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In this supplementary material, we give additional details on the multi-
resolution strategy in Appendix A, on the training in Appendix B, as well as
additional experimental results in Appendix C. The latter includes additional
renderings for all objects as well as quantitative results for the individual ob-
jects of the BRDF reconstruction. Moreover, we present a qualitative analysis
of the influence of the different resolutions of our multi-resolution approach in
Appendix C.1 and further analysis of the hyperparameters in Appendix C.3.

A Mesh Simplification-Based Multi-Resolution Strategy

u v

w
Simplification

Step

Fig. 1: Visualization of a single simplification step. The orange edge has been chosen
by the algorithm to be contracted. The two adjacent vertices u and v are collapsed
into the vertex w. The two gray triangles are removed in this process. Figure adapted
from [2].

As described in the main text, we use the mesh simplification algorithm
by Garland and Heckbert [2] to construct our multi-resolution approach. The
algorithm iteratively contracts vertex pairs until a specified target number of
vertices is reached. The pairs to be contracted are selected based on a geometric
error, as shown in the original work. See Fig. 1 for a visualization of a single
contraction step on an edge.

By using this simplification algorithm, we obtain the sequence of meshes
((V (i), F (i)))i with the specified target resolutions. Recall that the multi-resolution
strategy is then based on the mapping

m(i) : V → V (i) v 7→ m(i)(v) = v(i) (1)
⋆ Equal contribution

https://orcid.org/0009-0005-5109-3774
https://orcid.org/0000-0002-8688-3056
https://orcid.org/0000-0002-3079-7984


2 M. Mahajan et al.

(Eq. (1) in the main text) that assigns a vertex v ∈ V in the original to mesh
the vertex v(i) ∈ V (i) in resolution i to which v was collapsed in the decimation
algorithm. Consider Fig. 1 as an example and assume that the mesh on the
left is the original resolution and the mesh on the right is the i-th resolution.
In that case, m(i) would map both vertices u and v to w, i.e. m(i)(u) = w
and m(i)(v) = w. The idea works analogously for multiple simplification steps
between the resolutions.

We interpolate the features in the original resolution. To do so, we aggregate
the features of the different resolutions based on the mapping in Eq. (1): For each
vertex in the original resolution, we query to which vertex in the coarser reso-
lutions it was collapsed and retrieve the respective features. To obtain the final
multi-resolution feature for this vertex, we sum the features from all resolutions
according to Eq. (2) in the main text. Note that we do not compute a geomet-
ric mapping between the resolutions but only use the connectivity information
yielded by the mesh simplification algorithm and contained in the mapping. The
interpolation of the features is performed based on the Barycentric coordinates
of the respective triangle in the original mesh, see Eq. (3) in the main text.

B Additional Training Details

B.1 Training Details for Texture Reconstruction

For the texture reconstruction experiments, we employ the same dataset as in
[4,7], which includes the mesh and multiple views of the cat and human object.
We use the same views as done in [4] to make the comparison as direct as
possible. These contain a set of 5 training, 100 validation and 200 test 512x512
views. The training images can be seen in Fig. 3.

B.2 DiLiGenT-MV Dataset

For the experiments on the BRDF reconstruction, we use the DiLiGenT-MV real-
world dataset, which contains HDR images of 5 objects, taken from calibrated
viewpoints under calibrated lighting conditions [5]. The triangle meshes provided
with the dataset contain an excessively large number of vertices, leading to a
significantly prolonged computation time for the LBO eigenfunctions for INF and
an increased occurrence of unsupervised vertices in our method. Therefore, we
reduce the number of vertices from roughly 106 to about 2·105. To stay consistent
with the simplified mesh, we compute the normals of the simplified mesh for the
rendering rather than using the normal maps included in the dataset.

B.3 Loss for the BRDF Estimation

To avoid a dominant influence of the bright regions on the loss, we use a gamma
mapping to transform the RGB values from linear to sRGB space before applying
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the L1 loss, as proposed by [6]. Hence, the loss formulation reads

Ldata =
1

N

N∑
i=1

|γ(Io(x, v))− γ(IGT (x, v)|, (2)

where Io(x, v) is the rendered color and IGT (x, v) is the ground truth color of the
pixel corresponding to x and v in linear color space. We use the following stan-
dard formula for the gamma mapping g : [0, 1] → [0, 1], clin 7→ csRGB described
in [1]:

g(clin) =

{
323
25 clin if clin ≤ 0.0031308
211
200 c

5
12

lin − 11
200 else

(3)

C Additional Experimental Results

C.1 Visualization of the Muli-Resolution Features

Our multi-resolution strategy enables an effective sharing of common features.
Coarser resolutions can learn global features, while finer resolutions act as a
correcting term for details. We visualize this, by rendering the trained model with
different resolution stages deactivated. More precisely, we modify the feature
gathering described in Eq. (2) in the main text, such that we do not sum the
contributions over all resolutions but only over a subset of the resolutions. We
start from the coarsest one and successively add finer resolutions.

Qualitative results are shown in Fig. 2. The model was trained as described in
the main text with 4 resolutions r(i) ∈ {1, 0.1, 0.05, 0.01}. The results show that,
indeed, the coarser resolutions capture coarse and more global texture features
that are then refined by including the finer resolutions in the feature gathering.

C.2 Additional Results for the Texture Reconstruction

We show additional qualitative comparisons between the methods in Fig. 4. Our
method yields high-quality reconstruction results on par with the other methods
while admitting the significantly faster inference described in the main paper. In
Fig. 5, we present additional views for our method, showing that we consistently
achieve a good reconstruction on all mesh parts.

C.3 Further analysis on the choice of hyperparameters

MLP Parameters One of the main reasons for our significant speedup is the
very shallow MLP with 2 hidden layers with a dimension of 32. Since the latent
features contain the spatial information of the texture, the MLP only needs to
decode them into RGB values. In Tab. 1, we analyze the effect of reducing the
MLP size even further. However, reducing the hidden dimension or the number
of layers yields diminishing returns.
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Fig. 2: Renderings with progressive unlocking of finer resolutions. The model was
trained as detailed in the main text with 4 resolution levels r(i) ∈ {1, 0.1, 0.05, 0.01}.
From left to right we successively include finer resolutions in our feature gathering (Eq.
(2) in the main text), starting from only the coarsest resolution. The results show that
our multi-resolution approach works as expected, and coarser resolutions (left) capture
global features, while finer resolutions (right) enhance details in our representation.

Encoding dimensions The dimension d of our features is the main factor
for the model size, and therefore a small dimension is desirable. However, the
model size needs to be balanced with the reconstruction quality. Tab. 2 shows
the reconstruction quality over a large range of encoding dimensions. We observe
only a slight influence of the encoding dimension on the reconstruction quality,
with a slight indication of overfitting for increasing the dimension. For very low
dimensions, the results show a significant drop, indicating that the model is
unable to reconstruct the texture faithfully, given too few features to store the
information.

Resolution configurations Our method leverages a mesh simplification al-
gorithm [2, 3] to obtain different mesh resolutions, which are then used for the
multi-resolution approach. It is apparent through Tab. 3 that the method is ro-
bust to different resolution configurations as long as the finest resolution is the
original resolution, i.e. r(1) = 1.

C.4 Absolute inference speed

To gain more insight into the inference speedup, we provide absolute values for
inference speed in Tab. 4.
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Fig. 3: Training views for the cat and human dataset used for the texture reconstruc-
tion experiments. Note that we use the same views as done in the training by [4].

Table 1: Reconstruction quality with different numbers of layers and hidden dimen-
sions. We observe a slight decrease in reconstruction quality after decreasing the hidden
dimension or the number of layers even further. For a single layer, the results are slightly
worse, even for a significantly increased hidden dimension.

Hidden Layers Hidden dimension PSNR↑ DSSIM ↓ LPIPS ↓
2 16 32.31 0.209 0.417
2 32 32.51 0.202 0.400
1 32 32.39 0.205 0.402
1 64 32.42 0.206 0.395
1 128 32.39 0.210 0.398

C.5 Qualitative comparison to a single resolution approach

Sec. 4.2 in the main text demonstrates how a single-resolution setup struggles
to achieve a good reconstruction. Fig. 6 shows that the results of the single-
resolution show noisy areas despite using the regularizer. This might indicate
that the multi-resolution enables the regularizer to act more efficiently since it
increases the area of influence through the coarse resolutions.

C.6 Additional Results for the BRDF Estimation

For completeness, we show the quantitative results for all 5 objects of the
DiLiGenT-MV dataset individually in Tab. 5. The results confirm, that we
achieve results that are consistently of comparable reconstruction quality to
the other methods while achieving a significant inference speed-up. Qualitative
results in the form of a single view per object are presented in Fig. 7. We see that
for all objects in the dataset, the results of our method are hardly distinguishable
from those of the other methods.
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(a) NeuTex (b) TF+RFF (c) INF (d) Ours (e) GT

Fig. 4: Further qualitative comparisons on unseen views to the baseline methods [4,
7, 8]. We produce results that are on par with the state-of-the-art while providing our
notable speedup. Note that we use d = 10 for the latent codes of the cat object in this
figure.
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Fig. 5: Further renderings for unseen views for the cat and human object using Mesh-
Feat. We see, that our method enables good reconstruction on all parts of the mesh.
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Table 2: Influence of the encoding dimensions d for texture reconstruction on the
human object. While the reconstruction quality is fairly similar over a large range of
dimensions, we observe a slight decrease for increasing values of d, which might indicate
the tendency of overfitting. Also, we see a significant drop at the low end of the table,
which shows that a minimum number of encoding dimensions is required to achieve
high-quality reconstructions.

Latent code dim (d) PSNR ↑ DSSIM ↓ LPIPS ↓
1 29.30 0.3209 0.8058
2 32.28 0.2134 0.4182
3 32.21 0.2166 0.4095
4 32.51 0.2019 0.3962
5 32.42 0.2001 0.4053
6 32.65 0.2003 0.3984
7 32.43 0.2022 0.3342
8 32.46 0.2003 0.4051
9 32.51 0.2014 0.4045
10 32.43 0.2043 0.4035
11 32.43 0.2001 0.4113
12 32.48 0.2060 0.4015
13 32.48 0.2039 0.4191
14 32.43 0.2023 0.4050
15 32.47 0.2036 0.3991

Table 3: Influence of the choice of resolutions r(i) on the reconstruction quality. We
observe a fairly stable reconstruction quality for different resolution combinations, as
long as the finest resolution r(1) = 1 is included.

Used Resolutions PSNR ↑ DSSIM ↓ LPIPS ↓
{1, 0.1, 0.05, 0.01} 32.51 0.2019 0.3962
{1, 0.1, 0.01} 32.44 0.2024 0.4010
{1, 0.5, 0.25, 0.125} 32.35 0.2118 0.3899
{1, 0.25, 0.0625, 0.0625} 32.38 0.2061 0.3874
{0.75, 0.25, 0.075, 0.025} 31.51 0.2728 0.4811
{0.9, 0.12, 0.05, 0.01} 31.99 0.2301 0.4303

Table 4: Absolute inference speed in milliseconds for texture representation on the
human object. Our time measurement includes a GPU warmup over 10 steps. The
reported absolute inference time is the time taken for a forward pass for each method
averaged over 300 repetitions.

Method human cat
Neutex 14.738ms 14.453ms
TF+RFF 7.120ms 7.090ms
INF 5.000ms 4.994ms
Ours d=4 1.144ms 1.021ms
Ours d=10 1.409ms 1.381ms
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Fig. 6: Qualitative comparison between the multi-resolution approach and reconstruc-
tions using features over only a single resolution (the original mesh resolution). The
single-resolution approach leads to more noisy reconstructions despite the increased
dimension (d) of the feature vectors.

Table 5: Quantitative results of the BRDF reconstruction for all five objects of the
DiLiGenT-MV dataset. Note that DSSIM and LPIPS are scaled by 100. The results
show, that our method yields reconstruction quality that is on par with the other
methods while achieving a significant speed-up for the inference.

Object Method PSNR ↑ DSSIM ↓ LPIPS ↓ # Params. ↓ Speedup ↑
bear TF+RFF 43.68 0.4826 0.9227 3 332k 3 1.00x

INF 43.78 3 0.4772 3 0.9730 3 204931k 1.08x 3
Ours 43.73 3 0.4778 3 0.9913 930k 3 7.78x 3

buddha TF+RFF 37.03 3 1.0785 3 2.0095 3 332k 3 1.00x
INF 37.02 1.0904 2.0393 3 204929k 1.08x 3
Ours 37.04 3 1.0862 3 2.0569 930k 3 7.35x 3

cow TF+RFF 47.22 0.3318 1.1384 3 332k 3 1.00x
INF 47.31 3 0.3299 3 1.2184 3 204931k 1.08x 3
Ours 47.29 3 0.3300 3 1.4572 930k 3 7.62x 3

pot2 TF+RFF 46.69 0.4581 0.9326 3 332k 3 1.00x
INF 46.81 3 0.4485 3 0.9317 3 204927k 1.08x 3
Ours 46.80 3 0.4518 3 0.9802 930k 3 7.72x 3

reading TF+RFF 36.02 3 1.0079 2.5034 3 332k 3 1.00x
INF 36.14 3 0.9832 3 2.4690 3 204929k 1.08x 3
Ours 36.02 1.0041 3 2.5352 930k 3 7.44x 3



10 M. Mahajan et al.

be
ar

bu
dd

ha
co

w
po

t2
re

ad
in

g

(a) TF+RFF (b) INF (c) Ours (d) GT

Fig. 7: Qualitative Results for the BRDF reconstruction for all objects of the
DiLiGenT-MV dataset. The results of our method are practically indistinguishable
from the results of the other methods.
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