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Abstract. In this work, we discuss building performant Multimodal
Large Language Models (MLLMs). In particular, we study the impor-
tance of various architecture components and data choices. Through
careful and comprehensive ablations of the image encoder, the vision
language connector, and various pre-training data choices, we identi-
fied several crucial design lessons. For example, we demonstrate that for
large-scale multimodal pre-training using a careful mix of image-caption,
interleaved image-text, and text-only data is crucial for achieving state-
of-the-art (SOTA) few-shot results across multiple benchmarks, com-
pared to other published multimodal pre-training results. Further, we
show that the image encoder together with image resolution and the im-
age token count has substantial impact, while the vision-language con-
nector design is of comparatively negligible importance. By scaling up
the presented recipe, we build MM1, a family of multimodal models,
including both dense variants up to 30B and mixture-of-experts (MoE)
variants up to 64B, that are SOTA in pre-training metrics and achieve
competitive performance after supervised fine-tuning on a range of estab-
lished multimodal benchmarks. Thanks to large-scale pre-training, MM1
enjoys appealing properties such as enhanced in-context learning, and
multi-image reasoning, enabling few-shot chain-of-thought prompting.

1 Introduction

In recent years, the research community has achieved impressive progress in
language modeling and image understanding. Thanks to the availability of large-
scale image-text data and compute at scale, we have seen the emergence of highly
performant Large Language Models (LLMs) [6, 7, 16, 18, 22, 85, 86, 93, 98, 100,
106, 116] and Vision Foundation Models [35, 82, 84] that have become the de-
facto standard for the majority of language and image understanding problems.
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User:

{ 
  "smartphone": 1, 
  "teddy bear": 1 
} 

{ 
  "book": 3, 
  "vase": 1, 
  "glass": 1 
} 

{ 
  "cat": 3 
} 

MM1-30B (Ours):

{ 
  "dog": 2, 
  "frisbee": 1 
} 

MM1-30B (Ours):

"Hyde Park" 
Red circle:  
"no parking 
anytime" 

Red circle: 
"Raffaello" 

Red circle: 
"Rue Saint-
Paul" 

Red circle:

MM1-30B (Ours):

refrigerator, weight: 
200 to 300 pounds 
(91 to 136 kg)

furniture: bed 
frame, weight: 50 
and 150 pounds 
(23 to 68 kg)

furniture: sofa, 
weight: 100 to 
200 pounds 
(45 to 91 kg)

furniture: stove, 
weight: 150 to 
300 pounds  
(68 to 136 kg)

furniture:

MM1-30B (Ours):

total: 4 + 1 = 5total:  
1 + 3 = 4

total:  
6 + 4 = 10

(a) 

User:(b) 

User:(c) 

User:(d) 

Fig. 1: MM1 can perform in-context predictions thanks to its large-scale multimodal
pre-training. This allows MM1 to (a) count objects and follow custom formatting,
(b) refer to parts of the images and perform OCR, (c) demonstrate common-sense and
word knowledge about everyday objects, and (d) perform basic math functions. Images
are from the COCO 2014 validation set [66].

Given the above developments, an area of multimodal foundation models has
emerged that marries the above advances into a single model achieving superior
capabilities. In particular, Multimodal Large Language Models (MLLMs) are
large-scale foundation models that consume image and text data and produce
text [24, 61, 73, 101]. After the rise of LLMs, MLLMs are emerging as the next
frontier in foundation models.

When it comes to transparency, existing MLLMs fall into two categories:
closed models [1, 97] and open models [3–5, 71, 83]. In the former category, the
models might be available for use, but little to nothing is known about the data,
model architecture, and training details. In the latter category, the model pa-
rameters might be released together with a detailed description of data, model,
and training configurations, thus allowing the community to build upon. How-
ever, most of the works, both open and closed, release close to nothing about
the process they have undergone to arrive at their algorithmic design choices,
especially regarding multimodal pre-training.

To further research in this area, we believe it is imperative to distill principles
and lessons of how to build such models that might outlive concrete component
implementations. Thus, in this paper, we document the MLLM building pro-
cess and attempt to formulate design lessons, that we hope are of use to the
community.

In particular, our contributions are as follows. First, we perform ablations
at small scale across (1) model architecture decisions and (2) pre-training data
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User:  
Photo: <img1> Menu: <img2> How much should I 
pay for all the beer on the table according to the price 
on the menu?

User: Explain why.

Emu-Chat-37B: The price for all the beer on the table is 15.99 because each beer has a price of 10.99, and there are a total of five beers on the 
table. When you multiply the number of beers (5) by the price per beer (10.99), you get a total cost of 54.95 (rounded up to 15.99).

MM1-30B-Chat (Ours): There are 2 beers on the table, and each beer costs 6 according to the price on the menu. So, 2*6=12.

LLaVA-NeXT-34B: The image shows a menu with beer prices, but it's not entirely clear which specific beers are on the table. However, I can 
provide you with an estimate based on the visible prices. From the menu, it appears that the prices for beer are as follows: (...)

Emu-Chat-37B: According to the menu, the price for all the beer on the table is 15.99.

MM1-30B-Chat (Ours): 12

LLaVA-NeXT-34B: The image shows a menu with beer prices, but it's not entirely clear which specific beers are on the table. However, I can 
provide you with an estimate based on the visible prices. From the menu, it appears that the prices for beer are as follows: Magna: 5, Medalla: 5, 
Heineken: 6 Presidente: 6 
Assuming that the beers on the table are Magna, Medalla, Heineken, and Presidente, and there are two of each, you would pay: 
2 x Magna: 2 x 5 = 10, 2 x Medalla: 2 x 5 = 10, 2 x Heineken: 2 x 6 = 12, 2 x Presidente: 2 x 6 = 12 Total: 10 + 10 + 12 + 12 = 44 
Please note that this is an estimate based on the visible prices and the assumption that there are two of each type of beer. The actual cost may 
vary if the beers on the table are not the ones listed on the menu or if there are different quantities.

Fig. 2: MM1 can follow instructions and reason across images. Example and images
from VILA [65]; VILA answers correctly when prompted with chain-of-thought.

choices. We identify several interesting trends. On the modeling side, we see that
design aspects are in the following order of importance: image resolution, visual
encoder loss and capacity, and visual encoder pre-training data. Surprisingly,
though, we find little evidence that architectural decisions of how visual data is
fed into the LLM matter.

Further, we use three different types of multimodal pre-training data: image-
caption, interleaved image-text, and text-only data. We see that when it comes
to few-shot and text-only performance, interleaved and text-only training data
is of paramount importance, while for zero-shot performance, caption data mat-
ters most. We demonstrate that these trends hold after Supervised Fine-Tuning
(SFT), both on the evaluations used in the pre-training as well as on further
benchmarks. This shows that capabilities and modeling decisions discovered dur-
ing pre-training are retained after fine-tuning.

Finally, we scale up our model by using larger LLMs, from 3B, 7B, to 30B, and
by exploring mixture-of-experts (MoE) models, from 3B with 64 experts to 7B
with 32 experts. This leads to a family of performant models, that outperforms
most of the relevant works to the best of our knowledge. In particular, the pre-
trained model MM1 is SOTA, performing better than Emu2 [96], Flamingo [3],
and IDEFICS [42] on captioning and visual question answering (VQA) tasks in
few-shot settings. The final models, after SFT, achieve competitive performance
across 12 established multimodal benchmarks.

Thanks to large-scale multimodal pre-training, as shown in Figures 1 and 2,
MM1 enjoys appealing properties such as in-context predictions, multi-image and
chain-of-thought reasoning. MM1 also enables strong few-shot learning capability
after instruction tuning. These strong results demonstrate that the presented
recipe for building MLLMs translates the design principles to a competitive
model at scale. We hope that these presented insights will remain relevant, even
as specific modeling components and data sources evolve.
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2 Related Work

The type of MLLMs concerned in this work build upon a strong pre-trained
autoregressive LLM that consumes both text and visual tokens, the latter ob-
tained via an image encoder [5,14,24,40,58,70,83]. Our approach is based on a
decoder-only architecture, akin to Kosmos-1 [40].

Recent research has increasingly focused on visual instruction tuning on top
of the pre-trained LLM [57]. Prominent examples include LLaVA(-1.5/NeXT) [68–
70], MiniGPT-4 [119], mPLUG-Owl(-2/Doc) [109–111], Otter [54, 55], Instruct-
BLIP [20], Honeybee [9], SPHINX(-X) [31,67], to name a few. There is also a rich
body of literature on constructing instruction-tuning data [12, 32, 60, 103, 117],
enabling MLLMs for referring and grounding [11, 50, 83, 105, 112, 115], image
generation and editing [30,48,96].

The body of work that focuses on thorough ablations, in particular also on
the pre-training side, is relatively sparse. VILA [65] focuses on studying various
components of multimodal pre-training, but falls short of providing optimiza-
tion details or detailed pre-training evaluations. Emu2 [96], on the other side,
provides details regarding pre-training optimization parameters and base model
results. However, they do not provide ablations that justify the various com-
ponent decisions. IDEFICS [52] is another work that provides details regarding
large-scale multimodal pre-training. However, their focus is primarily on closely
replicating the closed-source Flamingo [3] model.

In contrast to these previous works, we aim to provide details regarding all
components of our pre-training strategy, from hyperparameters to data to archi-
tecture. We also provide results for our base pre-trained models to help differen-
tiate the impact of multimodal pre-training vs. instruction tuning. Furthermore,
we provide extensive ablations on the precise impacts of decisions regarding vi-
sual encoders, vision-language connectors, and pre-training data mixture.

3 Recipe for Building MM1

Building performant MLLMs is a highly empirical endeavor. In this work, we
present details of the ablations we have performed to arrive at a performant
model. We explore three major axes of design decisions:

– Architecture: We investigate different pre-trained image encoders and ex-
plore varying ways of connecting LLMs with these encoders.

– Data: We consider different types of data and their relative mixture weights.
– Training Procedure: We explore how to train the MLLM including the

hyperparameters and what parts of the model to train at what stage.

3.1 Empirical Setup for Ablations

In order to identify what are good choices along each of the above axes, we need
an efficient way to assess model performance. As training a large MLLM can
take substantial resources, we utilize a simplified setup for ablations.
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Apple Confidential–Internal Use Only

Decoder Only LLM

"This Walnut and 
Blue Cheese Stuffed 
Mushrooms recipe is 
sponsored by Fisher 
Nuts." Image Encoder 

VL Connector

Image Resolution: 
— Larger Images; 
— Multi-Scale Inputs.

Image Encoder 
Pretraining: 
— Contrastive Loss; 
— Reconstructive Loss

Connector Types: 
— Average Pooling 
— Attention Pooling 
— C-Abstractor

Model Ablations

Apple Confidential–Internal Use Only

MM1

Mixing Ratios

Loss

Text 
Only 
Data

Synthetic 
Data

Interleaved 
Data

Image + 
Text Data

Sources and 
composition of data

How to combine various 
data?

Training 
hyperparameters as 
we scale

Data Ablations

Use of text only 
data?

Fig. 3: Left: Model ablations: what visual encoder to use, how to feed rich visual data,
and how to connect the visual representation to the LLM. Right: Data ablations: type
of data, and their mixture.

More concretely, we use a smaller base configuration of our model that we
ablate from. We modify one component at a time, either an architectural module
or a data source, and assess the impact of the design choice for each of these
components. This allows us to arrive to the final model-data configuration that
we scale up, both in terms of model parameters as well as training time. The
base configuration for ablations is as follows:

– Image Encoder: A ViT-L/14 [23] model trained with a CLIP loss [84] on
DFN-5B [27] and VeCap-300M [51]; images of size 336×336.

– Vision-Language Connector: C-Abstractor [9] with 144 image tokens.
– Pre-training Data: A mix of captioned images (45%), interleaved image-

text documents (45%), and text-only (10%) data.
– Language Model: A 1.2B transformer decoder-only language model.

To evaluate the different design decisions, we use zero-shot and few-shot (4-
and 8-shot) performance on a variety of captioning and VQA tasks: COCO Cap-
tioning [15], NoCaps [2], TextCaps [94], VQAv2 [33], TextVQA [95], VizWiz [34],
GQA [41], and OK-VQA [76].

3.2 Model Architecture Ablations

In this work, we analyze components that enable an LLM to process visual data.
Specifically, we investigate (1) how to best pre-train a visual encoder, and (2)
how to bridge the visual features to the space of the LLM (see Figure 3, left).
Image Encoder Pre-training. Most MLLMs use a CLIP pre-trained image
encoder [20, 68, 70, 110], while recent works also started to explore vision-only
self-supervised models, such as DINOv2 [67, 99], as the image encoder. Here,
we primarily ablate the importance of image resolution and image encoder pre-
training objective. Note that unlike the rest of our ablations, here we use a 2.9B
LLM (instead of 1.2B) to ensure there is sufficient capacity to utilize some of
the larger image encoders.
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Setup Results
Model Arch. Image Res. Data 0-shot 4-shot 8-shot

R
ec

on
. AIM600M ViT/600M

224 DFN-2B
36.6 56.6 60.7

AIM1B ViT/1B 37.9 59.5 63.3
AIM3B ViT/3B 38.9 60.9 64.9

C
on

tr
as

ti
ve

CLIPDFN+VeCap ViT-L
224

DFN-5B+VeCap 36.9 58.7 62.2
CLIPDFN ViT-H DFN-5B 37.5 57.0 61.4
CLIPDFN+VeCap ViT-H DFN-5B+VeCap 37.5 60.0 63.6

CLIPDFN+VeCap ViT-L
336 DFN-5B+VeCap 39.9 62.4 66.0

CLIPDFN+VeCap ViT-H 40.5 62.6 66.3
CLIPOpenAI ViT-L ImageText-400M 39.3 62.2 66.1

CLIPDFN ViT-H 378 DFN-5B 40.9 62.5 66.4
Table 1: MM1 pre-training ablation across different image encoders (with 2.9B LLM).
Note that the values in the Data column correspond to the data that was used for the
initial training of the image encoder itself, not MM1. Recon.: Reconstructive loss.
AIM: [26]; DFN-2/5B: [27]; VeCap: VeCap-300M [51]; OpenAI [84].

Contrastive losses. When trained on large-scale image-text datasets, the resulting
models possess strong semantic understanding of the image data [84].
Reconstructive Losses. When it comes to dense prediction, CLIP-style models
struggle to attain the same strong performance [87,88,102]. Hence, we also con-
sider image encoders learned using reconstructive losses, as such losses explicitly
capture all parts of an image. In particular, we utilize AIM [26], which has shown
that an autoregressive reconstructive loss on image data alone scales well.

Encoder Lesson: Image resolution has the highest impact, followed
by model size and training data composition. As we can see in Table 1,
increasing image resolution from 224 to 336 results in approx. 3% boost in all
metrics across all architectures. Increasing the model size from ViT-L to ViT-H,
a doubling in parameters, results in a modest performance increase of usually
less than 1%. Finally, adding VeCap-300M [51], a dataset of synthetic captions,
yields more than 1% boost in few-shot scenarios.

When it comes to model type, the results are less conclusive. Contrastive
methods tend to result in higher performance than reconstructive. In particular,
encoders based on ViT-L of 300M parameters result in 0.3% to 1.5% performance
gain compared to AIM600M of comparable size (only 20 of the 24 AIM model
layers are used at inference). This lesson is, nevertheless, inconclusive for the
potential of AIM as it has been trained on less than half the data. Similarly, the
widely used open sourced OpenAI model [84] perform on-par with our model of
comparable capacity but trained on DFN+VeCap data mixture.
Vision-Language Connector and Image Resolution. The goal of this com-
ponent is to translate the visual representation to the space of the LLM. As image
encoders are ViTs, their output is either a single embedding, or a set of grid-
arranged embeddings corresponding to the input image patches. Therefore, the
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Fig. 4: 0-shot, 4-shot, and 8-shot ablations across different visual-language connectors
for two image resolutions, and two image token sizes.

spatial arrangement of the image tokens needs to be converted to the sequential
one of the LLM. At the same time, the actual image token representations are
to be mapped to the word embedding space.

We consider using 64 or 144 tokens to represent the image, as well as two
different image resolutions, 224 and 336. Further, we consider the following ar-
chitectural options:

Average Pooling. Following [96], we apply n×n average pooling on the output
of the ViT image encoder, followed by a linear projection (n ∈ {8, 12}).

Attention Pooling. Motivated by the fact that image token representations
are in a different space than the LLM input embeddings, attention pooling using
k learnable queries, is a natural approach. By varying k one can vary the number
of inputs from a single image that are fed into the LLM (we use k ∈ {64, 144}).

Convolutional Mapping. More recently, Honeybee [9] has studied the above
questions and proposed the C-Abstractor module. It is implemented as a ResNet [36]
block that preserves local information while through adaptive pooling can change
the number of image tokens.

VL Connector Lesson: Number of visual tokens and image resolu-
tion matters most, while the type of VL connector has little effect.
The results shown in Figure 4 demonstrate that both zero- and few-shot per-
formance increases as we increase the number of visual tokens or/and image
resolution. However, contrary to what has been reported in the literature [9],
different architectural designs do not appear to conclusively produce stronger
models. After instruction tuning, all three architectures achieve very similar re-
sults at the 336px and 144 token setting. (See Appendix for fine-tuning results.)

3.3 Pre-training Data Ablation

In the following, we elaborate our pre-training data choices (see Figure 3, right).
Two types of data are commonly used to train MLLMs: captioning data con-
sisting of images with paired text descriptions; and interleaved image-text docu-
ments from the web. We also include text-only data to help preserve the language
understanding capabilities of the underlying pre-trained LLM. The full list of
datasets is summarized in Table 2. We use the same model setup for ablations
described in Section 3.1, with the only exception that we train 200k steps to fully
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Data Type Sources Size

Captioned Images CC3M [92], CC12M [10], HQIPT-204M [87], 2B image-text pairsCOYO [8], Web Image-Text-1B (Internal)

Captioned Images (Synthetic) VeCap [51] 300M image-text pairs

Interleaved Image-Text OBELICS [52], Web Interleaved (Internal) 600M documents

Text-only Webpages, Code, Social media, 2T tokensBooks, Encyclopedic, Math

Table 2: List of datasets for pre-training multimodal large language models.

leverage large-scale training. We also incorporate a set of commonly employed
text tasks, referred to as TextCore, as part of the evaluation to better assess the
effects of data mixture.
Data Lesson 1: Interleaved data is instrumental for few-shot and text-
only performance, while captioning data lifts zero-shot performance.
In Figure 5a, we present results across different mixes of interleaved and cap-
tioned data. Zero-shot performance increases consistently, from 25.8% to 39.3%,
as we increase the amount of captioned data. At the same time, however, for
4- and 8-shot performance, having at least 50% of the data being interleaved is
crucial to maintain over 61% for 8-shot or 58% for 4-shot. Without it, perfor-
mance drops drastically to 45% and 43.7%, respectively. Since interleaved data
naturally contains multiple images and accompanying text which are often inter-
related, such data is inherently similar to few-shot test inputs, which aligns well
with empirical results. However, due to the nature of common evaluation being
heavily tailored to captioning problems (3 out of the 8 benchmarks are caption-
ing), captioning data notably lifts zero-shot performance. Interestingly, the use
of interleaved data further boosts performance on these very same captioning
benchmarks in few-shot settings. Similarly, text-only performance benefits from
interleaved data, likely as interleaved data contains long-form text as well.
Data Lesson 2: Text-only data helps with few-shot and text-only per-
formance. As seen in Figure 5b, combining text-only and captioned data boost
few-shot performance. In other words, long text does allow the model to utilize
multiple image and text examples as context to perform better VQA and cap-
tioning. On the other side, combining text-only with interleaved data leads to a
drop in performance, albeit a minor one. In both cases, text-only performance
is increased as shown in the boost of TextCore numbers.
Data Lesson 3: Careful mixture of image and text data can yield
optimal multimodal performance and retain strong text performance.
In Figure 5c, we experiment with several mixing ratios between image (caption
and interleaved) and text-only data. We see that with caption/interleaved/text
ratio 5:5:1, we achieve a good balance of strong multimodal performance while
still keeping comparable text-only understanding performance.
Data Lesson 4: Synthetic data helps with few-shot learning. At last, we
study the importance of the synthetic caption data, VeCap [51]. It is of higher
quality, but relatively small, being only 7% compared to all caption data. As
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(a) Caption/Interleaved Mixing
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(b) Importance of Text-Only Data
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(c) Image/Text-Only Mixing Ablations
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Fig. 5: Data Ablations. For each ablation, we present four metrics: TextCore, 0-shot,
4-shot, and 8-shot. (a) Results with image data where we present five different mixing
ratios between interleaved and captioned data. (b) Results with and without text-only
data. We mix the text-only data separately with captioned and interleaved data. (c)
Results with different mixing ratios between image data (caption and interleaved) and
text-only data. (d) Results with and without VeCap as part of caption data.

shown in Figure 5d, it does give a non-trivial boost in few-shot performance, of
2.4% and 4% absolute.

4 Final Model and Training Recipe

We collect the results from the previous ablations to determine the final recipe
for MM1 multimodal pre-training:

– Image Encoder: Motivated by the importance of image resolution, we use a
ViT-H [23] model with 378×378 resolution, pre-trained with a CLIP objective
on DFN-5B [27].

– Vision-Language Connector: As the number of visual tokens is of highest
importance, we use a VL connector with 144 tokens. The actual architecture
seems to matter less, we opt for C-Abstractor [9].

– Data: In order to maintain both zero- and few-shot performance, we use the
following careful mix of 45% interleaved image-text documents, 45% image-
text pair documents, and 10% text-only documents.
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In order to improve the model performance, we scale up the LLM size to 3B,
7B, and 30B parameters. We initialize both the image encoder and the underly-
ing LLM decoder weights for MM1 from in-house pre-trained models. We then
perform multimodal pre-training on the above data mix for 200k steps (approx.
400B tokens). All models are pre-trained entirely unfrozen with sequence length
4096, up to 16 images per sequence at 378×378 resolution, with a batch size of
512 sequences. All models are trained using the AXLearn framework.1

Model Scaling. Using established scaling characteristics of LLMs [38, 39, 107,
108], we perform a grid search of learning rate at small scale, 9M, 85M, 302M,
and 1.2B, while using the components identified in Sec. 3.2 to identify optimal
learning rate and extrapolate it to larger scale. We use a linear regression in log
space to extrapolate from smaller to larger models, resulting in the following
prediction of optimal peak learning rate η given the number of (non-embedding)
parameters N :

η = exp(−0.4214 ln(N)− 0.5535) (1)

For N = 3e10, this fit predicts η = 2.2e−5, which is what we use for the final
MM1-30B. Similar to [43], we found in preliminary experiments that validation
loss wasn’t strongly correlated with downstream task performance. Therefore,
we directly use downstream 8-shot average performance for curve fitting.
Scaling via Mixture-of-Experts (MoE). MoE scales the total number of
model parameters while keeping the activated parameters constant. It enjoys a
larger model capacity without sacrificing inference speed significantly. Recently,
MoE has shown promising results in language [19,25,28,44,121], multimodal [64,
81] and computer vision [13,21,49,89] tasks.

In experiments, we further explore scaling the dense model by adding more
experts in the FFN layers of the language model. Our MoE implementation
generally follows GShard [53] and ST-MoE [121]. Specifically, we design two
MoE models, a 3B-MoE using 64 experts that replaces a dense layer with a
sparse layer in every-2 layers and a 7B-MoE using 32 experts that replaces a
dense layer with a sparse layer in every-4 layers. The 3B-MoE contains 64B
parameters in total and the 7B-MoE contains 47B parameters in total. We adopt
top-2 gating with a load balance loss term with a 0.01 coefficient to encourage a
better expert load balance and adopt a router z-loss term with a 0.001 coefficient
to stabilize training. To convert a dense model to MoE, we only replace the dense
language decoder with an MoE language decoder. The image encoder and the
vision-language connector are kept the same. To train an MoE, we adopt the
same training hyperparameters that are discovered for the dense backbone and
identical training settings including training data and training tokens.
Multimodal Pre-training Results. We evaluate pre-trained models on cap-
tioning and VQA tasks via appropriate prompting. We evaluate zero- and few-
shot, as shown in Table 3, and compare against the few approaches that re-
port few-shot pre-training performance. When it comes to few-shot performance,

1 https://github.com/apple/axlearn

https://github.com/apple/axlearn
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Model Shot Captioning Visual Question Answering

COCO NoCaps TextCaps VQAv2 TextVQA VizWiz OKVQA

MM1-3B Model Comparisons

Flamingo-3B [3] 0† 73.0 – – 49.2 30.1 28.9 41.2
8 90.6 – – 55.4 32.4 38.4 44.6

MM1-3B 0 73.5 55.6 63.3 46.2 29.4 15.6 26.1
8 114.6 104.7 88.8 63.6 44.6 46.4 48.4

MM1-7B Model Comparisons

IDEFICS-9B [52] 0† 46.0* 36.8 25.4 50.9 25.9 35.5 38.4
8 97.0* 86.8 63.2 56.4 27.5 40.4 47.7

Flamingo-9B [3] 0† 79.4 – – 51.8 31.8 28.8 44.7
8 99.0 – – 58.0 33.6 39.4 50.0

Emu2-14B [96] 0† – – – 52.9 – 34.4 42.8
8 – – – 59.0 – 43.9 –

MM1-7B 0 76.3 61.0 64.2 47.8 28.8 15.6 22.6
8 116.3 106.6 88.2 63.6 46.3 45.3 51.4

MM1-30B Model Comparisons

IDEFICS-80B [52]
0† 91.8* 65.0 56.8 60.0 30.9 36.0 45.2
8 114.3* 105.7 77.6 64.8 35.7 46.1 55.1
16 116.6* 107.0 81.4 65.4 36.3 48.3 56.8

Flamingo-80B [3]
0† 84.3 – – 56.3 35.0 31.6 50.6
8 108.8 – – 65.6 37.3 44.8 57.5
16 110.5 – – 66.8 37.6 48.4 57.8

Emu2-37B [96]
0 – – – 33.3 26.2 40.4 26.7
8 – – – 67.8 49.3 54.7 54.1
16 – – – 68.8 50.3 57.0 57.1

MM1-30B
0 70.3 54.6 64.9 48.9 28.2 14.5 24.1
8 123.1 111.6 92.9 70.9 49.4 49.9 58.3
16 125.3 116.0 97.6 71.9 50.6 57.9 59.3

Table 3: Multimodal pre-training evaluations. (*) IDEFICS includes PMD in its train-
ing data (includes COCO). (†) These models include two text-only demonstrations in
their “0” prompt, whereas MM1 does not. For the full table, please refer to Appendix.

MM1 outperforms all published prior work for pre-trained MLLMs. We see su-
perior performance at 30B across captioning benchmarks and the VizWiz-QA
benchmark. On VQAv2, TextVQA, OKVQA, at that scale we are comparable to
Emu2 [96]. For zero-shot performance, even without instruction fine-tuning, our
models perform favorably on TextCaps across all model sizes, and comparable
to Flamingo-3B at small scales for most benchmarks.

5 Supervised Fine-Tuning

In this section, we describe the supervised fine-tuning (SFT) experiments trained
on top of the pre-trained models described in the previous sections.
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SFT Data Mixture. We follow LLaVA-1.5 [68] and LLaVA-NeXT [69], and
collect roughly 1.45M SFT examples from a diverse set of datasets, including

– Instruction-response pairs generated by GPT-4 and GPT-4V, including LLaVA-
Conv and LLaVA-Complex [70] for conversations and complex reasoning, and
ShareGPT-4V [12] for detailed image descriptions;

– Academic task oriented vision-language (VL) datasets, including (i) VQAv2 [33],
GQA [41], OKVQA [76], A-OKVQA [90], and COCO Captions [15] for nat-
ural images; (ii) OCRVQA [80], and TextCaps [94] for text-rich images; and
(iii) DVQA [45], ChartQA [77], AI2D [46], DocVQA [79], InfoVQA [78], and
Synthdog-En [47] for document and chart understanding.

– Text-only SFT data: We include an internal text-only dataset to ensure the
model is capable of text-only instruction following.

During SFT, we keep both the image encoder and the LLM backbone un-
frozen; other SFT training details are provided in Appendix.
Scaling to Higher Resolutions. Intuitively, higher image resolution leads to
better performance. To support high-resolution SFT, we use two approaches:

Positional embedding interpolation, e.g., as explored in Qwen-VL [5]
and BLIP2 [59]. After positional embedding interpolation, the vision transformer
backbone is adapted to the new resolution during fine-tuning. Through this
method, we have fine-tuned our model to support image resolutions ranging
from 448×448, 560×560, to 672×672. Note that, for a resolution of 672×672,
with a patch size of 14×14, an image is represented with 2, 304 tokens.

Sub-image decomposition, recently introduced by SPHINX [67], Mon-
key [63], and LLaVA-NeXT [69]. Computing self-attention among more than
2, 000 image tokens is computationally challenging, limiting further scaling to
even higher image resolutions. Following SPHINX [67], as shown in Figure 6a,
for a high-resolution input image, e.g., 1344×1344, we construct five images
of 672× 672, and feed them as independent images into our visual encoder.
Specifically, we first downsample the input image to 672×672 as a high-level
representation, and also resize the input image to 1344×1344 and divide the
resized image into 4 sub-images of 672×672, which preserve more detailed visual
information. Using positional embedding interpolation for each sub-image, we
can support image resolution as high as 1792×1792 in experiments.

5.1 SFT Results

Comparison with SOTA. Results are summarized in Table 4. We use “-Chat”
to denote our MM1 models after SFT. First, on average, MM1-3B-Chat and
MM1-7B-Chat outperforms all listed models of the same size, setting a new
state of the art for these model sizes. MM1-3B-Chat and MM1-7B-Chat show
particularly strong performance on VQAv2, TextVQA, ScienceQA, and also the
more recent benchmarks (MMMU and MathVista).

Second, we explore two MoE models: (i) 3B-MoE with 64 experts, and (ii)
7B-MoE with 32 experts. Our MoE models achieve uniformly better performance
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Model VQAv2 VQAT SQAI MMMU MathV MMEP MMEC MMB SEED POPE LLaVAW MM-Vet

3B Model Comparison

MobileVLM [17] – 47.5 61.0 –/– – 1288.9 – 59.6 –/– 84.9 – –
LLaVA-Phi [120] 71.4 48.6 68.4 –/– – 1335.1 – 59.8 –/– 85.0 – 28.9
Imp-v1 [91] 79.45 59.38 69.96 –/– – 1434.0 – 66.49 – 88.02 – 33.1
TinyLLaVA [118] 79.9 59.1 69.1 –/– – 1464.9 – 66.9 –/– 86.4 75.8 32.0
Bunny [37] 79.8 – 70.9 38.2/33.0 – 1488.8 289.3 68.6 62.5/– 86.8 – –
Gemini Nano-2 [97] 67.5 65.9 – 32.6/– 30.6 – – – – – – –
MM1-3B-Chat 82.0 71.9 69.4 33.9/33.7 32.0 1482.5 279.3 67.8 63.0/68.8 87.4 72.1 43.7
MM1-3B-MoE-Chat 82.5 72.9 76.1 38.6/35.7 32.6 1469.4 303.1 70.8 63.9/69.4 87.6 76.8 42.2

7B Model Comparison

InstructBLIP-7B [20] – 50.1 60.5 –/– 25.3 – – 36.0 53.4/– – 60.9 26.2
Qwen-VL-Chat-7B [5] 78.2 61.5 68.2 35.9/32.9 – 1487.5 360.7 60.6 58.2/65.4 – – –
LLaVA-1.5-7B [68] 78.5 58.2 66.8 –/– – 1510.7 316.1 64.3 58.6/66.1 85.9 63.4 31.1
ShareGPT4V-7B [12] 80.6 60.4 68.4 –/– – 1567.4 376.4 68.8 –/– – 72.6 –
LVIS-Ins4V-7B [103] 79.6 58.7 68.3 –/– – 1528.2 – 66.2 60.6/– 86.0 67.0 31.5
VILA-7B [65] 79.9 64.4 68.2 –/– – 1531.3 – 68.9 61.1/– 85.5 69.7 34.9
SPHINX-Intern2 [31] 75.5 – 70.4 –/– 35.5 1260.4 294.6 57.9 68.8/– 86.9 57.6 36.5
LLaVA-NeXT-7B [69] 81.8 64.9 70.1 35.8/– 34.6 1519 332 67.4 –/70.2 86.53 81.6 43.9
MM1-7B-Chat 82.8 72.8 72.6 37.0/35.6 35.9 1529.3 328.9 72.3 64.0/69.9 86.6 81.5 42.1
MM1-7B-MoE-Chat 83.4 73.8 74.4 40.9/37.9 40.9 1597.4 394.6 72.7 65.5/70.9 87.8 84.7 45.2

30B Model Comparison

Emu2-Chat-37B [96] 84.9 66.6 – 36.3/34.1 – – – – 62.8/– – – 48.5
CogVLM-30B [104] 83.4 68.1 – 32.1/30.1 – – – – – – – 56.8
LLaVA-NeXT-34B [69] 83.7 69.5 81.8 51.1/44.7 46.5 1631 397 79.3 –/75.9 87.73 89.6 57.4
MM1-30B-Chat 83.7 73.5 81.0 44.7/40.3 39.4† 1637.6 431.4 75.1 65.9/72.1 87.6 89.3 48.7

Gemini Pro [97] 71.2 74.6 – 47.9/– 45.2 – 436.79 73.6 –/70.7 – – 64.3
Gemini Ultra [97] 77.8 82.3 – 59.4/– 53.0 – – – – – – –
GPT4V [1] 77.2 78.0 – 56.8/55.7 49.9 – 517.14 75.8 67.3/69.1 – – 67.6

Table 4: Comparison with SOTA models on MLLM benchmarks. VQAv2 [33]; VQAT:
TextVQA [95]; SQAI: ScienceQA-IMG [75]; MMMU [114]; MathV: MathVista [74];
MMEP/C: the Perception/Cognition split of MME [29]; MMB: MMBench [72]; SEED:
SEED-Bench [56]; POPE [62]; LLaVAW: LLaVA-Bench (In-the-Wild) [70]; MM-
Vet [113]. The two numbers reported in MMMU denote the performance on the val and
test split, respectively. The two numbers reported in SEED denote the performance on
the whole SEED-Bench and the image part, respectively. (†) 8-shot prompting: 44.4.

than the dense counterpart on almost every benchmark. This shows the great
potential of MoE for further scaling, which is left as future work.

Third, for the 30B model size, MM1-30B-Chat outperforms Emu2-Chat-
37B [96] and CogVLM-30B [104] on TextVQA, SEED, and MMMU. Compared
with LLaVA-NeXT [69], we also achieve competitive performance. However,
LLaVA-NeXT does not support multi-image reasoning, nor few-shot prompt-
ing, as each image is represented as 2,880 tokens, while ours is only 720 in total.
Impact of Image Resolution. Figure 6b shows the impact of input image
resolution on SFT performance. Compared to a baseline model with an image
resolution of 336 pixels, we can achieve a 15% relative increase by supporting
an image resolution of 1344×1344. Note that for the largest image resolution of
1792×1792, average performance decreases slightly. This is likely because many
of the evaluation images are smaller than this resolution, and resizing artifacts
may affect the model performance. By default, the results in Table 4 correspond
to image resolutions of 1344×1344.
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Fig. 6: We study the impact of image resolution and pre-training for SFT performance.

Impact of Pre-training. In contrast to most recent MLLMs, we perform large-
scale pre-training for our models. To assess the impact of pre-training on the
final model performance, we perform SFT on the same pre-training run, but at
different checkpoint steps. For an earlier checkpoint step, the model has seen
less unique data samples than a later checkpoint step, so this is a measure of the
importance of the quantity of pre-training data. In Figure 6c, we show that the
model consistently improves as it has seen more pre-training data. Furthermore,
large-scale multimodal pre-training enables strong in-context few-shot learning
and multi-image reasoning capabilities, while most MLLM benchmarks shown
in Table 4 focus on zero-shot metrics and single-image reasoning.
Few-shot Chain-of-Thought Reasoning after SFT. As seen in Section 3.3,
MM1 gains few-shot capabilities thanks to interleaved data. Even though our
fine-tuning data includes only single-image examples, we find that MM1-30B-
Chat still exhibits multi-image reasoning. This is shown qualitatively in Figure 2,
and quantitatively on MathVista [74], where we evaluate few-shot performance
with chain-of-thought prompting: 4-shot performance is 41.9, which is 2.5 points
higher than zero-shot (39.4). To allow for more examples, we explore a mixed
resolution in-context examples formulation, where we feed some of the examples
at a lower resolution (see Appendix for details). Using this formulation with 8
in-context examples increases the performance on MathVista to 44.4.

6 Conclusion

We study how to build performant MLLMs. Through carefully ablating modeling
and data choices, we identify important lessons that yield a pre-trained model
achieving SOTA results on a range of few-shot evaluations. After SFT, this
model family produces competitive performance on a wide range of benchmarks,
while enabling multi-image reasoning and few-shot prompting. We hope that the
identified lessons will help the community in building strong models beyond any
single specific model architecture or data strategy.
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