
Supplementary Materials

Atsuya Nakata and Takao Yamanaka

Sophia University, Tokyo, Japan
a-nakata-7r0@eagle.sophia.ac.jp, takao-y@sophia.ac.jp

A Source codes of network architecture

The source codes for the network architecture in the proposed method are shown
in Program 1.1 and Program 1.2. Program 1.1 is the source code of the low-
resolution model at the first stage, where MultiAxisTransformerLayer is the
MaxViT layer provided in Program 1.2. The input x is added with the positional
encoding and the feature map of the conditional image compressed by CNN. The
source code of the high-resolution model is almost same as Program 1.1, except
that the feature map of the NFoV image extracted from the low-resolution image
at the first stage is additionally added to the input x.

B Comparison of models at first and second stages

The proposed method adopted MaxViT models both at the first and second
stages for the low-resolution and high-resolution models. The different models
were also examined for the models, as shown in Table 4. (1) is the proposed
method using MaxViT at both stages. In (2), MaxViT at the first stage was
replaced with Transformer. In (3), MaxViT at the second stage was replaced with
MultiAxisTransformer [21]. In (4), Grid Attention in MaxViT at the second stage
was replaced with the neighbor attention in Fig. 10. Although IS and LPIPS were
highest with (4), FID was greatly improved with (1) where MaxViT was used
at both stages. Therefore, the model (1) was adopted as the proposed method
in this paper.

C Sample images of proposed method compared with
conventional method

Additional sample images of the synthesized omni-directional images in Fig. 7
are shown in Fig. 11. A comparison of synthesized omni-directional images be-
tween 2S-ODIS and 2S-ODIS 2day are shown in Fig. 12. Furthermore, additional
sample images of the NFoV images toward the ground in Fig. 8 are shown in
Fig. 13.

https://orcid.org/0009-0002-7815-9604
https://orcid.org/0000-0001-9028-8244


2 A. Nakata and T. Yamanaka

Program 1.1: Source code of MaxViT at first stage in PyTorch

1 class MultiAxisTransformer(nn.Module):
2 def __init__(self , vocab_size , d_model ,layer=8,seq_len

=512):
3 # vocab_size: The number of VQGAN Codebooks
4 # d_model: The number of dimentions of model
5 # layer: The number of MaxViTLayers
6 # seq_len: The resolution of the input latent

variables
7 super(MultiAxisTransformerModel , self).__init__ ()
8 self.positional_encoding = nn.Parameter(torch.randn

(1,seq_len ,d_model))
9 self.embedding = nn.Embedding(vocab_size +1, d_model)

10 self.trans_layers = nn.ModuleList ([
MultiAxisTransformerLayer(d_model ,8) for i in
range(layer)])

11 self.mask_condition_conv = CNN(d_model)
12 self.fc = nn.Linear(d_model , vocab_size)
13

14 def forward(self , x, masked_condition ,*args):
15 x = self.embedding(x)
16 condition = einops.rearrange(self.mask_condition_conv

(masked_condition),"b c h w->b (h w) c")
17 x = x + self.positional_encoding + condition
18 for layer in self.trans_layers:
19 x = layer(x)
20 output = self.fc(x)
21 return output



2S-ODIS: Two-Stage Omni-Directional Image Synthesis 3

Program 1.2: Source code of MaxViT layer in PyTorch

1 class MultiAxisTransformerLayer(nn.Module):
2 def __init__(self , d_model , n_head , patch_size =4):
3 # d_model: The number of dimentions of model
4 # n_head: Number of attention heads
5 # patch_size: The number of patch size of block

attention
6

7 super().__init__ ()
8 self.mbconv = MBConvBlock(d_model)
9 self.block_attention = nn.TransformerEncoderLayer(

d_model , n_head ,dim_feedforward=d_model*4,
batch_first=True ,norm_first=True)

10 self.grid_attention = nn.TransformerEncoderLayer(
d_model , n_head ,dim_feedforward=d_model*4,
batch_first=True ,norm_first=True)

11 self.patch_size = patch_size
12

13 def forward(self ,x):
14 x = einops.rearrange(x, "b (h w) c->b c h w",h=16)
15 b,c,h,w = x.shape
16 x = self.mbconv(x)
17 x = einops.rearrange(x,"b c (h1 h2) (w1 w2) ->(b h1 w1

) (h2 w2) c",
18 h1=h//self.patch_size ,h2=self.patch_size ,
19 w1=w//self.patch_size ,w2=self.patch_size)
20 x = self.block_attention(x)
21 x = einops.rearrange(x,"(b h1 w1) (h2 w2) c->(b h2 w2

) (h1 w1) c",
22 h1=h//self.patch_size ,h2=self.patch_size ,
23 w1=w//self.patch_size ,w2=self.patch_size)
24 x = self.grid_attention(x)
25 x = einops.rearrange(x,"(b h2 w2) (h1 w1) c->b (h1 h2

w1 w2) c",
26 h1=h//self.patch_size ,h2=self.patch_size ,
27 w1=w//self.patch_size ,w2=self.patch_size)
28 return x



4 A. Nakata and T. Yamanaka

Table 4: Comparison of models at first and second stages

First Stage Second Stage IS (↑) FID (↓) LPIPS (↑)

(1) MaxViT MaxViT 5.969 18.263 0.662
(2) Transformer MaxViT 6.010 23.168 0.660
(3) MaxViT MultiAxisTransformer [21] 5.820 22.274 0.657
(4) MaxViT NeighborAttention (Fig. 10) 6.030 20.529 0.667

Fig. 10: Neighbor attention. The attention is calculated with adjacent NFoV images

References

21. Zhao, L., Zhang, Z., Chen, T., Metaxas, D., Zhang, H.: Improved transformer
for high-resolution gans. In: Advances in Neural Information Processing Sys-
tems(NeurIPS). vol. 34, pp. 18367–18380 (2021)



2S-ODIS: Two-Stage Omni-Directional Image Synthesis 5

F
ig

.1
1:

A
dd

it
io

na
le

xa
m

pl
es

of
sy

nt
he

si
ze

d
om

ni
-d

ir
ec

ti
on

al
im

ag
es

in
F
ig

.7



6 A. Nakata and T. Yamanaka

Fig. 12: A comparison of synthesized omni-directional images between 2S-ODIS and
2S-ODIS 2day



2S-ODIS: Two-Stage Omni-Directional Image Synthesis 7

Fig. 13: Additional examples of NFoV images toward ground extracted from synthe-
sized omni-directional images in Fig. 8.


	Supplementary Materials

