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1 Implementation Details

We implement our model using Pytorch [7]. To extract the semantic queries and
masks from RGB images, we use Stable Diffusion [9] pre-trained on Laion-5B [11]
as the feature backbone. The feature dimensions of diffusion and CLIP features
are 256 and 768, respectively. The number of queries of Mask2Former [1] is 100.
We use MinkowskiNet18A [2] as the backbone to encode 3D point clouds. The
voxel size we use is 2cm following [8] for all datasets. We train the model for 200
epochs with a batch size of 8. Adam optimizer [4] is used with a learning rate
of 0.0001. Polynomial learning rate policy is used as the learning rate scheduler
with power 0.9. To train the mask distillation loss, the 2D images along with
their corresponding 3D point clouds are used as model inputs. The predicted
geometric masks from each 3D point cloud are only supervised by the salient
masks extracted from the corresponding image. During inference, we ensem-
ble the category logits from multiple image-point cloud pairs for each point by
averaging them. In this way, the model can generate consistent and smooth cat-
egory predictions. For the implementation of OpenScene [8], Openmask3D [13]
and ConceptFusion [3], we use their official code bases to obtain the masks and
the semantic embeddings of the masks for each scene. Then we compute the
per-point class probability by averaging the probabilities of all the masks that
contain this point. The class label that has the highest probability is selected for
each point.

2 More Experimental Results

2.1 Quantitative Analysis

Comparison with LSeg [5]. We did not compare with LSeg in the main paper
as it is pre-trained with ADE20K [14] while our model and all the baselines are
pre-trained on MSCOCO [6]. Here, we show the comparison in Table 1. We
observe that our model outperforms the OpenScene model with LSeg on the
challenging ScanNet200 dataset.

†This work was partially done while the author was a student researcher at Google.
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Table 1: Comparison with LSeg on ScanNet200.

Method Head Common Tail All

OpenScene(LSeg-2D) 22.7 3.8 1.1 9.1
OpenScene(LSeg-3D) 19.3 0.5 0.0 6.5
OpenScene(LSeg-2D/3D) 20.5 2.4 0.7 7.8
Ours 25.6 11.5 6.9 14.2

mAcc Results. We primarily use mIoU as the evaluation metric as it considers
false positives. We compute the mAcc results on Scannet200, and find that our
model achieves the best performance (26.5%) when compared to OpenScene(OS-
2D) (25.4%), OpenScene(OS-3D) (12.0%), and OpenScene(OS-2D/3D) (22.6%).
Quantitative results for visual grounding. We perform evaluation on Nr3D.
We match the predicted mask and K ground truth masks, and use the matching
accuracy as the evaluation metric. We observe that our method achieves the
best performance. Besides, our model and fully-supervised 3D visual grounding
models (e.g. PLA) have different settings and cannot be directly compared.

Table 2: Experimental results on the visual grounding task.

Method K=# of distractors K=10 K=15

OpenScene(OS-2D) 79.1 20.0 12.4
OpenScene(OS-3D) 74.3 19.1 13.3
OpenScene(OS-2D/3D) 72.4 21.0 14.3
Ours 81.9 22.9 17.1

2.2 Qualitative Analysis

Visualization Results on Scannet200 [10]. In Fig. 1, we provide qualitative
analysis of our approach and OpenScene for the zero-shot 3D semantic segmen-
tation task on the validation set of Scannet200 [10]. Compared with OpenScene,
our model generates coherent and consistent masks thanks to the mask-instance
representations. For example, the table mask predictions of our model in col-
umn 2 are coherent, while the table predictions of Openscene are incomplete.
Moreover, our method predicts accurate semantic labels for both head and tail
categories by leveraging both CLIP and diffusion features. Specifically, our model
can make accurate category predictions for the chair category in column 1 and
the toilet category in column 4, while OpenScene fails in those categories.
Visualization Results on Replica [12]. In Fig. 2, we provide qualitative
analysis of our approach and OpenScene for the zero-shot 3D semantic segmen-
tation task on the Replica dataset [12]. We observe that the model can make
accurate class predictions in both head class (e.g. chair) and tail class (e.g. vase).
OpenScene tends to misclassify the semantic labels for an entire object (e.g. the
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Fig. 1: Qualitative results from our model and OpenScene on zero-shot se-
mantic segmentation. We visualize the segmentation results on the validation set of
ScanNet200 [10]. We observe that our model can predict coherent masks with accurate
semantic labels compared to OpenScene for both head and tail categories.

chair on the left of the table in column 1). Besides, we observe that our model
can also correctly segment objects that were missed by human annotators. For
example, in column 3, there is a lamp in the bottom right corner. The lamp was
missed by the human annotator but can be correctly segmented and recognized
by our method.
Visualization Results of Challenging Categories. In Fig. 3, we provide
fine-grained visualizations of the challenging categories on the Scannet200 [10]
and Replica [12] datasets. We observe that our model can predict accurate masks
and category labels for small objects (e.g., book) and rare categories (e.g., vase
and bench). This demonstrates the generalization ability of our method towards
challenging and tailed categories.
Visualization Results of Model Ablations. In Fig 4, we visualize the seg-
mentation results of our ablated models on the validation set of Scannet200 [10].
We observe that our model with learned 3D geometric masks can predict co-
herent masks with consistent semantic labels, compared to the model with 2D
salient masks only. For example, the ablated model with salient masks only can-
not predict accurate masks for the ceiling class in column 1. On the other hand,
our model with learned geometric masks can predict accurate class boundaries
for ceiling.
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Fig. 2: Qualitative results from our model and OpenScene on zero-shot se-
mantic segmentation. We visualize the segmentation results on the Replica dataset
[12]. We observe that our model makes accurate mask predictions compared to Open-
Scene for both head and tail categories. we also find that our model can correctly
segment objects that were missed by human annotators (lamp in column 3).

3 Limitations and Future Work

In this paper, we take the first step in leveraging frozen representations from
large text-to-image diffusion models for open-vocabulary 3D scene understand-
ing. Our model establishes new state-of-the-art in zero-shot 3D semantic segmen-
tation and visual grounding tasks. Our method also demonstrates outstanding
generalization ability towards unseen datasets and novel text queries. It opens
a new direction for how to effectively leverage generative text-to-image models
for other 3D scene understanding tasks in the future.

There are several limitations of the proposed model. First, while our model
achieves better performance compared to OpenScene in small objects, it still
misclassified some small and rare categories (e.g., rail). Second, we observe that
the model can be easily confused by fine-grained categories that with similar
semantic meaning. For example, the model sometimes wrongly classifies points
of windowsill to the window class. In future work, it will be interesting to design
models that can accurately distinguish between fine-grained categories in the
open-vocabulary setting.
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Fig. 3: Qualitative results from our model and OpenScene on challenging
categories. We visualize the segmentation results on the Replica [12] and ScanNet200
[10] datasets. We observe that our model can predict coherent masks with accurate
semantic labels compared to OpenScene for challenging categories, such as book (in
column 1), vase (in column 1&2), radiator (in column 3), and bench (in column 4).
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Fig. 4: Qualitative results from our model with salient-only and geometric-
only masks. We visualize the segmentation results of our ablated models on the
Scannet200 dataset [10]. We observe that our model with learned 3D geometric masks
can predict accurate class boundaries compared to the model with 2D salient masks
only.
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