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The supplementary features the following sections:

– Section Sec. A: detailed architectures of attention modules used for attention
investigation.

– Section Sec. B: more details for the proposed real-world VSR model, Realv-
iformer:
• Detailed model architecture.
• Training settings.
• Reasons for choosing quantitative metrics.
• Ablations of channel squeeze-excite and rescaling mechanism in ICA

module.
• Visual comparisons.
• Temporal Consistency.
• Challenging cases.

A Model Architectures of Attention Modules

Fig. 12: The architectures of channel (left) and spatial (right) attention modules in
Fig.3 (b) of the main paper. The spatial attention is window-based with window-split
module S and window-merge module M , which split and merge overlapped windows
of size Rω2×ω2

.

Fig. 12 shows detailing constructions of channel and spatial attention mod-
ules in Fig.4(b) of the main paper. The channel attention module maps layer-
normalized ft to query and ĥt−1 to key and value. The attention map is of size
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RC×C , where C is the number of feature channels. The spatial counterpart splits
layer-normalized features to windows of size Rω2×ω2

spatially, and we use ω = 8
in practice. The correlations are calculated within windows.

B RealViformer

B.1 Model Architecture

Fig. 13: U-shape architecture for the reconstruction module in RealViformer. The
CAF module refers to the Channel Attention Fusion module explained in Sec. 4.2 of
the main paper.

Fig. 13 shows the details of the U-shape architecture of the reconstruction
module in RealViformer (Fig.9 in the main paper). The shallow feature and
aligned hidden state are first merged with the CAF module introduced in the
main paper; then, the merged feature is put in a three-level U-shape architec-
ture. The Downsample and Upsample are implemented by PixelUnshuffle and
PixelShuffle [13], followed by convolutions.

B.2 Training Settings

We give more details of the two-stage training pipeline. Following RealBasicVSR [2],
we perform two-stage training. The first stage trains the model with a Charbon-
nier loss [7] and SSIM [16] loss for 300K iterations. The weights of charbon-
nier loss and SSIM loss are 1.0 and 0.01. We use AdamW optimizer [9] with
β1 = 0.9, β2 = 0.999 and weight decay 1e−4. The learning rate for the first 80K
iterations is 3e−4, which is then gradually decreased to 1e−6 by Cosine Annealing
scheme [8].

In the second stage, the model is trained for another 130K iterations with
the Charbonnier loss, SSIM loss, perceptual loss [5] and GAN loss [3] together,
weighted by 1, 0.001, 1, and 0.005, respectively. The implementations of per-
ceptual loss, GAN loss, and discriminator follow RealBasicVSR [2]. We renewed
the batch size to 8 and the optimizer to Adam [6]. The learning rates of the
generator and discriminator are 5e−5 and 1e−4, which remain unchanged.
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B.3 Choice of Quantitative Metrics

No-reference evaluation is an open research question, and we are still on the
way to finding good no-reference metrics. Although commonly used in previous
papers, NIQE [12] and PI [14] have a severe bias to over-sharpened images, as
shown in Tab. 4. Thus, we choose ILNIQE [20], an improved version of NIQE,
and NRQM [10] for evaluation. The other metric, BRISQUE [11], used in previ-
ous SOTAs, was proposed in 2011 without considering any artifacts from deep
models. It has been shown to correlate poorly with human opinions when eval-
uated images are not of very low quality [1]. Thus, we substitute this unreliable
quantitative metric with a user study in the main paper.

Table 4: Scores for ground-truth and over-sharpened ground-truth REDS4. The better
score is colored in Red.

NIQE ↓ PI↓ ILNIQE↓ NRQM↑
Ground-truth REDS4 2.22 2.62 17.57 6.95

Sharpened ground-truth REDS4 1.89 2.51 27.45 6.90

B.4 Ablations

This section separately checks the impact of channel squeeze-excite and rescaling
mechanisms in ICA. As shown in Tab. 5, the achievement of ICA is a compound
effect of channel squeeze-excite and rescaling mechanisms. Using them separately
decreases the performance.

Table 5: Ablation study of channel squeeze-excite and rescaling mechanisms. The
channel squeeze-excite mechanism is denoted as SE in the table. Adding channel
squeeze-excite or rescaling mechanism separately to the original channel attention mod-
ule [19] will decrease the NRQM score. Their compound effect helps achieve state-of-
the-art performance.

SE Rescaling NRQM
Realviformer− 6.196

+ squeeze-excite ✓ 6.099
+ rescaling ✓ 6.05

Realviformer ✓ ✓ 6.338

B.5 Visual Comparisons

This section shows more visual comparisons with RealSR [4], Real-ESRGAN [15],
and RealBasicVSR [2] in Fig. 14. Our method predicts clear patterns without
obvious high-frequency artifacts. We also provide video examples of our method
in the supplementary attachments.



4 Y. Zhang et al.

(a) Input (b) Real-ESRGAN (c) RealBasicVSR (d) Ours

Fig. 14: Visual comparisons between our method, Real-ESRGAN [15], and RealBa-
sicVSR [2]. The first three rows are test cases from VideoLQ [2], and the last three
are from RealVSR [18]. Our method produces clear structural patterns without high-
frequency artifacts; others are blurry or sacrifice structural information for high sharp-
ness.

B.6 Temporal Consistency

We compare temporal profiles [17] on synthetic data in Fig. 15, where the hori-
zontal dimension is time. Ours shows smoother profiles that are close to ground
truths.

B.7 Challenging Cases

Although RealViformer shows state-of-the-art performance on two real-world
video datasets overall, its prediction at the boundary in low-contrast regions has
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(a) RealBasicVSR (b) ours (c) GT

Fig. 15: Temporal profiles of RealBasicVSR, our method, and ground-truth (GT).

lower sharpness, as shown in Fig. 16. Achieving sharpness without introducing
high-frequency artifacts is a challenging problem for super-resolution. We aim
at future work to improve the sharpness of RealViformer.

(a) Input (b) Real-ESRGAN (c) RealBasicVSR (d) Ours

Fig. 16: Challenging cases of our method. The boundaries in low-contrast regions are
not as sharp as RealBasicVSR [2] and Real-ESRGAN [15].
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