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Abstract. Most current LLM-based models for video understanding
can process videos within minutes. However, they struggle with lengthy
videos due to challenges such as “noise and redundancy", as well as “mem-
ory and computation" constraints. In this paper, we present Goldfish,
a methodology tailored for comprehending videos of arbitrary lengths.
We also introduce the TVQA-long benchmark, specifically designed to
evaluate models’ capabilities in understanding long videos with questions
in both vision and text content. Goldfish approaches these challenges
with an efficient retrieval mechanism that initially gathers the top-k
video clips relevant to the instruction before proceeding to provide the
desired response. This design of the retrieval mechanism enables the
Goldfish to efficiently process arbitrarily long video sequences, facilitating
its application in contexts such as movies or television series. To facili-
tate the retrieval process, we developed MiniGPT4-Video that generates
detailed descriptions for the video clips. In addressing the scarcity of
benchmarks for long video evaluation, we adapted the TVQA short video
benchmark for extended content analysis by aggregating questions from
entire episodes, thereby shifting the evaluation from partial to full episode
comprehension. We attained a 41.78% accuracy rate on the TVQA-long
benchmark, surpassing previous methods by 14.94%. Our MiniGPT4-
Video also shows exceptional performance in short video comprehension,
exceeding existing state-of-the-art methods by 3.23%, 2.03%, 16.5% and
23.59% on the MSVD, MSRVTT, TGIF,and TVQA short video bench-
marks, respectively. These results indicate that our models have significant
improvements in both long and short-video understanding. Our models
and code have been made publicly available Goldfish.
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1 Introduction
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Fig. 1: GoldFish Model: A long-video model capable of handling lengthy videos by filtering out noisy
information and focusing on the most relevant content to accurately answer questions.

The complex and detailed nature of videos provides deep insight, making
them crucial for understanding and interacting with the visual world. Recent
advances in large vision language models (VLMs) have progressed from image to
video-centric multimodal dialogue system , enabling these
models to process and respond to inputs comprising a video, a user query and,
optionally, video subtitles. Despite the progress in adapting VLMs for video,
most of the previous works focus on understanding short videos (in
minutes) and struggle to deal with long videos. Recent approaches attempted to
address this limitation. For example, MovieChat use memory consolidation
module and LLaMa-Vid compress image representations into fewer tokens.
These strategies improve the capacity to handle larger context windows, enabling
these models to process significantly longer videos. However, this compression
results in the loss of spatial and temporal visual details and leads to unsatisfactory
performance in the understanding of long videos (see Tab. . We question: what
factors contribute to the increased difficulty in understanding long videos compared
to short videos? We approach this question by identifying several challenges:

— Noise and Redundancy: As demonstrated in the “needle in a haystack”
test I@I in the NLP domain, LLMs tend to overlook valuable information
within overly extensive contexts. Similarly, long videos often contain irrelevant
or redundant information, Making it challenging for the current video-centric
LLM to extract meaningful content, especially with a collapsed spatial as
well as temporal resolution.

— Computational and Memory Complexity: The longer the video, the
greater the computational and memory costs required for processing. Current
video-centric Large Language Models (LLMs) inherently always
have a limitation on the maximum length of videos that they are capable of
processing.
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— Lacking Effective Benchmarks for long video understanding: Existing
benchmarks for long videos, such as LLama-Vid [20|, primarily generate
questions by feeding movie summaries and scripts into a language model,
omitting visual data. This approach leads to questions that are text-centric
and may be answerable without needing access to the visual content.

To address the challenges of noise and redudancy and computational and
memory costs, we argue that accurate identification of video clips relevant to
queries is a cructal aspect in understanding long videos. We propose Goldfish, a
framework for understanding videos of arbitrary lengths; see Fig. [ Goldfish ad-
dresses these issues by incorporating a retrieval mechanism that selects the top-k
relevant video clips before responding to queries. Specifically, Goldfish segments
long videos into shorter clips, applies a Video Descriptor module to each clip to
generate a detailed description of each video clip, and then executes retrieval
module by comparing the similarities in the text domain between the query
text embeddings and the detailed description text embeddings. Following this,
the query and corresponding summaries are forwarded to an answer module to
formulate responses. The Video Descriptor module is actually a short video model
(MiniGPT4-Video), which extends MiniGPT-v2 [4]’s architecture to encode not
just a single image, but multiple frames with their aligned subtitles. We map
the frame tokens through a linear layer to language tokens. Following this, we
tokenize the user query and the video subtitles, then introduce both lists of
tokens to the LLM, this model not used by zero shot image level but trained on
three stages by using video data to enhancing our model’s ability to interpret
and respond to video content, and this is one of our contribution as we achieved
SOTA results for short video benchmarks. In addressing the challenge of Lack-
ing Effective Benchmarks for long video understanding, we adapted the TVQA
short video benchmark for extended content analysis by aggregating questions
from entire episodes, thereby shifting the evaluation from partial to full episode
comprehension. We extensively evaluated the proposed Goldfish on previous
video benchmarks and our proposed long video benchmark and demonstrated
superiority for long video understanding. For example, Goldfish surpasses the
competitive concurrent work LLaMA-VID model |20] by about 15% in accuracy.
The proposed MiniGPT4-Video also outperforms existing state-of-the-art meth-
ods by 3.23%, 2.03%, 16.5% and 6.43% on the MSVD, MSRVTT, TGIF,and
TVQA short video benchmarks. Our contributions can be summarized as follows:

— We developed the Goldfish framework for long video understanding, which
eased the challenges of long video understanding by introducing a retrieval
design. Only top-k relevant video clips are used to answer the questions. While
most previous works can only perform couple of minutes videos, Goldfish can
efficiently process arbitrarily long videos.

— We proposed a new TVQA-long benchmark for long video understanding.
Compared to the previous long video benchmarks, TVQA-ong benchmark
requires the model to understand both the visual and text content.

— We developed MiniGPT4-Video, which extends VLM to process from single
image to multiple frames. By converting frame tokens to language tokens and
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incorporating the user’s query, we improved the model content understanding
by training it for 3 stages by using video data. MiniGPT4-Video can function
both as a component for detailed video descriptor within Goldfish and as an
independent model for short video tasks.

— Our proposed Goldfish is adept at processing long video understanding,
which is verified by achieving SoTA experimental results on 4 long video
benchmarks, including LLama-Vid, MovieChat, Movie QA and TVQA with
only the vision content and achieved SOTA results with vision and subtitles
with zeroshot evaluation on TVQA as TVQA is the only benchmark can be
used for zeroshot evaluation because the other models trained on the movies
datasets. Apart from the long video understanding, our MiniGPT4-Video also
outperformed other methods on 5 short video benchmarks, including Video
ChatGPT benchmark, MSVD, MSRVTT, TGIF, and TVQA.

2 Related Work

2.1 LLM-Based Short Video Understanding

Recently, vision-language models such as Video-LLaMA [46] and VideoChat [1§]
extend the BLIP-2 [17] architecture for video embedding extraction and both
employ two streams for audio and visual signals. Video-LLaMA employs a Video
Q-Former and an Audio Q-Former for the two streams, while VideoChat has a
video embedder and a perception toolkit for captioning, tags, etc. On the other
hand, Video-ChatGPT [26] leverages a single stream where the architecture first
encodes each frame and then has a spatial and temporal pooling process that is
finally mapped to an LLM with a linear layer. Video LLaVA [22] takes advantage
of the LanguageBind module to map both image and video inputs to the same
embedding space.

2.2 LLM-Based Long Video Understanding

Understanding long videos, such as movies or TV series that exceed two hours in
duration, poses significant challenges (as we discussed in Sec. [1)) for current video-
centric multimodal dialogue systems [2226}/46]. Recent MovieChat [35] attempts
to address this problem with a memory module containing both long-term and
short-term memory. Short-term memory consists of dense frame-wise encodings
that are managed in a FIFO (First In, First Out) queue. When short-term
memory is full, the contents are sent to a memory consolidation module, which
combines adjacent embeddings by merging similar ones, and then stores them
in long-term memory. However, the memory mechanism of this work struggles
to capture meaningful information relevant to specific tasks. A concurrent work
LLaMA-VID [20] builds a more efficient method by representing each frame with
only two tokens, namely context token and content token. These two methods
compress the input frame embeddings, increasing the number of frames fitting
into the model context window.
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Both MovieChat [35] and LLaMA-VID [20] have addressed the computation
and memory challenge to an extent by compressing visual features. However,
their approach of using features from the entire video to predict answers has
led them to face issues with noise and redundancy challenge. In Goldfish, we
introduce a retrieval-based framework that utilizes only the top-k relevant video
clips for question answering. This retrieval approach mitigates both challenges
and enables efficient processing of long videos.

2.3 Retrieval Systems

LLMs have recently shown promising capabilities in a wide range of different tasks,
however, face challenges such as hallucination, when a model outputs a nonsensical
or incorrect output typically on queries that extend outside of its training
data. Retrieval-Augmented Generation (RAG) is a technique where an LLM
leverages an external knowledge base through a retrieval mechanism, mitigating
hallucinations while storing long context. There are multiple RAG variations
introduced for language retrieval |7}/11},[12}|16}19}[19}/21},30L31}39}/40,/42L|47}/50]
and recently have been translated for image retrieval as well [5]/10,[23]. Most
recently there has also been some work in video retrieval |[13,/41], however, none
of these methods can do robust, long-video retrieval. We draw inspiration from
these works and develop a retrieval system in the domain of video-centric LLM
for long-video retrieval.

3 Goldfish

3.1 Retrieval-based Long Video Understanding

To understand long videos that exceed the context of a normal video large language
model, we introduce a three-part system: (1) Video Descriptor empowered by
a MiniGPT4-Video model and a text encoder, (2) similarity-based Retrieval
Module, and (3) Answer Module. An overview of our system is demonstrated in
Fig.[2l Our system works as follows. Firstly, in our Video Descriptor,we break the
long video down into smaller clips, with each clip limited by a maximum number
of frames that can be supported by our MiniGPT4-Video context length (4K).
Then, MiniGPT4-Video provides a concise detailed summary for each clip, which
is further encoded to an embedding by a text encoder. Given a user query encoded
to an embedding by the same text encoder, our Retrieval Module retrieves the
most related k clips from the long video and sends them to the Answer Module
to formulate an answer to the query.

Video Descriptor. Our Video Descriptor breaks down lengthy videos into
multiple non-overlapped short clips, each accompanied by textual descriptions
and corresponding embeddings for the Retrieval Module. The input for the
Video Descriptor is a sequence of frames, denoted as V' = {vy,vs,... 07},
where v; € R3>*H*W represents the i-th frame, and T is the sequence’s length.
These frames are then grouped into m chunks, with each chunk represented
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Fig. 2: Goldfish framework,First break down the long video into clips, then encode them in Video
Descriptor according to their timing and corresponding subtitles, then encode the use query and
retrieve the most related clips in the retrieval module, and finally send the top-K clips information
to the answer module to get the final answer.

as C, k € [1,m], comprising at most L consecutive frames vy ; from the video
V', where vy ; signifies the j-th frame within the k-th chunk. Here, L is deter-
mined by the maximum number of frames that can be accommodated within
the context window of our MiniGPT4-Video introduced later. Consequently,
the video can be represented as a sequence of clips: V = {C1,Cy,...,Cp} =
{(111,17 -~~7vl,L)a (U2,17 ---,Uz,L)7 ey (Um,l, --~,Um,L)}-

We employ our short video model (MiniGPT4-Video) to handle the processing
and generation of descriptions for each video clip. Drawing from existing LLM-
based vision-language models , we adapt this framework to the video
domain, resulting in our MiniGPT4-Video model. The architecture of this model
is illustrated in Fig. 3| For the video encoding stage, we utilize EVA-CLIP ,
integrating a projection layer to map visual features from the vision space to the
text space of the LLM. To optimize the contextual capabilities of the LLM, we
condense every four adjacent visual tokens into a single token, effectively reducing
the token count per image by 75%, from 256 to 64 similar as . Through training,
the LLM learns to process these video frame features, generating comprehensive
clip descriptions S1, .52, 5, for each clip essential for conducting visual question-
answering tasks in the vision-language domain.

After generating descriptions for the video clips, we proceed to encode them
along with their respective subtitles using a text encoder. The set of encoded
descriptions is defined as: {Ts,,Ts,,...,Ts,, }, and the encoded corresponding
subtitles {uy, ug, ..Uy, } are defined as {T},,, Ty, .- Ty, }, where T,,,, Ty, € R% i €
[1,m], and d is the dimensionality of text encoder space. Specifically, we employ
OpenATl’s text-embedding-3-small model as our chosen text encoder based
on table 2lin section 4.4 .

Retrieval Module. The Retrieval Module plays a crucial role in identifying video
clips most pertinent to a user query, leveraging the pre-processed clip embeddings
from the Video Descriptor. Upon receiving a user query (), we initially encode it
using the text encoder, resulting in the embedding Ty € R?. Subsequently, we com-
pute its cosine similarities with each candidate key K; from the embeddings set of
the clip descriptions and subtitles with K; € {T,, Tuys s Tups sy Tsns ooy Is,, }
via %. Next, we select the Top-k similarity scores and retrieve the corre-
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Fig. 3: MiniGPT4-video architecture: For each frame, we use EVA-CLIP to get the visual tokens and
concatenate each adjacent visual token into a singular token then convert these tokens to the language
model space using a linear layer and get the language token from LLM tokenizer. Concatenate both
the visual and subtitle text tokens together and do this for all the sampled frames and appending
the instruction tokens at the end of the input sequence.

sponding descriptions or subtitle indexes, effectively eliminating irrelevant clips
from the long video.

Answer module. In the final stage, we provide the original user query along
with our retrieved clip descriptions (and subtitles, if available) as a context
to our answer module, which generates the ultimate query response. For this
purpose, we utilize Llama2-chat [38| as our chosen Answer module instead of
MiniGPT4-Video in the text tasks. see the supplementary for more details and
ablations.

3.2 Training Pipeline

Large-scale image-text pair pretraining. In the first stage, we train a
linear layer, similar as , which projects the visual feature encoded by the
vision encoder (EVA-CLIP ) to the LLM’s text space with captioning loss.
We leverage a combined image captioning dataset that includes images from
LAION , Conceptual Captions , and SBU to align the visual feature
with LLM’s input space. To efficiently utilize the context length of LLM for video,
we concatenate every four neighboring visual tokens into a single token, reducing
the number of tokens per image by 75% from 256 to 64 same as in .
Large-scale video-text pair pretraining. In the second stage, we enable the
model to understand short videos by taking multiple frames as input. Specifically,
we sample a maximum of 45 frames from each short video. During this stage, we
use the predefined prompts in the following template:

<$>[INST]<Img><FrameFeature_ 1><Sub><Subtitle text 1>... <Img> <Frame-
Feature  N><Sub><Subtitle text N><Instruction></INST>

where N < 45. In this prompt, each <FrameFeature> is replaced by the sampled
video frame encoded by the vision backbone. The <Subtitle text> represents the
subtitle for the corresponding frame if applicable, and <Instruction> represents
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a randomly sampled instruction from our predefined instruction set containing
variant forms of instruction, such as “Briefly describe this video”. We use combined
video captioning data incorporating CMD [1| and WebVid [2]| for large-scale
video captioning training.

Video question answering instruction finetuning. In this phase, we adopt
the same training strategy implemented in the second stage but focus on leveraging
high-quality video-question-answering datasets for instruction fine-tuning. This
fine-tuning stage helps to enhance the model’s ability to interpret the input video
and generate precise responses to the corresponding questions. The template is
the same as the second stage with <Instruction> replaced by general questions
as mentioned in the Video-ChatGPT [26] dataset.

4 Experiments

4.1 Datasets

Training Datasets The Condensed Movies Video Captions dataset (CMD) |[1]
includes around 15,938 videos, with lengths between one to two minutes. However,
CMD'’s captions are of limited quality, featuring an average sentence length of 14
words so we used it in the pre-training stage.

The Webvid dataset |2| contains two million videos. For our purposes, we’ve
filtered 42K from this dataset to match CMD’s video duration range, focusing on
videos lasting one to two minutes and also used this dataset in the pre-training
dataset.

The Video Instruction Dataset [27] offers 100K question-answer pairs across
13,224 videos, distinguished by its high-quality annotations. Questions come with
detailed answers, averaging 57 words per sentence. This data set spans various
types of questions, including video summarization-based and description-based
QAs that delve into spatial, temporal, relationships, and reasoning aspects, as
well as creative or generative QAs.

Short Benchmarks Our MiniGPT4-Video is tested with Video ChatGPT
benchmark five skills and with open-ended and MCQ video-question answering
benchmarks. The Video ChatGPT benchmark [27], utilizing the ActivityNet-200
dataset [3], is designed to test video-based conversation models on text generation,
focusing on five critical dimensions: 1) Correctness of Information: Verifies the
generated text’s accuracy with video content to avoid errors or misinformation. 2)
Detail Orientation: Assesses the responses for thoroughness and detail, ensuring
coverage of essential video elements and inclusion of specific, rather than broad,
information. 3) Contextual Understanding: Gauges the model’s grasp of video
context, ensuring responses are contextually appropriate. 4) Temporal Under-
standing: Checks the model’s perception of event sequences within the video.
5) Consistency: Tests output reliability through similar question comparisons.

For open-ended questions, model performance is measured using established
datasets like MSRVTT-QA [43], MSVDQA [43], TGIF-QA FrameQA [9], and
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ActivityNet-QA [45].
For multi-choice question assessments utilize the TVQA dataset [14], based on
popular six TV shows, with a validation set of 15,253 QA pairs for evaluation.

Long Benchmarks We have conducted comprehensive evaluations on three
extensive and demanding long video benchmarks: Movie-QA [37], LLama-vid |20],
and Movie Chat [35]. Additionally, we adapted the short video benchmark TVQA
for long video analysis.

For Movie-QA [37], we assessed the overlapped movies between Movie-QA
and MovieNet [8] because Movie-QA videos is not avaialble and it is only short
clips,we ended up with 30 overlapped movies from the validation set, each lasting
between 1 and 2 hours. The new validation subset encompasses 1,081 questions,
primarily based on movie plot.

The LLama-vid [20] dataset features QA pairs focusing on three domains:
video summary (1k), movie plot (4k), and detailed reasoning (4k). The absence
of category labels prompted us to employ GPT-4 for the classification of the
questions, dividing them into two types : general questions (covering plot and
reasoning) and summary questions. Due to the original dataset’s training-only
designation and lack of a validation set, we created a balanced validation set of 10
% of the full data comprising 800 general questions and 100 summary questions,
focused solely on textual content.

Movie Chat [35] includes 1,000 meticulously selected video clips from a
variety of movies and TV shows, accompanied by 14,000 manual annotations.
These videos span 15 major genres and feature a comprehensive dense caption,
three global mode QA pairs, and ten breakpoint-mode QA pairs with precise
timestamps. The collection predominantly consists of videos lasting between 10K
to 12K frames, with 14.6% exceeding this range and only 8.6% falling short,
categorized exclusively as visual content.
we evaluated on only the available released training data which is about 10 % of
the data because the test data not released while implementing this project.

Furthermore, we introduce an enhanced benchmark based on TVQA, compris-
ing a validation set with 15,253 QA pairs derived from 842 episodes, addressing
both textual and visual queries. Originally focused on short videos with 1-minute
clips, we have expanded the scope to incorporate entire episodes into the assess-
ment, regardless of the specific video segment to which the question pertains.
This adjustment, termed TVQA-Long, significantly increases the difficulty by
requiring the analysis of the complete video content to locate the answers. This
adjustment facilitates the measurement of retrieval accuracy, as the ground truth
clip for each question is known.

Evaluation Metrics . For open ended questions it is hard to evaluate the output
of the llm with the ground truth, so following videochatGPT evaluation [27]
we employed GPT-3.5 turbo to compare between the generated results and the
ground truth. We used the same prompt as videochatgpt [27] to have a fair
comparison with their results.
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Table 1: Ablation study of the retrieval in-
puts. The reported numbers are the retrieval

accuracy on the TVQA-Long, TVR-Text, and Table 2: Ablation study on the text encoder

TVR-Vision. & means “and” while | indicates models
“or”. Text Encoder Retrieval Overall
Acc. Acc.
Retrieval /P TVQA TVR TVR bert-base-nli-mean-tokens 32| 19.0 28.4
Text Vision paraphrase-MiniLM-L6-v2 |32 31.9 38.03
Subtitles 39.7  66.4 484 all-mpnet-base-v2 32| 325 38.33
Summary 121 412 51.2 OpenAl-text-embedding-3-small [28] ~ 46.6 41.78

Subtitles & Summary 36.9 64.3 46.7
Subtitles | Summary 39.5 67.2 50.8

4.2 Ablation Studies

Retrieval Importance. The retrieval system is one of our core contributions,
thus, before ablating its inner design we conduct a simple experiment to demon-
strate its importance. To this end, given a long video as an input, we directly fed
a sampled version of it. More specifically, we downsample the input video by sam-
pling 45 frames to fit the context length of our MiniGPT4-Video model, then fed
it directly to our architecture as one clip. This could be seen as a vanilla approach
to process a long video with our MiniGPT4-Video. To avoid the huge information
loss that will be caused by this vanilla approach we propose our retrieval module,
that given N clips it will automatically retrieve the Top-K clips that are related to
the fed question (). The performance of our model without the retrieval module
is close to random, with an accuracy of approximately 25.07%. However, when
the retrieval module is incorporated, the accuracy significantly improves, rising
to 41.78% on the TVQA-Long benchmark. Notably, the TVQA-Long benchmark
consists of 5 options per question, resulting in a random accuracy baseline of

20%.

Retrieval Inner Design. After demonstrating the importance of retrieval
design, we ablate each design choice to implement an efficient retrieval system.
For each clip i, given a question @, the subtitles and the summaries embedding,
termed E;ub and E! . respectively, we need to determine what is the best way
to retrieve the corresponding clip to the input question. To this end, we explored
four possible approaches: 1) Using only E? ,. 2) Using only E? .. 3) Concatenate
both embedding F?,, and E!,, ., namely “and” approach. 4) Treat each type
separately, namely “or” approach. For instance, if we have 20 clips, then we will
feed 40 embeddings, each 20 representing the E? , and E?,, separately. As shown
in Table [T} on the TVQA dataset the summary do not add any value, which could
be interpreted as our generated summary is unrepresentative. However, other
interpretation is that, the questions provided in the TVQA dataset mainly rely
on the text clues not the vision ones. To support this claim and to truly assess our
generated summaries, we exploit the TVR dataset [15] which is another dataset
of the same videos but different annotations that used in moment retrieval tasks
and this dataset has a good prosperity that the descriptions in it is labeled as
text descriptions, vision descriptions and text plus vision descriptions, so based

on the description type, whether it is based on the visual clues or text. As shown
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in Table [} on the TVR-Vision, the summary achieves the best performance,
which show the high quality of our generated summaries via our short video
model (MiniGPT4-Video)

Text Encoder. As shown in Figure [2] the input subtitles and the generated
summaries are encoded using a text-encoder to generate E? , and E!,, , respec-
tively. Table [2] shows the impact of the text encoder on the retrieval accuracy
and the overall accuracy, where the better retrieval is linearly correlated with

the overall accuracy of the long-video model.

Answer Module. After getting the Top-K retrieved clips, the answer module
is responsible to fuse the retrieved clips grounded by the question to produce
the final answer. To this end, several ways are studied, as shown in Figure @ A)
Feed directly the retrieved summaries Sum and subtitles Sub with the question
to the LLM model to directly answer the question or say I don’t know If the
provided information not enough. B) Feed the selected video clips V' and the
question @ to MiniGPT4-Video to generate a new information in fog, which is
grounded to the question. Then, feed the new information in fog with the general
input summary Sum and the question @ to the LLM to produce the final answer.
C) Following the previous option,with also adding the original subtitles to the
context. The table in Figure [6] demonstrates that, option A is the best approach;
feed the summaries and the subtitles directly to the LLM. In contrast, when we
feed the video clips V, the accuracy drops significantly, options B and C. The
reason behind this drop is the model hallucination, especially when the question
is not related to the question, which leads to generate confusing information
to the context infog. Please refer to the supplementary materials for detailed
examples of the model hallucination in options B and C.

@ Moviechat [LlamaVid BOurs

Accuracy
S~

© o o
o ) S
\IQ

Video Length

Fig. 4: Ablation study about the video length impact on 5% of TVQA validation set. ,
video length in minutes

To evaluate our framework’s robustness with extended video lengths, we
created three versions of the TVQA dataset by altering the aggregation window.
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This window compiles long videos from ground-truth short clips that include the
answer to a question. Specifically, we combined 5, 10, and 20 clips to produce
videos averaging 6, 12, and 24 minutes, respectively. Figure [4] illustrates that our
framework maintains its robustness regardless of video length, with both retrieval
performance and overall accuracy remaining consistent even as video duration
increases. These outcomes, detailed in Figure [d] are based on an analysis of 5%
of the TVQA validation set.

Fig.5: MiniGPT4-video Qualitative results, demonstrating video understanding abilities; more
qualitative results are provided in the supplementary.

4.3 Comparison to State-Of-The-Art

Long Video Benchmarking We evaluate the efficacy of our proposed frame-
work, Goldfish:, across several well-established benchmarks, specifically the
LLama-Vid , MovieChat , Movie QA , and TVQA-Long datasets.
To thoroughly examine our framework’s capabilities, we analyze input modalities
in two configurations: vision-only (V) and vision combined with input subtitles
(V+T).

Our findings, detailed in Table [3] indicate that our framework surpasses all
existing long video baselines in the vision modality. We establish state-of-the-art
(SOTA) performance on these challenging benchmarks. This achievement holds
true even under an unfair comparison against LLama-Vid , which benefits
from using the MovieNet dataset while training and these movies are in both
LLama-vid benchmark and Movie QA . Despite this advantage, our
results significantly outperform the competition.

Incorporating both video frames and aligned subtitles into our model leads
to an average performance boost of 8% across the benchmarks. As highlighted in
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Fig. 6: Answer module ablation study on TVQA dataset, validation set.

Table 3: Long video benchmarking results on four benchmarks: LLama-Vid, MovieChat, Movie
QA, and our proposed TVQA-Long. The "V" modality indicates the use of video frames only, while
"V+T" indicates the use of both video frames and subtitles. The dagger (1) symbol denotes methods
that used the benchmark during training, implying an unfair comparison.

Open Ednded Questions MCQ

Method Modalities LLama-Vid MovieChat Movie QA TVQA-Long
Acc.T  ScoreT Acc.f Scorel Acc.T Scoref Acc.T Scoref

LLaMA-VID A% 20.68 2.41 53.2 3.81 2442 219 2463 2.16
MovieChat Vv 11.71 1.45 NA NA 16.18 1.68 5.0 0.86
Ours Vv 23.09 2.19 67.6 4.23 28.49 2.8 28.61 2.78
LLaMA-VID [20] V+T 4147 3077 NA NA 37.65' 3.037 26.81 221
Ours V4T 31.49 2.43 NA NA 35.24 3.1 41.78 3.21

Table |3, this enhanced approach enables us to outperform LLama-Vid on
the TVQA benchmark, providing a fair comparison since LLama-Vid utilizes
the other benchmarks during its training phase.

Short Video Benchmarking On short-video understanding, we continue to
secure state-of-the-art (SOTA) results, outperforming contemporaneous works,
including LLama-Vid . To validate our framework’s proficiency in short-video
analysis, we conducted evaluations against current SOTA methodologies across
an extensive suite of five benchmarks: Video ChatGPT, MSVD, MSRVTT, TGIF,
and TVQA. These benchmarks collectively offer a comprehensive platform for
assessing short-video comprehension capabilities, with five focusing on open-ended
questions and TVQA featuring multiple-choice questions.

Our results, presented in Tables [ and [5} demonstrate our framework’s superi-
ority over competing methods by a significant margin, affirming our considerable
advancements across a varied and demanding collection of benchmarks. To thor-
oughly evaluate our approach, we devised two variations of our framework: one
analyzing purely visual elements and another incorporating subtitles. The per-
formance enhancements achieved with these models are noteworthy, registering
gains of 3.23%, 2.03%, 16.5% and 23.59% on the MSVD, MSRVTT, TGIF, and
TVQA benchmarks respectively. This underscores our framework’s ability to
achieve SOTA results across the board, markedly elevating performance in the
domain of short-video understanding. The visualization results of our method
are shown in Fig. [p| We will show more visualization results in the appendix.
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Table 4: Qualitative results on Video-ChatGPT benchmark.

Video ChatGPT

Usin,
Method Subtitis Information Detailed Contextual Temporal .
Correctness Orientation Understanding Understanding Consistency
LLaMA Adapter [48| X 2.03 2.32 2.30 1.98 2.15
Video LLaMA [46] X 1.96 2.18 2.16 1.82 1.79
Video-ChatGPT |26] X 2.40 2.52 2.62 1.98 2.37
BT-Adapter-7B  |25] X 2.68 2.69 3.27 2.34 2.46
LLaMA-VID-7B |20] X 2.96 3.00 3.53 2.46 2.51
Ours-7B X 2.93 2.97 3.45 2.47 2.60
Video Chat [18| v 2.23 2.50 2.53 1.94 2.24
Ours-7B 4 3.08 3.02 3.57 2.65 2.67

Table 5: Short video benchmarking results on MSVD, MSRVTT, TGIF, ActivityNet
and TVQA.

. Open Ended Questions MCQ
Method Using —
Subtitles MSVD MSRVTT TGIF ActivityNet  TVQA
Acc.T Scoref Acc.t Score? Acc.t ScoreT Acc.t Scoref  Acc.t
FrozenBiLM |44 X 32.2 - 16.8 - 41 - 24.7 - 29.7
LLaMA Adapter [48| X 54.9 3.1 43.8 2.7 - - 34.2 2.7 —
Video LLaMA |46| X 51.6 2.5 29 1.8 - - 124 1.1 -
Video Chat |18| X 56.3 2.8 45 2.5 34.4 2.3 26.5 2.2 -
Video-ChatGPT |26] X 64.9 3.3 49.3 28 514 30 352 27 23.35
BT-Adapter-7B  |25] X 67.7 3.7 57 3.2 - - 45.7 3.2 -
LLaMA-VID-7B |20] X 69.7 3.7 57.7 3.2 - - 47.4 3.3 -
Ours-7B X 72.93 3.84 58.83 3.29 679 371 456 3.2 36.45
Ours-7B v N/A N/A 59.73 3.3 N/A N/A 463 3.4  46.94

5 Conclusion

In this paper, we identified the main challenges of the current video-centric LLMs
to process long videos. Based on the analyses, we introduced the Goldfish method,
which eases the noise and redundancy challenge and computational and memory
challenge. Goldfish introduces a retrieval approach that focuses on top-k relevant
clips, allowing efficient processing of videos of any length. In contrast, most
of the previous models can only process minutes-long videos. We developed
MiniGPT4-Video, which enhances video content interpretation from single to
multiple frames, significantly improving video understanding. This model serves
both as a part of Goldfish for long video summarization and as a standalone model
for short video tasks. Our Goldfish achieves state-of-the-art results in long video
understanding across four benchmarks with only the vision content and achieved
SOTA in with vision and subtitles in zeroshot evaluation on TVQA. Notably,
in the proposed TVQA-long benchmark, we outperformed the previous method
by 14.94%. Our MiniGPT4-Video also exceeds performance standards in short
video benchmarks. We hope our proposed Goldfishmethod and the TVQA-long
benchmark can benefit future research in the long video understanding.
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