
Supplementary Material of
D-SCo: Dual-Stream Conditional Diffusion for
Monocular Hand-Held Object Reconstruction

A Architecture of Dual-Stream Denoiser

In this section, we provide the architectural details of our proposed dual-stream
denoiser. The dual-stream denoiser is built upon Point-Voxel CNN (PVCNN) [8],
which separately processes the point cloud in two branches, i.e. a point branch
and a voxel branch. Specifically, for the point branch, a simple multi-layer percep-
tron (MLP) is applied to extract fine-grained per-point features. For the voxel
branch, the point cloud is first normalized and then voxelized. The resulting
voxels are then processed by a 3D U-Net for feature aggregation. As shown in
Fig. A.1, we leverage four Set Abstraction (SA) layers and four Feature Propaga-
tion (FP) layers for downsampling and upsampling of the input features with the
aforementioned Point-Voxel Convolution (PVConv) as the shared architecture
of f1

θ and f2
θ . Eventually, we employ an MLP to estimate the noise as ϵθ.

Noteworthy, only the first N channels of F1
θ are utilized for concatenation

since the semantic features of object and hand have been integrated by f1
θ . We

use S = 64 in our experiments.

B Implementation Details

We implement our model in PyTorch [10] and use PyTorch3D [11] for rasteri-
zation. Our model is trained for 300K steps with a batch size of 24 on ObMan
and 100K for DexYCB. We finetune 14K and 10K steps for HO3D and MOW
datasets, respectively. We use a resolution of size 224 × 224 and sample 16,384
points for each object during training and inference. We utilize AdamW [7] op-
timizer with a base learning rate of 10−3 and a cosine decay schedule [9]. As

Dual-Stream Conditioning

Semantic Embedding

Geometric Embedding

Re-centered Points

SA Layers FP Layers

PVConv

C

MLP

Noise

Hand Vertices

Fig.A.1: Architecture of dual-stream denoiser.
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Table C.1: Jointly hand-object finetuning on ObMan.

Object Hand
F-5 ↑ F-10 ↑ F-2 ↑ F-5 ↑

Ours 0.61 0.81 0.20 0.75
Ours w/ finetuning 0.62 0.81 0.21 0.77

in DDPM [6], a linear variance schedule with beta increasing from β0 = 10−5

to βT = 0.008 is employed in the underlying diffusion model. During the re-
verse process, we run 1,000 denoising steps for each object. We set η1 = 0.2 and
λ1 = λ2 = 0.2 in our experiments. All experiments are performed on a single
NVIDIA A100 with 40GB GPU memory.

C Jointly Hand-Object Finetuning

Note that for fairness we primarily focus on object reconstruction conditioned
on an estimated hand pose in the very same setting as related work such as
iHOI [13] and DDF-HO [14]. This includes that we use the same hand poses
for conditioning. However, also note that the initial hand poses, despite being
reliable, can be yet noisy. Thus, to give a more complete picture, we also con-
ducted experiments for jointly optimizing object shape and hand pose, adding a
hand shape/pose loss. To this end, aside of our projective 2D object loss, we also
project the hand in the very same way and employ the L1 loss between them
and ground truth following

Lhand = ∥R(XH)−R(X̂H)∥1, (1)

where •̂ denotes predicted results. The overall finetuning loss is then a weighted
sum of all terms with

Lfinetune = Ldenoise + η1Lmask + η2Lhand, (2)

where η2 = 0.2 is a hyperparameter that controls the strength of jointly hand-
object optimization.

In Tab. C.1, we present the F-scores for object and hand after 10K steps of
finetuning. It can be seen that both the object shape and hand pose precision
benefit from finetuning using such a projective hand loss.

D Centroid Prediction Ablation

In Tab. D.2, we demonstrate the effectiveness of our proposed hand-constrained
centroid prediction. Aided by the hand vertices constraint, the mean centroid
prediction error undergoes a noticeable decline of 13.0% with respect to the
mean 3D error and 23.1% for the mean 2D error. The hand-constrained centroid
prediction is responsible for providing the hand prior to the diffusion model,
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Table D.2: Ablation study on centroid prediction. We show the 3D mean error
(mm) in the hand wrist coordinate system and the 2D mean error in the NDC space
on ObMan dataset.

3D Error ↓ 2D Error ↓

Ours w/o hand constraint 0.023 0.013
Ours 0.020 0.010

Table E.3: Ablation study on ObMan [5] and HO3D [4] datasets.

Row Method ObMan HO3D
F-5 ↑ F-10 ↑ CD ↓ F-5 ↑ F-10 ↑ CD ↓

A0 Ours 0.61 0.81 0.11 0.41 0.63 0.34
A1 Ours Oracle 0.67 0.86 0.09 0.51 0.76 0.23

B0 A0 → w/o Lmask 0.57 0.76 0.23 0.36 0.56 0.61

C0 B0 → w/o dual-stream denoiser 0.54 0.74 0.27 0.34 0.53 0.76

D0 C0 → w/o XHO
t & XA

t 0.48 0.67 0.41 0.28 0.46 0.96
D1 C0 → w/o XHO

t 0.51 0.69 0.37 0.33 0.50 0.81
D2 C0 → w/o XA

t 0.51 0.69 0.38 0.30 0.48 0.89
D3 C0 → w/ GCN hand embedding 0.52 0.71 0.30 0.34 0.53 0.82
D4 C0 → w/ global hand embedding 0.52 0.71 0.30 0.31 0.49 0.86

E0 D0 → w/o centroid fixing 0.44 0.61 0.65 0.27 0.45 1.00
E1 D0 → w/o centroid prediction network 0.32 0.45 2.48 0.23 0.36 1.31

F0 E0 → Test with GT object centroid 0.45 0.67 0.36 0.29 0.47 0.93
F1 E0 → Test with GT object pose 0.50 0.70 0.34 0.31 0.49 0.84

G0 A0 → Predicted hand pose + noise σ = 0.1 0.61 0.81 0.11 0.40 0.61 0.36
G1 A0 → Predicted hand pose + noise σ = 0.5 0.57 0.77 0.13 0.37 0.58 0.43

H0 A0 → GT hand pose 0.65 0.84 0.10 0.43 0.65 0.31
H1 A0 → GT hand pose + noise σ = 0.1 0.63 0.83 0.11 0.41 0.63 0.33
H2 A0 → GT hand pose + noise σ = 0.5 0.59 0.79 0.13 0.36 0.60 0.36

I0 F0 → GT object centroid + noise σ = 0.1 0.44 0.65 0.34 0.28 0.46 1.00
I1 F0 → GT object centroid + noise σ = 0.5 0.41 0.60 0.50 0.24 0.42 1.23

which is a crucial part of our centroid fixing scheme. Due to the precise cen-
troid prediction, our diffusion model can essentially better focus on mere shape
reconstruction.

E Robustness against hand pose and object centroid
prediction quality

To demonstrate that our method is able to deal with noisy hand pose estimates,
we add various levels of Gaussian noise to predicted hand joints, where σ denotes
the variance of Gaussian noise (Tab. E.3). Notice that adding σ = 0.1 noise has
almost no effect on the performance (G0 vs. A0) for both ObMan and HO3D.
Further, although there is a slight decrease in performance with σ = 0.5 noise
(G1 vs. A0), our results well indicate that our approach is robust towards weak
hand pose predictions. Noteworthy, in very rare cases, the significant error in
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Fig. F.2: Visualization of oracle experiments. We show the input images (first
column), the ground-truth shapes (second column), and 4 reconstruction results (last
4 columns). We visualize the ground-truth shapes and the reconstruction results in the
camera view (first row) and a novel view (second row).

predicted hand pose may also lead to failure (See Appendix G). Additionally, in
H0 we explore the upper bound of our method using ground-truth hand poses,
and in H1 / H2 we further demonstrate the robustness against noisy hand pose.

We also add different levels of Gaussian noise to the ground-truth object
centroid (I0 / I1) to constitute the robustness of our diffusion model towards
inaccurate object centroids.

F Qualitative Results

Qualitative Results for Oracle Experiments. In Fig. F.2, we present quali-
tative results for the oracle experiments. Thanks to the probabilistic formulation
in diffusion models, our approach is able to generate multiple plausible shapes,
demonstrating our capability of dealing with the uncertainty induced by hand-
and self-occlusion.
Additional Qualitative Results of HO3D, MOW, ObMan and DexYCB.
We provide additional qualitative results of D-SCo for HO3D in Fig. F.3, for
MOW in Fig. F.4, for ObMan in Fig. F.5, and for DexYCB in Fig. F.6. While
SDF- and DDF-based methods, including iHOI [13], gSDF [3], and DDF-HO [14],
tend to result in either over-smoothed or distorted and fragmented reconstruc-
tions, our approach is capable of generating geometrically coherent point clouds
with very plausible details, even for thin objects and heavily occluded parts.
Further, due to the extraction of semantic and geometric hand features, our
approach shows particularly strong performance in scenarios where objects are
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highly occluded (Row 3 in Fig. F.6) or truncated (Row 3 in Fig. F.5, Row 1
in Fig. F.6). This again illustrates our ability to well infer invisible areas of the
object.
Qualitative Results of Ablation Study. We demonstrate the qualitative re-
sults for our conducted ablation study in Fig. F.7. It can be seen that without the
proposed dual-stream denoiser, the diffusion model is having difficulties making
proper use of the semantic and geometric hand prior, leading to inferior results.
Further, without the proposed centroid fixing scheme, the semantic feature pro-
jection is inaccurate and unstable, which again leads to worse reconstructions.
Note that the two samples both undergo severe occlusion, having only 40% of
the object visible. Due to our proper modeling of the hand-object interaction,
D-SCo proves great robustness against hand- as well as self-occlusion.

G Failure Cases and Limitations

As shown in Fig. G.8, the failure cases are primarily provoked by two reasons.
1) When multiple objects are present in an image without contacting with the
hand, the model can be confused about which object should be modeled (Row 1).
Nonetheless, within the same video sequence, the model is able to make accurate
predictions when the object comes into contact with the hand (Fig. F.6 (Row 5)).
2) Although our approach shows strong robustness against noisy hand poses, the
model may predict a less-detailed shape for extreme cases. In Fig. G.8 (Row 2),
we visualize our reconstruction results along with the hand. In this very rare case,
there is a significant error in predicted hand pose as provided by [5], leading to
a subpar object reconstruction (Middle). Note that, as aforementioned, we focus
on hand-held object reconstruction conditioned on an estimated hand pose under
the very same setting as iHOI [13] and DDF-HO [14]. When instead using the
ground-truth hand pose as condition, our approach again produces reasonable
results (Right).

Though the unstructured and order-agnostic nature of point clouds naturally
suits the highly flexible nature of diffusion models, the point cloud representation
may face the surface reconstruction problem in downstream tasks. Finally, D-SCo
inherits common drawbacks of diffusion models such as a typical slow inference.
In particular, a single reconstruction requires ∼ 310s for sampling 1,000 steps
with a batch size of 24. To further improve the method, we could speed up
inference time with techniques such as DDIM [12] sampling.

H Ethics Statement

We evaluate our approach on four publicly available datasets ObMan [5], HO3D [4],
MOW [1] and DexYCB [2]. The real-world HO3D, MOW, and DexYCB datasets
are well-designed, containing well-balanced samples of different skin colors. The
synthetic ObMan dataset also possesses diverse skin colors. In particular, the
employed rendering process ensures a considerable proportion of diverse colors
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Input GTiHOI OursDDF-HO

Fig. F.3: Additional qualitative results on the HO3D [4] dataset. For the
reconstruction results of each method and the ground-truth shapes, we visualize in the
camera view (left) and a novel view (right).
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Fig. F.4: Additional qualitative results on the MOW [1] dataset. For the
reconstruction results of each method and the ground-truth shapes, we visualize in the
camera view (left) and a novel view (right).
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Input GTiHOI OursgSDF DDF-HO

Fig. F.5: Additional qualitative results on the ObMan [5] dataset. For the
reconstruction results of each method and the ground-truth shapes, we visualize in the
camera view (left) and a novel view (right).

Input GTgSDF Ours

Fig. F.6: Additional qualitative results on the DexYCB [2] dataset. For the
reconstruction results of each method and the ground-truth shapes, we visualize in the
camera view (left) and a novel view (right).
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Fig. F.7: Qualitative results of ablation study. We show the ground-truth shapes
and our reconstruction results w/ or w/o dual-stream denoiser and centroid fixing.

Input GT Ours

Input GT Ours (estimated hand pose
with significant error)

Ours (GT hand pose)

Fig.G.8: Visualization of failure cases. We show the ground-truth shapes and
our reconstruction results in the camera view (left) and a novel view (right).

for the hands. Moreover, D-SCo adopts an off-the-shelf hand pose estimator,
fully focusing on the hand-held object reconstruction.
Potential negative societal impact. Although the publicly available datasets
we use have considered the diversities of scenes, objects, and persons, there re-
main potential biases and underrepresentation. Additionally, substantial com-
puting power and energy consumption required during training and inference
stages may have a negative impact on the environment.
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