
Combining Generative and Geometry Priors for
Wide-Angle Portrait Correction

Lan Yao1, Chaofeng Chen2, Xiaoming Li1�, Zifei Yan1, and Wangmeng Zuo1,3

1 Harbin Institute of Technology
2 Nanyang Technological University

3 Pazhou Lab, Huangpu
{mrha011010,chaofenghust,csxmli}@gmail.com {yanzifei,wmzuo}@hit.edu.cn

Abstract. Wide-angle lens distortion in portrait photography presents
a significant challenge for capturing photo-realistic and aesthetically pleas-
ing images. Such distortions are especially noticeable in facial regions.
In this work, we propose encapsulating the generative face prior as a
guided natural manifold to facilitate the correction of facial regions.
Moreover, a notable central symmetry relationship exists in the non-face
background, yet it has not been explored in the correction process. This
geometry prior motivates us to introduce a novel constraint to explicitly
enforce symmetry throughout the correction process, thereby contribut-
ing to a more visually appealing and natural correction in the non-face
region. Experiments demonstrate that our approach outperforms previ-
ous methods by a large margin, excelling not only in quantitative mea-
sures such as line straightness and shape consistency metrics but also in
terms of perceptual visual quality. All the code and models are available
at https://github.com/Dev-Mrha/DualPriorsCorrection.
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1 Introduction

Due to the convenience of taking pictures with mobile phones and the advan-
tages of wider viewing angles, people frequently choose the wide-angle mode for
photographing individuals. However, the distortion caused by wide-angle lenses
often results in images with distorted lines and stretched faces, greatly affecting
the aesthetic quality of portrait photography.

Traditional methods focus on optimizing a warping map to correct distortions
brought by different projections, such as perspective, Mercator and stereographic
projections [5,6,16]. Since the human faces are usually quite close to the camera
and severely affected by these distortions, it cannot be simply performed simul-
taneously with background correction. Therefore, previous works usually handle
face and background regions with different methods. Shih et al . [38] proposed
a solution by combining perspective projection for the background and stere-
ographic projection for the face region, using a warp mesh. They approached
it as an optimization problem, seeking an optimal balance between redressing

https://github.com/Dev-Mrha/DualPriorsCorrection
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Fig. 1: Example of distorted and corrected images compared with other methods.
Thanks to the proposed generative and geometry priors, our results have straighter
lines in the background and more natural-looking faces compared to other methods.

the background and faces. Recent approaches [40, 48] introduced deep learning
methods to tackle this issue, eliminating the need for additional parameters. Al-
though great progress has been achieved, the real-world faces may suffer from
various types of distortions that are challenging to correct without additional
information, especially when training data is limited (see Fig. 1).

In this paper, we introduce a framework that leverages generative and geome-
try priors to rectify wide-angle distortions in faces and backgrounds, respectively.
We follow previous practice [40] and separate our framework into two modules:
FaceCNet, which targets facial distortion, and LineCNet, which addresses the
straightness of buildings and lines in the background. The FaceCNet employs
the generative face structure prior from pre-trained StyleGAN to enhance facial
correction. Our key motivation is that the pre-trained StyleGAN is able to map
the latent vectors W to a normally shaped face through GAN inversion [1, 41].
Given that W is a compact latent space, it facilitates the mapping of distorted
faces into W thereby restoring facial structures. This structural guidance en-
ables FaceCNet to effectively correct wide-angle facial distortions with complex
projection. For the background regions, we empirically observe that they mainly
suffer from barrel distortion and exhibit central symmetry. We therefore intro-
duce symmetric regularization in the training of LineCNet. This simple geometric
prior proves effective in straightening lines in the background. Finally, we design
a post-processing process to harmoniously fuse the corrected face region into the
background. The experimental results show our method produces undistorted
images with well-proportioned faces, surpassing existing techniques in both vi-
sual quality and quantitative evaluation metrics. The main contributions are:

• We integrated the generative face prior from StyleGAN to aid in correcting
wide-angle distortions of facial regions. This face structure prior enables our
method to handle faces distorted by complex projections.

• To the best of our knowledge, we are the first to employ a symmetry prior in
the background of wide-angle photos, which is highly effective in correcting
curved lines.
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2 Related Works

2.1 Wide-angle Portrait Correction

Traditional approaches to correcting wide-angle lens distortion often rely on
mathematical formulations and optimization problems, identifying specific for-
mulas to mitigate the distortion effect [7,42,46,49]. However, due to the complex-
ity of real-world problems that often resist ideal mathematical modeling, recent
methods have increasingly turned to deep learning-based approaches. Zhao et
al . [47] utilized camera calibration to obtain parameters for predicting flow with
U-Net, facilitating eye-fish undistortion. Shih et al . [38] employed the field of
view (FOV) to compute a mesh, integrating various distortions in the face re-
gion and background. Cao et al . [4] introduced an adaptive triangle mesh for
wide-angle portrait correction. However, these methods require extra camera
parameters which are often not available. Therefore, recent methods tried to
directly learn to correct the distortion. Tan et al . [40] pioneered the use of deep
learning methods to remove distortions without relying on camera parameters,
employing a two-stage network. Zhang et al . [45] They proposed a method for
wide-angle correction through content-aware conformal mapping, applying dif-
ferent distortion recovery models to different parts. Zhu et al . [48] presented
a semi-supervised transform-based network to exploit semantic information for
portrait correction. Unlike these approaches, our method employs geometry and
generative priors for background and facial region respectively, achieving better
results for real-world portraits.

2.2 Face Prior as Reference

Structure prior has been proven effective in many low-level vision tasks, e.g .,
depth image enhancement [15, 28], image inpainting [12, 23, 32, 34], and image
restoration [8, 9, 11, 17, 22, 24–26, 43, 44]. With the rapid advancement of gener-
ative adversarial networks (GANs), particularly exemplified by StyleGAN [20],
researchers have explored the potential of pre-trained GAN models to provide
comprehensive priors, including both structure and textural attributes for many
low-level tasks [8, 27, 43, 44]. Numerous GAN inversion methods [2, 14, 35, 41]
have emerged, enabling the manipulation of real images by optimizing their la-
tent codes within the GAN space [29]. This capability has also led to the adop-
tion of StyleGAN in various face restoration tasks [8, 31, 33, 44]. For example,
GFP-GAN [43] integrates a degradation module with a pre-trained StyleGAN on
facial data, achieving remarkable performance in various face restoration tasks,
such as super-resolution, inpainting, colorization etc. The primary advantage of
employing generative priors lies in their capability to effectively generate miss-
ing regions within an image. This generative power holds particular promise for
correcting wide-angle distortions in facial images, as the missing regions pose a
challenge to straightforward correction via direct warping techniques.
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(a) Real world scene (b) Illustration of imaging process using wide-angle camera (c) Wide-angle image (d) Deformation flow
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Fig. 2: Overview of our framework. It contains three parts: LineCNet for the geometric
distortions on the background, FaceCNet for correcting the face region using generative
face prior, and post-process for fusing the corrected face region into the background.

3 Method

3.1 Architecture Overview

Our approach is capable of correcting the wide-angle portrait that preserves the
natural appearance of both the face and background regions. As illustrated in
Fig. 2, the whole framework is divided into three parts: the LineCNet, FaceCNet,
and face fusion block. Given a wide-angle image, the LineCNet is applied to ad-
dress geometric distortions that affect straight lines in the background while the
FaceCNet is introduced to correct the face regions with the guidance of genera-
tive face prior from StyleGAN. A face fusion block finally merges the undistorted
faces generated by FaceCNet with the background corrected by LineCNet.

3.2 Generative Prior for Face Correction

In comparison with other objects, face region owns specific structures that are
easily perceptive when exhibiting unnatural distortions. Therefore, in the correc-
tion process, we should concentrate more on the facial region. However, existing
methods mainly consider facial landmarks as a constraint, overlooking overall
facial consistency and naturalness. Notably, the generative models (e.g ., Style-
GAN) have encapsulated the ability to generate photo-realistic face images, en-
abling us to facilitate face correction towards a more natural performance. In
the following, we first review StyleGAN inversion for real-world images and then
introduce the method of encapsulating the generative prior for face correction.

The original StyleGANs generate face images from random Gaussian noises.
To adopt StyleGANs on real-world images, previous works map the face image
into the W space. This inversion process is to predict the latent representation
of an image generated by a Generative Adversarial Network (GAN), aiming
to find the latent code that, when input into the GAN generator, reproduces
the target image. In our approach, we follow these methods and employ the
encoder for editing (e4e) framework [41] for StyleGAN inversion. The e4e method
[41] revolves around training an encoder network to map real images to their
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Input w/o StyleGAN Correction map w/ StyleGANStyleGAN inversion Correction map

Fig. 3: Examples of our face correction w/ and w/o using generative prior. Through
the results of correcting flow, it can be observed that the correction is concentrated at
the position where the StyleGAN face structure deviates from the input.

corresponding latent codes within the W+ latent space of StyleGAN2, which is
a high-dimensional approximation of StyleGAN’s W space. Once trained, this
encoder network can deduce the latent code of an input image by locating the
closest code in the learned latent space that would produce a similar image when
processed by the StyleGAN2 generator. The inferred latent code enables various
manipulations such as facial expression alterations, age progression/regression,
and other image modifications. The e4e encoder provides a precise means for
image editing by directly manipulating the latent space of StyleGAN2.

During the inversion process, it is inevitable to lose facial structures, result-
ing in lower fidelity. This implies that directly applying StyleGAN to correct
the face region fails to preserve identity textures (refer to the StyleGAN inver-
sion results in Fig. 3). Since the intermediate features in StyleGAN can generate
photo-realistic structures aligning well with the natural manifold, we propose
using these priors to guide the correction process. Specifically, for face images,
we first obtain their W vector using the pre-trained e4e encoder. We then utilize
the intermediate features of StyleGAN to aid the prediction of deformation flow,
preserving higher fidelity. Additionally, the e4e encoder is pre-trained on high-
quality face images. To generalize to unnatural faces, we fine-tune the encoder
with our synthetic distorted faces exhibiting characteristics similar to wide-angle
distortion stretching. Here, we adopt a synthetic optical flow similar to the dis-
tortion produced by a wide-angle lens to generate distorted faces for training our
FaceCNet. Leveraging the fine-tuned e4e model [41], distorted faces are inverted
into the StyleGAN domain, facilitating the correction of distorted face images.

Fig. 2 (right) demonstrates the details of our FaceCNet. It predicts the face
correction flow with the input of faces and their corresponding StyleGAN fea-
tures. To achieve this, we employ the U-Net architecture [36] as a baseline,
chosen for its ability to calculate cost volumes for flow prediction. The design
of U-Net enables the fusion of features from various receptive fields, facilitating
comprehensive information processing.
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Moreover, we introduce multi-scale feature fusion into the U-Net framework
to integrate StyleGAN features in different feature spaces. We analyze that the
incorporation of multi-scale feature fusion serves a dual purpose. Firstly, it en-
ables the seamless integration of StyleGAN features, leveraging the rich priors
associated with facial structures. This integration is crucial for an effective cor-
rection process, as it allows FaceCNet to better understand and preserve intri-
cate details inherent to facial images. Secondly, the multi-scale feature fusion
contributes to the overall robustness of the network by accommodating informa-
tion from different scales, ensuring that FaceCNet can capture both fine-grained
and global features in the correction task. By incorporating StyleGAN features,
FaceCNet gains access to additional information that goes beyond the standard
input faces. This additional information proves instrumental in preserving nat-
ural facial details and enhancing the overall quality of corrected images. Conse-
quently, the described architecture and feature integration approach contribute
to FaceCNet’s ability to produce natural-looking results in the facial regions.

3.3 Symmetry Prior for Background Correction

Wide-angle lenses typically produce images with barrel distortion, which is a
specific type of distortion related to the lens itself. Incorporating the radial
distortion figure highlights the lens-induced nature of radial distortion, further
supporting the argument for symmetry within barrel distortion. Barrel distortion
arises as a geometric distortion due to the optical design of the lens. This occurs
because the outer regions of the lens magnify the image more than the central
portion, leading to a noticeable bulging effect towards the edges of the frame.
Barrel distortion follows a specific format, and it is related to camera parameters
[13,46], as described by Eq. (1):

ru = rd × (1− k1 × r2d − k2 × r4d) , (1)

where rd represents the distance from the center of distortion in the distorted
image, ru represents the undistorted distance, and k1 and k2 are coefficients
related to the lens’s distortion characteristics. These coefficients are determined
during camera calibration and are used to correct barrel distortion in image
processing workflows. From this formula and comparison chart, it can be found
that barrel distortion is only related to the camera lens, and increases as the
distance from the center grows.

Indeed, perspective distortion is another aspect of visual distortion commonly
encountered in wide-angle photography , but it differs from barrel distortion in
its origin and characteristics [3,37]. Unlike barrel distortion, which is a geometric
distortion caused by the optical properties of the lens, perspective distortion is
an undesired effect in real images that is not caused by lens flaws. Perspective
distortion is related to the relative sizes and distances of objects within the scene,
as well as the positioning and angle of view of the camera. Objects close to the
lens appear abnormally large relative to more distant objects, and distant objects
appear abnormally small and hence farther away. When perspective distortion
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(a) Origin (b) Shih’s et al. [38]

(c) Zhu’s et al. [48] (d) Ours

Fig. 4: Comparison results of background correction with others. We can observe that
the proposed LineCNet can better correct the distorted lines.

interacts with stereo objects, it can disrupt the accurate alignment of features
between images, complicating depth perception and 3D reconstruction in stereo
imaging applications. That’s why we cannot use common undistortion methods
to correct stereo objects like human faces.

Therefore, without considering spherical objects such as human faces, the
distortion introduced by wide-angle lenses can be considered symmetrical. From
this, we introduce symmetric loss to help correct the optical flow training of
the background part. According to the optical flow to recover distortion should
have horizontal, vertical, and central symmetry, a symmetric regularization loss
is designed and applied in our LineCNet to effectively correct the distortion and
reduce the complexity of the network without predicting the camera parameters.

In particular, our LineCNet, similar to FaceCNet, utilizes the U-Net network
as its baseline architecture. As mentioned above, the distortion caused by the
wide-angle lens to the image is consistent with symmetry, so no other modules
except symmetry loss are added to the LineCNet. This is driven by the aim of
maintaining simplicity and efficiency in addressing background distortions. By
leveraging the U-Net and symmetry constraint, LineCNet can effectively correct
the background distortions in wide-angle images as shown in Fig. 4.

3.4 Face Fusion and Postprocess

In contrast to previous approaches, we adopt a novel strategy of isolating the
face from the background and subsequently reassembling the faces during the
merging process. This strategy ensures that the straight lines surrounding the
face in the background remain unaffected. Therefore, our FaceCNet can correct
the face region towards a more photo-realistic performance while struggling to
have pleasing results on the other region (see background in Fig. 3). To address
this issue, we employ face parsing on cropped facial regions, allowing only the
precise facial components to be inserted. ParseNet [9] is utilized for this purpose
which separated the face and background in the crop face image and obtained the
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mask of the face part. When reattaching the face to the image, we calculate the
translation position of the face before and after LineCNet correction to ensure a
more accurate fit between the face and the corrected background. In this process,
face correction and background correction will cause a certain gap in the region,
especially the region near the border. Image in-painting algorithm Lama [39] or
other diffusion-based methods [30] is finally used to fill this missing region.

This comprehensive approach ensures that both facial and background com-
ponents are corrected separately and then integrated seamlessly, leading to high-
quality, and distortion-free images.

3.5 Learning Objectives

Since our FaceCNet and LineCNet are designed for different regions, one for the
face and the other for the background, they can be trained in parallel.

As for training FaceCNet, it is natural to require the predicted flow vector Φ
close to the ground-truth Φgt, and we thus define the face deformation loss as:

Lf
face = ∥Φface − Φgt

face∥
2
2 . (2)

Meanwhile, we also need to ensure that the warped face image Iwface using Φ

approaches to the ground-truth image Igt
face in the pixel domain:

Lp
face = ∥Iwface − Igt

face∥
2
2 , (3)

where Iwface is obtained using the flow interpolation:

Iwface(i, j)=
∑

(h,w)∈N

Iface(h,w)max
(
0, 1−

∣∣Φy
i,j−h

∣∣)max
(
0, 1−

∣∣Φx
i,j − w

∣∣) . (4)

N denotes the 4-pixel neighbors and Iface is the face region cropped from the
wide-angle portraits.

Finally, we add total variation (TV) loss as smoothness regularization to
avoid too large changes of adjacent areas:

Ltv
face =

∑
i,j

√
(Φi,j−1 − Φi,j)2 + (Φi+1,j − Φi,j)2 . (5)

To sum up, the final learning objective for FaceCNet is defined as:

LFaceCNet = Lf
face + λ1Lp

face + λ2Ltv
face , (6)

where λ1 and λ2 are set to 2 and 0.5, respectively.
In terms of optimizing LineCNet, the loss function is defined as:

LLineCNet = ∥Φbg − Φgt
bg∥

2
2 + λ3∥Iwbg − Igt

bg∥
2
2 + λ4LSym , (7)
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Real world input Real world inputSynthesis flow map Synthesis flow mapDistorted face image Distorted face image

Fig. 5: Example of our synthetic face pairs for training FaceCNet.

where Φbg and Iwbg are the predicted background flow field and warped back-
ground image. Φgt

bg and Igt
bg denote their corresponding ground-truth. The sym-

metry loss LSym is defined as:

LSym = ∥Φv
bg − Φbg∥22 + ∥Φh

bg − Φbg∥22 + ∥Φc
bg − Φbg∥22 , (8)

where Φv
bg, Φ

h
bg, and Φc

bg present the vertical, horizontal, and central flip of pre-
dicted flow field Φbg, respectively (see flow map illustration in Fig. 2). This loss
function reinforces symmetrical alignment, enhancing the accuracy of line cor-
rection. In our experiment, λ3 and λ4 are set to 1 and 2, respectively.

4 Experiments

4.1 Data Preparation

Face dataset The GAN inversion network is trained and evaluated with the
public dataset, i.e., FFHQ [19] and CelebA-HQ [18]. To generate image pairs for
training, we designed a flow that stretches the four corners outward to simulate
the distortion caused by a wide-angle lens (see the examples in Fig. 5).

Wide angle portrait dataset We use the public wide-angle portrait dataset
from Tan et al. [40]. This dataset consists of over 5000 images for training and 129
images for testing. Each item in the dataset contains the ground truth image, the
line-corrected image, and the correction flow maps for training. It also provides
landmark points of line correction and face correction for quantitative evaluation.

4.2 Implementation Details

As shown in Fig. 2, each network of our framework is trained separately and the
results are combined with a fusion postprocess block. The FaceCNet is trained
with the synthetic faces first and then finetuned with real images cropped from
[40]. The face images are resized to 256× 256 as inputs to FaceCNet. LineCNet
is trained with 512× 384 inputs which is consistent with previous works [40,48].
Both of the networks are trained with Adam optimizer [21] and the learning rate
is set to 1e− 4. The batch size is 4 and it takes 5 days to train FaceCNet and 3
days for LineCNet on a 3060 NVIDIA GPU.
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4.3 Evaluation Metrics

We follow previous works [40] and employ several evaluation metrics including
LineAcc and ShapeAcc to assess the performance of our method.

LineAcc is designed to evaluate the straightness of lines within the image by
comparing the slope variation between the output and ground truth images:

LS = 1− 1

n

n−1∑
i=0

(
ydi

− ydi−1

xdi
− xdi−1

− ygo − ygn
xgo − xgn

) (9)

where LS is the similarity between the slopes of lines in the output and ground
truth images. n is the number of points in each line. (xgi , ygi) and (xdi

, ydi
) are

the corresponding positions in the reference and distortion images, respectively.

ShapeAcc focuses on evaluating the similarity of facial landmarks between the
output and reference images. This metric calculates the cosine similarity between
corresponding landmark vectors, which is defined as follows:

FC =
1

n

n−1∑
i=0

cos (Lgi , Ldi
) (10)

where Lgi and Ldi
denote the corresponding face landmark points in the reference

and distortion images, respectively.

Landmark Distance To provide a more comprehensive measurement of fa-
cial correction, we introduce the Landmark Distance metric, which calculates
the similarity of faces based on the Euclidean distance between corresponding
landmark points as below:

LD =
1

n

n−1∑
i=0

∥Lgi − Ldi
∥22 (11)

For a fair comparison, we align the position of the nose position in reference and
distorted images before calculating the distance.

4.4 Ablation Study

To evaluate the performance of our proposed framework, we first conduct abla-
tion experiments to analyze the effectiveness of symmetry prior and face prior.
Then, we conduct experiments to show the importance of a multi-scale feature
fusion strategy for face prior.
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Table 1: Ablations on the proposed generative and geometry priors.

Method Symmetry
Prior

Generative
Prior LineAcc ShapeAcc Landmark Distance

Baseline 66.192 97.027 5.991
Baseline + Sym. ✓ 67.304 97.266 5.5464
Baseline + Gen. ✓ 66.192 99.012 5.3397
Ours (Full) ✓ ✓ 67.304 99.012 5.013

(a) Input (b) w/o SymLoss (c) w/ SymLoss

Fig. 6: Visual comparison of our method with and without geometric symmetry prior.

Effectiveness of Priors We explore how the priors affect the network perfor-
mance. We utilize the network without any priors as the baseline, and evaluate
the performance of four networks with different prior configurations as follows:

1) Baseline: LineCNet and FaceCNet with simple U-Net structure and no priors;
2) Baseline + Sym. (Symmetry Prior): add symmetry loss for LineCNet;
3) Baseline + Gen. (Generative Prior): add generative face prior features from

StyleGAN into FaceCNet;
4) Ours (Full): add both symmetric prior and generative prior.

The results of the quantitative comparison are provided in Tab. 1. We can
observe that the symmetric prior improves the LineAcc while the generative
prior benefits the ShapeAcc and Landmark Distance. The effectiveness of them
is more obvious from the visual examples in Fig. 6 and Fig. 7.

In Fig. 6, the comparison shows that the predicted flow with LSym in Fig. 6 (b)
is smoother and more symmetric than that without LSym in Fig. 6 (c). From the
left bottom corner, we can see that with a more symmetric flow, the contours
of bricks in Fig. 6 (c) are much straighter compared to those in Fig. 6 (b). The
results clearly demonstrate the superiority of using symmetric prior.

In Fig. 7, the benefit of employing the StyleGAN prior is more evident.
Without the StyleGAN prior, the network predicts an unusual flow near the
cheek in Fig. 7 (b), leading to an odd face shape due to excessive shrinking.
Meanwhile, the result in Fig. 7 (c) appears more natural. This demonstrates that
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(a) Input (b) w/o StyleGAN prior (c) w/ StyleGAN prior

Fig. 7: Visual comparison of our method with and without generative face prior.

Table 2: Ablations on the StyleGAN feature concatenation

Method PSNR SSIM Landmark Distance

1) Baseline 25.586 0.848 3.091
2) Baseline + Single Scale 24.335 0.797 2.908
3) Baseline + Multi-Scale 26.732 0.871 2.357

with the guidance of the StyleGAN prior, the network is less likely to produce
odd results and is more effective at restoring natural-looking facial structures.

Multiscale facial prior features To evaluate the impact of incorporating
multiscale StyleGAN features on face correction, we use a U-Net architecture as
our baseline and explore three variants: 1) Baseline U-Net without StyleGAN;
2) Baseline + single scale StyleGAN feature of the smallest size; 3) Baseline +
multi-scale StyleGAN features. We also introduce PSNR and SSIM from [10] as
the image quality metrics for evaluating face correction.

The quantitative results are summarized in Tab. 2. Both variants 2) and 3)
lead to notable improvements in facial landmarks, with variant 3) showing a
more significant enhancement, achieving the best Landmark Distance of 2.35.
This highlights the effectiveness of multi-scale features in enhancing face correc-
tion. It is noteworthy that variant 3) yields better landmark results but slightly
lower PSNR/SSIM values. Given that 2) utilizes high-level scale features, this
suggests that the crucial information for face structure correction primarily orig-
inates from high-level features, whereas low-level features predominantly influ-
ence color and details, thereby improving PSNR/SSIM. Fig. 8 shows the quali-
tative comparisons between different variants as well as the StyleGAN inversion
results. Despite the StyleGAN inversion results presenting variations in facial
identity, they offer valuable structural guidance for face correction. The results
achieved with multiscale features demonstrate improved landmark similarity to
StyleGAN inversion compared to those from a single-scale model, highlighting
the advantages of multiscale feature fusion in enhancing the accuracy and effec-
tiveness of face correction.
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Input 2) + Single Scale 3) + Multiple Scale StyleGAN inversion1) Baseline

Fig. 8: Analyses of multiple scale face prior for face correction.

Table 3: Quantitative comparison of our proposed method and previous works. Results
of Shih et al . [38] and Tan et al . [40] are directly taken from their papers.

Method
Note Vivo All dataset

LineAcc ShapeAcc LineAcc ShapeAcc LineAcc ShapeAcc Landmark Dis.

Shih [38] - - - - 66.143 97.253 6.035
Tan [40] 68.683 97.115 65.148 98.363 66.784 97.490 -
Zhu [48] 66.381 97.746 66.572 96.076 67.209 97.500 5.840

Ours 69.891 98.697 65.459 99.091 67.304 99.012 5.013

4.5 Comparison with Others Methods

We conduct comprehensive comparisons with competing SOTA methods, i.e.,
Shih et al . [38] and Zhu et al . [48], and evaluate its effectiveness in both straight
line and face restoration tasks. To ensure a fair comparison, all results are ob-
tained without additional calibration preprocessing. Tab. 3 provides a detailed
comparison of the results achieved by our method against those of existing ap-
proaches. The quantitative comparison highlights our method’s enhanced ability
to preserve straight lines and accurately restore facial features. Notably, our ap-
proach significantly reduces the ShapeAcc error by 60%, from 2.5 to 1.0. To
complement the quantitative evaluation, we also conducted visual comparisons,
as depicted in Fig. 9. We can observe that our line correction results consistently
surpass those of other methods, highlighting the advantage of using a symmetric
prior. Furthermore, the faces corrected by our approach appear more natural
and are free from artifacts, in contrast to those by Shih et al . in the second row.
These comparisons further affirm the efficacy of our method, demonstrating its
capability to maintain the original face size while effectively correcting distor-
tions. Through these analyses, we have demonstrated the superior performance
of our approach in handling both background and facial distortions.
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Full input image Close-up of input Shih's et al Zhu's et al Ours

Fig. 9: Qualitative results of different correction methods. Our results are significantly
better in line correction and yield more natural-looking faces without artifacts.

4.6 Limitation

The generative face prior may struggle to handle faces with large poses. This can
be alleviated by expanding the face diversity for the generative models. Another
limitation is the unnatural body region (e.g ., obviously longer feet in Fig. 9).
We will solve it by introducing the generative body prior in the future.

5 Conclusion

This paper introduces an innovative method to correct wide-angle distortion by
leveraging the synergistic capabilities of the generative face prior and geomet-
ric symmetry prior. Our approach not only successfully mitigates background
distortions through LineCNet, which is trained with symmetric regularization,
but also adeptly addresses intricate facial distortions with the incorporation of
a StyleGAN prior. The presented visualizations of the correction flow map and
facial landmarks highlight the effectiveness of these two priors. Through com-
prehensive experimentation, our method sets a new benchmark, outperforming
existing techniques and showcasing significant visual enhancements.
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