Zero-1-to-3 (MS) 0.4289 12.159 0.3665 0.1811 19.952 0.7286 9.7835 0.0023
ZeroNVS (MS) 0.3857 12.900 0.4005 0.1572 20.713 0.7534 9.8382 0.0024
Warp-Conditioned (Sec. 4.3)
SD-inpainting 0.4245 12.358 0.3923 0.1283 24.377 0.8005 38.484 0.0242
Ours w/o ext 0.3534 13.310 0.4328 0.1297 22.609 0.7819 12.010 0.0041
Warp + Pose (Sec. 4.3)
Ours 0.3444 13.397 0.4446 0.1256 22.483 0.7842 11.580 0.0040

Results. We show qualitative results in Fig. 5 and quantitative results in Tab. 1.
We denote checkpoints released by authors with (released) and models finetuned
on MegaScenes with (MS). Additional results are in the supplement.

Zero-1-to-3 (released) and ZeroNVS (released) are both unable to generalize
to internet photos. They produce unrealistic images with incorrect poses. We
note that the former outperforms the latter in numbers, but upon inspecting
qualitative results (see supplement) we observe that Zero-1-to-3 (released) tends
to return the reference image. Finetuning on MegaScenes signficantly improves
results of both models, seen in the metrics of the (MS) models and the qualitative
comparisons between ZeroNVS (released) and ZeroNVS (MS).

We also validate that MegaScenes is suitable for the task of scene-level NVS.
Zero-1-to-3 (MS) outperforms ZeroNVS (released) even though both are finetuned
from Zero-1-to-3’s released checkpoint; one is trained on MegaScenes and the
other on CO3D [37], ACID [25], and RealEstate10K [67].

ZeroNVS (MS) shows the best performance among these four models. From
Fig. 5, we see that it produces realistic images, and the generated images clearly
attempt to follow the desired pose. However, many images produced by ZeroNVS
(MS) are still inaccurate. The positions of the islands (row 6), bridge (row 9),
and building (row 10) are slightly different than in the target image, and when
there is larger zoom, such as in rows 3, 4, and 7, the model fails to interpret the
scale properly. Next, we address these issues.
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4.3 Improving Pose Consistency with Warp Conditioning

ZeroNVS [41] conditions their model on the flattened extrinsic matrix, which is
not a very intuitive pose condition; the model must learn a spatial transformation
without visual cues. Furthermore, the translation scale is ambiguous since scenes
cannot be canonicalized to a fixed coordinate frame. The authors in the original
paper run a grid search on each scene to manually determine a scene scale during
inference.

Since our goal is to generalize to in-the-wild scenes, we automatically determine
scene scale using on monocular depth estimation when testing ZeroNVS. This
leads to inaccurate poses especially with large zooming effects.

Our insight is that the warped image (Fig. 4) encodes pose by visualizing
how pixels are supposed to move, and is directly aligned with the scene scale.
On our training and evaluation datasets, the scale is based on 3D SfM points.
Given a single image, we can determine the scene scale from estimated monocular
depth and use the same extrinsics for conditioning and warping the image for a
consistent scale. We show this setting in the supplement by generating videos
given a single image. Thus, we concatenate the warped image with the input target
and reference images, and observe significant improvements in pose accuracy.

Fig. 6: We compare results with and with-
out conditioning on the extrinsic matrix.
The extrinsic matrix ensures valid outputs
and produces more consistent 3D geometry.

However, using only the warped im-
age as pose condition leads to two prob-
lems. First, inaccurate depth, which
can be common in noisy, in-the-wild
scenes, can cause the model to fail. Fur-
thermore, with guidance only through
the movement of 2D pixels, the model
seems unable to interpret 3D structure
at times.

Therefore, we also condition on the
extrinsic matrix following ZeroNVS.
We show qualitative results of these
design choices in Fig. 6. In rows 1 and
4, Ours demonstrate better 3D con-
sistency compared to Ours w/o ext,
which is the model trained without
conditioning on the extrinsic matrix,
including creating the separating wall
and a complete building, respectively. In rows 2 and 3, there is little information
in the warped condition due to inaccurate depth, and the generated results
contain either unwanted objects or objects at inaccurate locations.

Using the warped image as a condition for view synthesis was first proposed by
Liu et al . [25], then adapted by a recent line of work that uses a Stable Diffusion
inpainting model without any finetuning [9,64]. The premise is that a foundation
model can generalize to any domain without forgetting. We therefore also compare
to this baseline, denoted SD-inpainting. Using the preprocessed warpings, we set
empty pixels as the mask to inpaint. This method, however, demonstrates lack
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of 3D understanding. For instance, the inpainting model frequently interprets
a scene as a picture frame. Furthermore, the inpainting model is only trained
on large, uniform masks, and produces artifacts when operating on fine-grained
masks, which come with arbitrary poses. In contrast, the masks can be of arbitrary
size, and our diffusion model has the freedom to remove occlusions and create
plausible images. These results suggest that finetuning on 3D data is essential
for zero-shot novel view synthesis.

In the following subsections, we evaluate all methods on MegaScenes as well as
three out-of-domain datasets. While our method is simple and builds on existing
methods, it addresses the fundamental issues of prior works, and we validate
that it produces significantly more consistent and realistic results. We show a
large collection of uncurated results in the supplement and demonstrate that our
method is effective across a variety of diverse scenes.

4.4 Evaluation on MegaScenes

We first evaluate on MegaScenes’ test set, which consists of in-the-wild scenes
from Internet photos. We show quantitative results in Tab. 1 and qualitative
results in Fig. 5. Our method produces images closest to the desired pose, while
being realistic and visually consistent with the reference. Compared to ZeroNVS
(MS), our method places objects according to cues in the warped image, which
not only leads to more accurate positioning (and better reconstruction metrics),
but also more detail (structure in row 5, statues at the end of the hall in row
11). Although our method also has higher FID and KID scores than the pose-
conditioned models because the warped images add constraints to the generation
process, we do not visually observe a degradation in image quality.

SD-inpainting has the best reconstruction metrics, as it faithfully returns the
pixels in the warped condition. However, it does not understand 3D geometry,
evident in the inconsistent generations, such as interpreting a scene as a picture
frame (row 1). The inpainting artifacts also lead to unrealistic images, resulting
in high LPIPS, FID, and KID scores. Our method avoids these issues while taking
advantage of strong position cues of the warped condition.

4.5 Evaluation on Datasets from Different Domains

Next, we evaluate on DTU [45], Mip-NeRF 360 [1], and RealEstate10K (Re10K) [67],
datasets commonly used for evaluating novel view synthesis. We expect MegaScenes
to be sufficiently diverse such that models trained on it can generalize even to
specific domains. We obtain image pairs and warpings from all three datasets. In
total, we obtain 2,850 evaluation pairs from DTU, 15,682 pairs from Mip-NeRF
360, and 644 pairs from Re10K. We describe our data setup in the supplement.

We show results in Tab. 2 and Fig. 7. We see a similar trend as in Sec. 4.4. All
metrics and qualitative results improve when trained on MegaScenes. ZeroNVS
(released) was trained on object-centric datasets similar to DTU and Mip-NeRF
360, and directly trained on Re10K, but Zero-1-to-3 (MS) signficantly outperforms
it on all datasets. This validates that MegaScenes covers a wide variety of domains.
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Table 2: We evaluate whether models trained on MegaScenes generalize to other data
domains. The models and metrics are the same as in Tab. 1. We test on DTU, Mip-NeRF
360, and RealEstate10K.

DTU LPIPS(↓) PSNR(↑) SSIM(↑) Masked
LPIPS (↓) Masked

PSNR (↑) Masked
SSIM (↑) FID(↓) KID(↓)

Pose-Conditioned (Sec. 4.2)
Zero-1-to-3 (released) 0.5647 6.8720 0.2100 0.2592 12.628 0.6609 128.93 0.0297
ZeroNVS (released) 0.6476 5.7992 0.1113 0.3193 9.7005 0.5517 159.96 0.0352
Zero-1-to-3 (MS) 0.5158 7.6367 0.2755 0.2080 13.311 0.7014 101.94 0.0223
ZeroNVS (MS) 0.4833 8.0191 0.3066 0.1908 13.515 0.7152 87.406 0.0158
Warp-Conditioned (Sec. 4.3)
SD-inpainting 0.4951 9.9463 0.3688 0.1283 22.656 0.8333 214.42 0.1067
Ours w/o ext 0.4113 8.8473 0.3878 0.1385 16.631 0.7924 92.284 0.0193
Warp + Pose (Sec. 4.3)
Ours 0.3995 8.7953 0.3930 0.1357 16.593 0.7916 85.959 0.0163

Mip-NeRF 360 LPIPS(↓) PSNR(↑) SSIM(↑) Masked
LPIPS (↓) Masked

PSNR (↑) Masked
SSIM (↑) FID(↓) KID(↓)

Pose-Conditioned
Zero-1-to-3 (released) 0.5258 10.720 0.2865 0.1621 16.299 0.8864 171.21 0.1126
ZeroNVS (released) 0.6685 6.9993 0.1240 0.2312 10.890 0.7670 137.04 0.0537
Zero-1-to-3 (MS) 0.4429 12.921 0.3828 0.0307 29.441 0.9697 67.645 0.0163
ZeroNVS (MS) 0.4057 13.780 0.4122 0.1369 24.909 0.8219 60.677 0.0139
Warp-Conditioned
SD-inpainting 0.4557 12.922 0.3996 0.1212 27.455 0.8488 150.11 0.0792
Ours w/o ext 0.3944 13.667 0.4279 0.1237 25.884 0.8344 70.684 0.0193
Warp + Pose
Ours 0.3807 14.056 0.4406 0.1150 26.196 0.8422 64.406 0.0142

RE10K LPIPS(↓) PSNR(↑) SSIM(↑) Masked
LPIPS (↓) Masked

PSNR (↑) Masked
SSIM (↑) FID(↓) KID(↓)

Pose-Conditioned
Zero-1-to-3 (released) 0.4050 11.632 0.4384 0.2732 14.079 0.6400 160.20 0.0725
ZeroNVS (released) 0.4563 9.4869 0.3527 0.3078 11.456 0.5565 123.01 0.0352
Zero-1-to-3 (MS) 0.2722 14.638 0.5697 0.1510 21.241 0.7637 68.908 0.0024
ZeroNVS (MS) 0.2053 16.015 0.6304 0.1176 20.609 0.8070 61.117 0.0024
Warp-Conditioned
SD-inpainting 0.2694 15.541 0.6429 0.0929 29.056 0.8719 118.94 0.0396
Ours w/o ext 0.1922 16.105 0.6267 0.1109 23.147 0.7985 66.770 0.0057
Warp + Pose
Ours 0.1774 17.224 0.6661 0.0942 24.259 0.8315 60.013 0.0023

Again, our method produces images closest to the desired pose. ZeroNVS
(MS) mostly follows the pose condition, but the positions of the objects are less
accurate. This is obvious in DTU where we can visually match the corners of the
objects. Direct visual cues in the warped condition allow our model to preserve
structure even in challenging cases, such as the bicycle in row 6.

As a side note, we would like to point out that ZeroNVS (released) appears
to perform worse than shown in their original paper because of different testing
settings. The original paper evaluates results only after SDS [33] optimization,
which filters out noise and samples the mode of the diffusion outputs. Additionally,
the authors run a grid search to manually determine scene scale. We were able to
reproduce results shown in the original paper, but here we present feed-forward
results without optimization or manual tuning for fair comparison.
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Fig. 7: We evaluate multiple models on DTU (rows 1-4), Mip-NeRF 360 (5-7), and
Re10K (8-10). Models trained on MegaScenes are able to generalize to these datasets.

5 Conclusion

We present MegaScenes, a general large-scale 3D dataset, and analyze its impact
on scene-level novel view synthesis. We find that finetuning NVS methods on
MegaScenes significantly improves synthesis quality, which validates the dataset’s
uses. We also improve existing methods and observe increased pose accuracy.

Regarding limitations and future work, on the task of NVS, we use a fraction
of our data (475K out of 2M images) and a subset of data types (we did not
use text captions). We would like to expand MegaScenes to applications that
leverage the full dataset. Our NVS method also comes with limitations. It relies
on warped images for conditioning and is impacted by erroneous depth estimation.
Also, it cannot handle large camera motions such as behind a scene. Finally,
we bypass lighting by sampling based on metadata, but we could incorporate
lighting conditions [21,30] in the future.
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