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Abstract. In real-world video super-resolution (VSR), videos suffer from
in-the-wild degradations and artifacts. VSR methods, especially recur-
rent ones, tend to propagate artifacts over time in the real-world setting
and are more vulnerable than image super-resolution. This paper in-
vestigates the influence of artifacts on commonly used covariance-based
attention mechanisms in VSR. Comparing the widely-used spatial at-
tention, which computes covariance over space, versus the channel at-
tention, we observe that the latter is less sensitive to artifacts. How-
ever, channel attention leads to feature redundancy, as evidenced by the
higher covariance among output channels. As such, we explore simple
techniques such as the squeeze-excite mechanism and covariance-based
rescaling to counter the effects of high channel covariance. Based on our
findings, we propose RealViformer. This channel-attention-based real-
world VSR framework surpasses state-of-the-art on two real-world VSR
datasets with fewer parameters and faster runtimes. The source code is
available at https://github.com/Yuehan717/RealViformer.

1 Introduction

Video super-resolution (VSR) recovers a high-resolution (HR) sequence of frames
from its low-resolution (LR) counterpart. Recurrent convolutional approaches
are commonly used in VSR with standard settings, assuming the LR frames
are downsampled from HR frames with known kernels. [3, 10, 15]. However, in
real-world VSR (RWVSR), the low-resolution videos are not simply downsam-
pled versions of their high-resolution counterparts. Instead, they feature complex
degradations that arise from the camera imaging system, compression, internet
transmission, and other factors. These degradations make architecture design for
RWVSR challenging, as artifacts and degradations tend to propagate and get
exaggerated over the recurrent connection [5, 36].

Recently, transformer architectures have replaced convolutional architectures
as state-of-the-art for standard VSR. While attention mechanisms have replaced
convolution operations, most methods retain the recurrent connection to aggre-
gate the information over time [22, 30]. Yet, such architectures do not always
perform well on RWVSR. For instance, a Swin-based model [21] designed for
standard VSR, when applied to a real-world input frame, as shown in Fig. 1a,
generates more artificial lines than the convolutional model RealBasicVSR [5].
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(a) Visual comparisons. (b) Schematics of two attentions.

Fig. 1: (a) Designing a RWVSR transformer is not trivial. A Swin-based transformer
suited for standard VSR hallucinates more lines than a RealBasicVSR, a convolutional
state-of-the-art. We propose RealViformer based on our investigation of attention un-
der the RWVSR setting. RealViformer generates details with fewer artifacts than Re-
alBasicVSR [3] and the Swin-based VSR model. (b) Schematic for spatial and channel
attention. Spatial attention aggregates features based on pixel representations. Chan-
nel attention takes H ×W feature map for matching across channels.

Why should transformers perform well on (synthetic) standard VSR but
poorly in real-world cases? We speculate that standard VSR transformers benefit
from the similarity-based matching of the attention mechanism, which accurately
aggregates information spatially and temporally [21,22,30]. However, when input
degradation exists, the aggregated information becomes less reliable because the
attention queries may be derived from both true source video and artifacts.

This work investigates and sheds light on the sensitivity of attention in real-
world settings. We compare two covariance-based attention mechanisms used in
low-level Transformers: spatial attention [21,30] and channel attention [39]. Spa-
tial attention takes pixel-wise features as keys and queries and estimates their
covariances across spatial positions. The most popular form is window-based at-
tention [6]; The shift-window scheme from Swin Transformers [23] enables the
model to access distant spatial ranges [2,21,30] without computational blow-up.
Spatial attention is widely used for video and image super-resolution, albeit in
the standard setting. Channel attention [39] estimates covariances across chan-
nels (see Fig. 1b) and collapses the spatial extent of a feature map. It defines
the number of queries and keys by channel numbers rather than spatial resolu-
tion. Although established for deblurring or denoising [39], channel attention’s
efficacy in super-resolution remains to be determined.

Our experiments show that channel attention is less sensitive to artifacts
than the spatial counterparts, resulting in higher performance gains in RWVSR.
However, it is also revealed that channel attention leads to feature channels with
higher covariance. From a learning perspective, a high covariance is undesirable
because it is a strong indicator of feature redundancy [1,8,13]. Therefore, using
channel attention naively will have limited improvements over existing RWVSR
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state-of-the-art methods. Such a finding has wide-reaching impacts as channel
attention is used increasingly for low-level vision.

To verify our findings, we explore established mechanisms to counter the
effects of feature redundancy - simple techniques such as squeeze-excite and
covariance-based rescaling improve the vanilla channel attention design. From
these outcomes, we propose RealViformer, a new transformer real-world VSR
model. RealViformer performs channel attention between the current frame fea-
ture and the propagated hidden state to limit model-produced artifacts. The
model then reconstructs features through improved channel attention modules
featuring squeeze-and-excite and covariance-based channel rescaling mechanisms.
With our effective designs, RealViformer achieves state-of-the-art performance
with fewer parameters on challenging synthetic video datasets and two real-world
video datasets collected from different scenes.

Summarizing our contributions in order of importance, our paper

– investigates the differences between spatial and channel attention for RWVSR.
Spatial attention, although widely used, is revealed to be highly sensitive to
the noise and degradations common in RWVSR sequences, while channel
attention is more robust.

– reveals that naively applying channel attention increases channel covariance,
which is problematic for learning; this overlooked fact has a wide-reaching
impact as channel attention becomes more used in low-level vision.

– empirically verifies the negative effect of high channel covariance by coun-
tering it with established techniques, based on which we develop the Re-
alViformer for RWVSR. Our simple modification surpasses state-of-the-art
despite using less compute.

2 Related Work

Standard Video Super-Resolution models focus on architecture design to
use temporal information better [2–4, 15]. Previous research starts from slide-
window-based [15,33] to recurrent-based frameworks [3,4] for using distant-frame
information. Recent works introduce Transformer blocks into existing recurrent
frameworks to overcome the locality limitation of convolution and accurately
match abundant information for feature reconstruction [20,22,30].
Real-world video super-resolution focuses on modeling, removing, and lim-
iting the impact of real-world degradations. Existing works are convolutional
models and focus on designing losses or modules for degradation processing.
DBVSR [28] explicitly estimates the degradation kernel through a sub-network.
RealBasicVSR [5] tries to ‘clean’ artifacts through a processing module for Ba-
sicVSR [3]. In a similar approach, FastRealVSR [36] borrows an external pool of
blur and sharpening filters to ‘clean’ the hidden states. Other recent works [16,31]
advance the synthesis method for paired training data. Instead, we focus on in-
vestigating the function of attention in RWVSR rather than architecture design
or data synthesis.
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Attention mechanisms have been widely applied for low-level vision tasks [9,
25, 43, 43]. Transformers with covariance-based attention are the most preva-
lent [21, 30, 39] for standard VSR. Most existing methods adopt shift-window-
based spatial attention [23] to aggregate information from other positions within
or across frames. In contrast, Restormer [39] computes the covariance among
channels and shows its effectiveness for multiple image restoration tasks. More
recent works stitch spatial and channel attention together to enlarge the re-
ceptive field [7, 32] for standard image super-resolution. Instead, we investigate
attention mechanisms in terms of their sensitivity to real-world degradation for
the first time and develop an effective real-world VSR Transformer.

3 Explorations on Attention

Sec. 3.1 defines the VSR task and the two attention mechanisms. Sec. 3.2 com-
pares the channel and spatial attentions’ sensitivity to query artifacts and effects
on real-world VSR performance. Sec. 3.3 reveals that channel attention leads to
higher covariance among channels and explores mitigating options.

3.1 Preliminaries

Standard vs. Real-World VSR. Given a low-resolution (LR) video sequence
with T frames IL ∈ RT×H×W×K , VSR models reconstruct a high-resolution se-
quence IH ∈ RT×sH×sW×K , where H×W is the input spatial resolution, K is
the number of input channels and s is the scaling factor. In the standard setting
of VSR, ILt , where t ∈ {0, ..., T}, is assumed as the downsampled version of IHt ,
defined as: ILt = (IHt ) ↓ 1

s
. Both training and testing datasets follow this formula-

tion to generate LR-HR pairs given IH . In a real-world setting, there is no closed
formulation for the relationship between ILt and IHt due to the unknown distri-
bution of real-world degradations. Real-ESRGAN [34] proposed a widely-used
training setting that randomly applies synthesized blur, noise, compression, and
resizing to the HR frames to generate paired LR frames with complex degrada-
tions. The testing datasets are either synthesized by the same pipeline in training
or collected from diverse real-world sources [5, 37]. The synthesized testing sets
have paired ground-truth sequences and are evaluated by full-reference metrics,
e.g . PSNR and LPIPS [42]; real-world datasets are always without ground truth
and require no-reference metrics, such as NRQM [24].
Attention Definitions. In Transformers, the attention modules project layer-
normalized tensor X ∈ RC×H×W to query Q, and tensor Y ∈ RĈ×Ĥ×Ŵ to key K
and value V , where H×W and Ĥ×Ŵ are the spatial resolution of the normalized
tensors.1 The attention map A is generated by calculating the covariance between
Q and K, followed by a softmax function, before being applied to the value V
to produce output O. Spatial and channel attention differ in tensor dimension
taken for the covariance calculation.
1 Note we define mutual attention as the default; self-attention is a special form of

mutual attention where Y =X.
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Spatial attention generates an RHW×ĤŴ attention map, As, by computing
the covariance between features in the query (Qs) and key (Ks) at each spatial
position. The query, key and values are computed as Qs =WQ

s X, Ks =WK
s Y ,

Vs=WV
s Y , where WQ

s ∈ RDs×C , {WK
s ,WV

s } ∈ RDs×Ĉ , and Ds is the dimension
of projections. The attention map As and output attention features Os are:

As = softmax(QT
s Ks/

√
Ds), Os = AsV

T
s , (1)

where Qs (Ks) is reshaped to matrix of RDs×HW (RDs×ĤŴ ). We omit the later
reshaping operation for brevity. As exhaustively relates every spatial location
to every other location in space. A window-based implementation [21] limits the
correlations to windows of ω×ω, reducing the map size to Rω2×ω2

.
Channel attention applies convolutions on X to get query (Qc) and Y for key

(Kc) and value (Vc) [39], after which features are the same in spatial resolution
(assumed to be H ×W in the following context). It estimates covariance across
channels to yield a C × Ĉ sized map Ac and output features Oc:

Ac = softmax(QcK
T
c /α), Oc = AcVc, (2)

where Qc is reshaped to RC×HW , Kc and Vc are reshaped to RĈ×HW and α
is learnable scaling parameter. Because channel attention computes correlations
between features of size R1×HW , it has a larger spatial context than the RDs×1-
sized features in spatial attention (see Fig. 1b).

3.2 Attention in Real-World VSR

Sensitivity to Query Artifacts. In standard VSR, attention is used to ag-
gregate information temporally and spatially [22, 30]. The assumption is that
queries can match beneficial cues for super-resolution. But what if the queries
themselves are unreliable? We speculate this to be true in real-world VSR, where
inputs have artifacts and degradations.

How affected are spatial and channel attention mechanisms by query arti-
facts? Fig. 2 shows how we compare, using cosine similarity, the attention outputs
based on queries from the same frame with and without certain degradations.
Using encoding layers from a standard convolutional VSR model, we perform
the attention operations defined in Sec. 3.1 by taking embeddings of frame It
as query and It−1 as key and value. It and It−1 are clean without degradation
other than downsampling, and we represent the output feature of the attention
module as O. When additional degradation Di is applied to It, we represent the
corresponding output as ODi

. A smaller deviation of ODi
from O indicates lower

sensitivity to artifacts in the query.
Tab. 1 shows the cosine similarity between O and ODi for spatial and channel

attention modules. Curiously, ODi based on the channel attention module is more
similar to the O matched by the degradation-free query, indicating that channel
attention is less sensitive to query artifacts. Intuitively, the lower sensitivity of
channel attention is related to the larger spatial context used for feature match-
ing. Given a deep feature of size RC×H×W , channel attention uses feature sized
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Fig. 2: Schematic for sensitivity comparison. It−1, It are downsampled but clean
frames at times t and t − 1. Di(.) apply degradations to It, where Di ∈
{blur, noise, compression}. O and ODi are output features of the attention module.
Queries are from the embedding at time t, and keys and values are from time t − 1.
Higher cosine similarities S between attention output features O and ODi reflect less
sensitivity to artifacts in queries.

Table 1: Cosine similarity between O and ODi , attention outputs without and with
query degradation. Outputs of channel attention change less under query degradation.

Module Di

blur noise compression
Spatial attention 0.75 0.92 0.84
Channel attention 0.98 0.99 0.99

R1×HW to calculate the covariance across channels. As such, feature aggregation
is based on global information observed in a large normalized spatial context.
Instead, the covariance of spatial attention is for features at each location sized
RC×1, so it is likely more sensitive to local value changes from artifacts.
Impact on VSR Models. While channel attention output features are less
sensitive to query artifacts than spatial attention, how well do they fare for real-
world VSR? We experiment by incorporating these attention variants into VSR
models. We focus specifically on recurrent pipelines due to their popularity in
standard and real-world VSR [5,22,36]. In recurrent pipelines, artifacts in hidden
states may propagate over time, get exaggerated, and negatively influence overall
performance [5, 36]. Therefore, we explicitly add the attention module between
features of the current frame and the propagated hidden state. Ideally, the added
attention will select relative information from hidden states for the current frame
and reduce the propagation of model-produced artifacts.

Fig. 3a shows the baseline model which concatenates ft, the shallow feature of
at time t, and ĥt−1, the spatially aligned hidden state at time t−1. We experiment
with two variants by using a channel-attention module Gc or a spatial-attention
module Gs to replace the concatenation in the baseline. As shown in Fig. 3b, the
query is generated by ft, and the key and value are predicted from ĥt−1. The
attention output OA

t is concatenated with ft as the input for R.
All models are trained on the REDS dataset [27] with the random degradation

pipeline from Real-ESRGAN [34]. We test on REDS4 [27] with different types
and extents of degradations, including Gaussian blur, Gaussian noise, and JPEG
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(a) Recurrent Baseline
(b) Attention

Fig. 3: (a) The recurrent baseline in Sec. 3.2 has a shallow mapping module F , re-
construction module R, upsampling module U and warping function W . W aligns the
hidden state ht−1 to feature at t based on optical flow sf(t−1)→t. All residual blocks are
convolutional. The concatenation between ft and ĥt−1 are replaced with the spatial or
channel attention modules in (b) to compare the effect of attention. (b) The attention
module first applies layer normalization to ft and ĥt−1 and then performs channel or
spatial attention according to Sec. 3.1. The output feature OA

t concatenated with ft is
processed by the module R in (a).

Fig. 4: Comparison of spatial and channel attention through impact on the perfor-
mance of real-world VSR model. The Y-axis shows improvements compared to the
convolutional baseline. A lower LPIPS score is better. The channel attention module
is the best except for the PSNR score of highly blurred inputs.

compression. Fig. 4 displays changes in PSNR and LPIPS compared with the
baseline model. Trained on the same dataset and degradation setting, channel
attention between temporal information yields better objective and perceptual
reconstruction quality than spatial attention and baseline for noise and JPEG
compression inputs. Channel attention still achieves better scores for blurred
inputs, except for the PSNR performance of severely blurred inputs.

3.3 Limitations of Channel Attention

The results in Sec. 3.2 indicate that channel attention is better suited for prop-
agating information over time. However, it also has an inherent flaw – the cor-
relation among output channels will increase since each channel in the attention
output is a weighted summation over channels of the value Vc. We calculate
the covariance following VICReg [1] for a quantitative measurement. Given deep
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feature zn ∈ RC×H×W , where n ∈ {1, N} is the index of a sample, we reshape
zn to RC×HW and define the covariance matrix over Z = {z1, ..., zN} as:

Cov(Z) =
1

N − 1

N∑
n=1

(zn − z̄)(zn − z̄)T , (3)

where z̄ = 1
N

∑N
n=1 zn. We then define the indicator for the covariance matrix as

ac(Z) = 1
d

∑
i̸=j |Cov(Z)|i,j , i.e. the average of absolute off-diagonal coefficients

of Cov(Z), where d is the number of off-diagonal coefficients. Function ac(Z)
encodes the covariance among feature channels. Taking O in Fig. 2 for compar-
ison, ac(O) with N = 400 based on channel attention is 0.87 and significantly
higher than the input features (≈ 0.15). Instead, ac(O) of spatial attention re-
mains similar to the input features. Previous works on representation learning [1]
and overfitting [8] propose that the high covariance of feature channels indicates
redundancy and tends to hinder informative predictions.

Similarly, we speculate the redundancy effects will hinder the prediction of
HR outputs when adopting channel attention in building blocks. For a closer
look, we investigate the standard VSR task, which is artifact-free. Specifically,
we build Mc and Ms by replacing the Residual Block in Fig. 3a with channel
attention blocks [39] and spatial attention blocks [21] Models are trained on the
REDS dataset without extra degradation. For evaluation, we choose SSIM [35],
which focuses on structural information. The SSIM score of Mc (0.8338) is lower
than Ms (0.8432); ac(·) of the last features before the upsampling module is
higher for channel attention than for spatial attention, i.e. 0.199 vs. 0.147.

We adopt two simple modifications to channel attention and boost informa-
tive features to verify the redundancy effect empirically. Fig. 5 shows the Im-
proved Channel Attention (ICA) module. Our approach features two key steps to
enhance the quality. First, we use the squeeze-and-excite mechanism to predict
new information. The features are squeezed channel-wise to extract meaningful

Fig. 5: Improved Channel Attention Module (ICA), showing self-attention for sim-
plicity. The ‘squeeze’ convolution compresses the number of input feature channels
X ∈ RC×H×W by ratio r. The features are then rescaled by weights predicted from the
C
r
× C

r
attention map before being expanded by the ‘excite’ convolution back to the

original number of input channels.
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Fig. 6: The framework of RealViformer. (a) Overview of RealViformer, following a uni-
directional recurrent framework. The outputs of the Forward module are propagated to
the next time step and upsampled by module U to get HR frames. (b) Explanation of
the Forward module in (a), where W denotes the warping function. The reconstruction
module R takes current frame ILt and warped hidden state ĥt−1 as inputs. (c) Recon-
struction module R. The shallow feature of ILt and ĥt−1 are fused by CAF and then
forwarded to Transformer blocks with U-shape connection [39]. Module GDFN follows
Restormer [39]. Details of CAF and ICA modules are stated in Fig. 7 and Fig. 5.

information and then expanded into new channels based on the attention out-
puts. Secondly, we rescale channels in attention outputs by scalar weights pre-
dicted from the attention map. The attention map measures relationships across
channels and encourages the associated convolutions in the ’excite’ operation
to yield more precise and discriminating features. Our designs are inspired by
the SE Network [12] but with two key distinctions. First, we apply the squeeze-
and-excite mechanism to generate new information, while SE Network uses it to
help with scalar weight prediction. Second, the rescaling weights prediction takes
the attention map as a cue rather than the naïve pooling results of channels.
In Sec. 4, we show the efficacy of new designs on the real-world VSR task and
compare channel correlation with and without new designs in ablations.

4 RealVifromer

4.1 Overview

We apply our findings in Sec. 3.2 to the real-world VSR task as further support.
To that end, we design RealViformer to incorporate channel attention as the
basic processing module and the modification to boost informative features. Our
emphasis here is not novel architecture design but a showcase of effectiveness
brought by applying our findings in Sec. 3.2.

RealViformer is a recurrent Transformer network with channel attention
modules. Fig. 6 shows the model architecture. To reduce the computational
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Fig. 7: Details of Channel Attention Fusion (CAF) module. CAF gets the query from
current frame feature ft and {key, value} from hidden state ĥt−1. The attention output
is concatenated with ft to process for module output Ot.

cost, we follow a widely used recurrent architecture [3] in a unidirectional set-
ting. The model first estimates optical flow sf(t−1)→t from ILt−1 to ILt through
Spynet [29] and warps previous hidden state ht−1 to current time step based on
the flow. Frame ILt and spatially aligned hidden state ĥt−1 are processed in the
reconstruction module R. The hidden state is updated with outputs of R and
further processed by the upsampling module U to output high-resolution frames.

The reconstruction module R uses channel attention in two ways. First, the
Channel Attention Fusion (CAF) module fuses the temporal information to limit
the produced artifacts in the hidden state. CAF queries the aligned hidden state
ĥt−1 by the shallow feature ft. Secondly, we take the Improved Channel At-
tention Module (ICA) in Fig. 5 to build the Transformer blocks for better HR
reconstructions.

4.2 Channel Attention Fusion (CAF) Module

As explored in Sec. 3.2, adding channel attention promotes the real-world VSR
performance compared to spatial attention and the simple concatenation base-
line. Thus, we keep this design in our model and put it as the Channel Atten-
tion Fusion (CAF) module for temporal aggregation. Fig. 7 show details of how
CAF perform channel attention between ft, the feature of the current frame,
and ĥt−1, the aligned propagated hidden state. The query (Qt) is generated as
Qt = K3×3 ∗LayerNorm(ft), where K3×3∗ refers to 3×3 convolution operation.
Similarly, we process hidden state ĥt−1 by h̃t−1 = Kd

3×3∗K1×1∗LayerNorm(ĥt−1),
where Kd

3×3∗ is the 3×3 depth-wise convolution which double the channel num-
ber. Chunking h̃t−1 gives key (Kt) and value (Vt). The calculation of atten-
tion map At ∈ RC×C follows Eq. (2). The final output Ot is computed as
Ot = K1×1 ∗Kd

3×3 ∗K1×1 ∗C[AtVt; ft], where C[·; ·] denotes concatenation.
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4.3 Improved Channel Attention (ICA) Module

The design of ICA follows Fig. 5 for empirically verifying findings in Sec. 3.3.
Squeeze and Excite follows the squeeze-and-excite mechanism in Fig. 5 and
helps to predict channels with new information. It squeezes the channels of input
feature X ∈ RC×H×W by factor r. The attention map refers to self-attention on
X and of size RC

r ×C
r . Excitation layers expand outputs back to size RC×H×W .

Correlation-based channel weighting weights the output channel based on
scalars predicted from the attention map. This design emphasizes channels for
predicting more discriminative features in ‘excite’ operation. The attention map
Ar ∈ RC

r ×C
r is taken for calculating the average and max values along the rows.

The average and max values are combined and mapped to weights of size RC
r ×1

through linear layers and a sigmoid function.

4.4 Implementation Details

Model details. RealViformer uses SPyNet [29] for flow estimation. After the
CAF module, the reconstruction module R has a three-level encoder-decoder
architecture. From level 1 to level 3, there are [2,3,4] transformer blocks with
[48,96,192] channels. There are [1,2,4] attention heads in the ICA, all with a
squeeze factor of 4. Supplementary B.1 gives the detailed architecture of R.
Training details. We train using the REDS dataset [27] and follow RealBa-
sicVSR [5] in applying random combinations of blur, noise, JPEG compression,
and video compression for synthesizing input degradations. We load 15 frames as
an input sequence. The spatial size of inputs is cropped to 64×64, and the batch
size is 16. We use a pre-trained flow estimation model SPyNet, the parameter of
which is fixed for the first 5K iterations and tuned with other modules later.

Following RealBasicVSR [5], we perform two-stage training. The first stage
trains the model with a Charbonnier loss [19] and SSIM [35] loss for 300K it-
erations. In the second stage, the model is trained for another 130K iterations
with the Charbonnier loss, SSIM loss, perceptual loss [18] and GAN loss [11]
together, weighted by 1, 0.001, 1, and 0.005, respectively. The implementations
of perceptual loss, GAN loss, and discriminator follow RealBasicVSR [5]. We
implement all experiments on 4 Quadro RTX 8000 GPUs with PyTorch. Other
details of the training settings are in Supplementary B.2.

4.5 Experimental Results

We compare our model on four datasets, VideoLQ [5], RealVSR [37], REDS4 [27]
and UDM10 [38], with RealBasicVSR [5], Real-ESRGAN [34], BSRGAN [40],
DBVSR [28], RealVSR [37], DAN [14], and RealSR [17]. VideoLQ and RealVSR
are collected from real-world scenarios. VideoLQ is an unpaired dataset. Re-
alVSR has same-size paired low-quality (LQ) and high-quality (HQ) frames.
Our model super-resolves the input frames spatially. Although downsampling
LQ enables paired data, it alters the original degradation. Thus, we test on the
original LQ and do not use the HQ for evaluation. REDS4 and UDM10 have
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Table 2: Quantitative comparisons with existing methods with best and second-best
results. Our method achieves the best ILNIQE and NRQM scores over VideoLQ and Re-
alVSR datasets and the best PSNR, SSIM, and LPIPS over synthetic datasets REDS4
and UDM10 with relatively few parameters and the lowest run-time.

RealSR DAN RealVSR DBVSR BSRGAN Real-ESRGAN RealBasicVSR Ours
Params (M) 16.7 4.3 2.7 25.5 16.7 16.7 6.3 5.3

Runtime (ms) 180 250 772 - 180 196 73 49

VideoLQ ILNIQE↓ 26.63 28.28 31.94 27.85 27.49 27.97 25.98 25.94
NRQM↑ 6.054 3.742 3.460 3.851 6.156 6.057 6.306 6.338

RealVSR ILNIQE↓ 32.81 32.29 34.39 - 32.65 31.93 30.37 28.61
NRQM↑ 5.610 3.523 3.795 - 6.152 6.245 6.582 6.588

REDS4

PSNR↑ 22.02 22.67 18.30 22.35 22.94 21.56 23.09 23.34
SSIM↑ 0.5097 0.5571 0.4900 0.5530 0.5750 0.5556 0.6076 0.6079
LPIPS↓ 0.5991 0.6315 0.7240 0.6211 0.3766 0.3533 0.2991 0.2877

UDM10

PSNR↑ 25.37 25.90 23.35 25.08 25.97 24.96 25.96 26.42
SSIM↑ 0.6658 0.7229 0.7115 0.7112 0.7568 0.7432 0.7491 0.7609
LPIPS↓ 0.4811 0.4781 0.4761 0.4756 0.3388 0.3395 0.3209 0.3063

ground-truth images, and we synthesize low-quality inputs through the same
pipeline during training. All tested recurrent-based VSR models load the half
sequence for videos in RealVSR and the whole sequence for others each time.
The quantitative and qualitative results are discussed below.
Quantitative Results. For evaluation without reference, we apply the IL-
NIQE [41], the improved version of NIQE [26], and NRQM [24] metrics based on
each output sequence’s first, middle, and last frames in RGB format [5]. These
metrics appear less biased towards oversharpened features; details are given in
Supplementary B.3. For evaluation on REDS4 and UDM10, we report more re-
liable metrics, PSNR, SSIM, and LPIPS [42]. We collect released models of all
compared methods and generate sequences. As shown in Tab. 2, RealViformer
performs better than other methods with smaller parameters than the most
competitive RealBasicVSR [5] and the shortest runtime.

(a) Input (b) RE (c) RB (d) Ours (e) GT

Fig. 8: Qualitative comparisons on synthetic datasets. Our method produces clearer
than RealESRGAN (RE) [34] and RealBasicVSR (RB) [5] for very hard inputs.
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(a) Input (b) RE (c) RB (d) Ours

Fig. 9: Qualitative comparisons on real-world datasets. Our method produces less high-
frequency artifacts and overshoot effects than RealESRGAN [34] and RealBasicVSR [5].

Qualitative Results. We show qualitative comparisons on synthetic (see Fig. 8)
and real-world (see Fig. 9) datasets. Compared to the listed methods, RealVi-
former generates clear structures with much fewer high-frequency artifacts. More
visual comparisons are in Supplementary B.5.
User Study. We also performed a user study and asked 30 evaluators on Ama-
zon MTurk to score reconstructions for 85 frames sampled from datasets Vide-
oLQ [5], RealVSR [37], REDS4 [27] and UDM10 [38]. Each worker saw five HR
results of the same frame and rated them based on the visual quality, from 1 (the
worst) to 5 (the best); as shown in Fig. 10, our method surpasses BSRGAN [40],
Real-ESRGAN [34], RealSR [17], and RealBasicVSR [5].

Fig. 10: User study results from
30 evaluators on 85 frames. Our
method achieves the best among
all five methods regrading mean
option scores (MOS).

Table 3: Ablations of CAF and ICA modules.
Channel-attention baseline (ch-baseline) performs
better than the spatial-attention baseline (sp-
baseline). The CAF module improves the perfor-
mances for both datasets, and ICA further im-
proves the performances to the state-of-the-art.

Method CAF ICA VideoLQ UDM10
NRQM↑ LPIPS↓

Sp-baseline - - 6.061 0.3482
Ch-baseline % % 6.181 0.3085

RealViformer− ! % 6.196 0.2933
RealViformer ! ! 6.338 0.2877

Ablation Studies. We conduct ablations to validate the advantage of channel
attention and the efficacy of the CAF and ICA. We build a spatial-attention
baseline (sp-baseline) by replacing the reconstruction module of BasicVSR [3]
with SwinIR [21]. Channel-attention baseline (ch-baseline) is built with the same
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(a) Visual comparison (b) RPS

Fig. 11: (a) Visual comparison between RealViformer and its ablations. Red circles
highlight the improved details. (b) Radial Power Spectrum (RPS) of model predictions.
Using ICA improves the power of high-frequency components (blue region).

overall architecture as RealViformer but replaces CAF with simple concatena-
tion and substitutes ICA with the channel attention block in Restormer [39].
RealViformer− applies CAF on ch-baseline. All models are trained with the
same settings in Sec. 4.4. We report NRQM scores for the VideoLQ [5] dataset
and LPIPS scores for the UDM10 [38] da aset. As shown in Tab. 3, using the
original channel attention module, ch-baseline already yields better performances
than sp-baseline. The CAF and ICA modules further improve RealViformer to
state-of-the-art performance with channel correlation of propagated information
decreasing from 0.436 to 0.422. Fig. 11a visually compares RealViformer with its
ablations. Applying CAF reduces artifacts, while ICA provides further improve-
ments. Fig. 11b supplements the Radial Power Spectrum of model predictions.
The blur region shows ICA increases the power in the high-frequency region.

5 Conclusion

This paper proposes a real-world VSR model, RealViformer, based on findings
from investigating channel and spatial attention in a real-world setting. Explo-
rations reveal that channel attention is less sensitive to the artifacts in query and
better serves as a temporal aggregation module to limit model-produced arti-
facts in hidden states. Additionally, we observe the higher covariance of channel
attention outputs and propose the Improved Channel Attention (ICA) Module
with a squeeze-and-excite and a covariance-based rescaling mechanism. Based on
our findings, we build RealViformer, a channel-attention-based recurrent model
for real-world VSR. We propose the CAF module to limit artifact propagation
and use the ICA module to achieve better reconstructions. RealViformer per-
forms state-of-the-art on two real-world video datasets with fewer parameters
and shorter runtime. On the other hand, we value our findings w.r.t. compar-
isons between channel and spatial attention and exploration of covariance in
channel attention as inspiration for further real-world VSR research.

Acknowledgement This research is supported by the National Research Foun-
dation, Singapore under its NRF Fellowship for AI (NRF-NRFFAI1-2019-0001).



RealViformer 15

Any opinions, findings and conclusions or recommendations expressed in this
material are those of the author(s) and do not reflect the views of National
Research Foundation, Singapore.

References

1. Bardes, A., Ponce, J., LeCun, Y.: Vicreg: Variance-invariance-covariance regular-
ization for self-supervised learning. arXiv preprint arXiv:2105.04906 (2021)

2. Cao, J., Li, Y., Zhang, K., Van Gool, L.: Video super-resolution transformer. arXiv
preprint arXiv:2106.06847 (2021)

3. Chan, K.C., Wang, X., Yu, K., Dong, C., Loy, C.C.: Basicvsr: The search for
essential components in video super-resolution and beyond. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 4947–
4956 (2021)

4. Chan, K.C., Zhou, S., Xu, X., Loy, C.C.: Basicvsr++: Improving video super-
resolution with enhanced propagation and alignment. In: Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. pp. 5972–5981
(2022)

5. Chan, K.C., Zhou, S., Xu, X., Loy, C.C.: Investigating tradeoffs in real-world video
super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition. pp. 5962–5971 (2022)

6. Chen, H., Wang, Y., Guo, T., Xu, C., Deng, Y., Liu, Z., Ma, S., Xu, C., Xu, C., Gao,
W.: Pre-trained image processing transformer. In: Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. pp. 12299–12310 (2021)

7. Chen, X., Wang, X., Zhou, J., Qiao, Y., Dong, C.: Activating more pixels in image
super-resolution transformer. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 22367–22377 (2023)

8. Cogswell, M., Ahmed, F., Girshick, R., Zitnick, L., Batra, D.: Reducing overfitting
in deep networks by decorrelating representations. arXiv preprint arXiv:1511.06068
(2015)

9. Dai, T., Cai, J., Zhang, Y., Xia, S.T., Zhang, L.: Second-order attention network
for single image super-resolution. In: Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. pp. 11065–11074 (2019)

10. Fuoli, D., Gu, S., Timofte, R.: Efficient video super-resolution through recurrent
latent space propagation. In: 2019 IEEE/CVF International Conference on Com-
puter Vision Workshop (ICCVW). pp. 3476–3485. IEEE (2019)

11. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., Bengio, Y.: Generative adversarial networks. Communications of the
ACM 63(11), 139–144 (2020)

12. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the
IEEE conference on computer vision and pattern recognition. pp. 7132–7141 (2018)

13. Hua, T., Wang, W., Xue, Z., Ren, S., Wang, Y., Zhao, H.: On feature decorrela-
tion in self-supervised learning. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision. pp. 9598–9608 (2021)

14. Huang, Y., Li, S., Wang, L., Tan, T., et al.: Unfolding the alternating optimization
for blind super resolution. Advances in Neural Information Processing Systems 33,
5632–5643 (2020)



16 Y. Zhang and A. Yao

15. Isobe, T., Jia, X., Gu, S., Li, S., Wang, S., Tian, Q.: Video super-resolution with
recurrent structure-detail network. In: Computer Vision–ECCV 2020: 16th Euro-
pean Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XII 16. pp.
645–660. Springer (2020)

16. Jeelani, M., Cheema, N., Illgner-Fehns, K., Slusallek, P., Jaiswal, S., et al.: Expand-
ing synthetic real-world degradations for blind video super resolution. In: Proceed-
ings of the IEEE/CVF conference on computer vision and pattern recognition. pp.
1199–1208 (2023)

17. Ji, X., Cao, Y., Tai, Y., Wang, C., Li, J., Huang, F.: Real-world super-resolution via
kernel estimation and noise injection. In: proceedings of the IEEE/CVF conference
on computer vision and pattern recognition workshops. pp. 466–467 (2020)

18. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and
super-resolution. In: Computer Vision–ECCV 2016: 14th European Conference,
Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part II 14. pp.
694–711. Springer (2016)

19. Lai, W.S., Huang, J.B., Ahuja, N., Yang, M.H.: Fast and accurate image super-
resolution with deep laplacian pyramid networks. IEEE transactions on pattern
analysis and machine intelligence 41(11), 2599–2613 (2018)

20. Liang, J., Cao, J., Fan, Y., Zhang, K., Ranjan, R., Li, Y., Timofte, R., Van Gool,
L.: Vrt: A video restoration transformer. arXiv preprint arXiv:2201.12288 (2022)

21. Liang, J., Cao, J., Sun, G., Zhang, K., Van Gool, L., Timofte, R.: Swinir: Image
restoration using swin transformer. In: Proceedings of the IEEE/CVF international
conference on computer vision. pp. 1833–1844 (2021)

22. Liang, J., Fan, Y., Xiang, X., Ranjan, R., Ilg, E., Green, S., Cao, J., Zhang, K.,
Timofte, R., Gool, L.V.: Recurrent video restoration transformer with guided de-
formable attention. Advances in Neural Information Processing Systems 35, 378–
393 (2022)

23. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin
transformer: Hierarchical vision transformer using shifted windows. In: Proceedings
of the IEEE/CVF international conference on computer vision. pp. 10012–10022
(2021)

24. Ma, C., Yang, C.Y., Yang, X., Yang, M.H.: Learning a no-reference quality metric
for single-image super-resolution. Computer Vision and Image Understanding 158,
1–16 (2017)

25. Mei, Y., Fan, Y., Zhou, Y.: Image super-resolution with non-local sparse attention.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 3517–3526 (2021)

26. Mittal, A., Soundararajan, R., Bovik, A.C.: Making a “completely blind” image
quality analyzer. IEEE Signal processing letters 20(3), 209–212 (2012)

27. Nah, S., Baik, S., Hong, S., Moon, G., Son, S., Timofte, R., Mu Lee, K.: Ntire 2019
challenge on video deblurring and super-resolution: Dataset and study. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops. pp. 0–0 (2019)

28. Pan, J., Bai, H., Dong, J., Zhang, J., Tang, J.: Deep blind video super-resolution.
In: Proceedings of the IEEE/CVF International Conference on Computer Vision.
pp. 4811–4820 (2021)

29. Ranjan, A., Black, M.J.: Optical flow estimation using a spatial pyramid network.
In: Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 4161–4170 (2017)

30. Shi, S., Gu, J., Xie, L., Wang, X., Yang, Y., Dong, C.: Rethinking alignment in
video super-resolution transformers. arXiv preprint arXiv:2207.08494 (2022)



RealViformer 17

31. Song, Y., Wang, M., Yang, Z., Xian, X., Shi, Y.: Negvsr: Augmenting negatives for
generalized noise modeling in real-world video super-resolution. In: Proceedings of
the AAAI Conference on Artificial Intelligence. vol. 38, pp. 10705–10713 (2024)

32. Wang, H., Chen, X., Ni, B., Liu, Y., Liu, J.: Omni aggregation networks for
lightweight image super-resolution. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 22378–22387 (2023)

33. Wang, X., Chan, K.C., Yu, K., Dong, C., Change Loy, C.: Edvr: Video restora-
tion with enhanced deformable convolutional networks. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops.
pp. 0–0 (2019)

34. Wang, X., Xie, L., Dong, C., Shan, Y.: Real-esrgan: Training real-world blind
super-resolution with pure synthetic data. In: Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision. pp. 1905–1914 (2021)

35. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment:
from error visibility to structural similarity. IEEE transactions on image processing
13(4), 600–612 (2004)

36. Xie, L., Wang, X., Shi, S., Gu, J., Dong, C., Shan, Y.: Mitigating artifacts in
real-world video super-resolution models. arXiv preprint arXiv:2212.07339 (2022)

37. Yang, X., Xiang, W., Zeng, H., Zhang, L.: Real-world video super-resolution: A
benchmark dataset and a decomposition based learning scheme. In: Proceedings
of the IEEE/CVF International Conference on Computer Vision. pp. 4781–4790
(2021)

38. Yi, P., Wang, Z., Jiang, K., Jiang, J., Ma, J.: Progressive fusion video super-
resolution network via exploiting non-local spatio-temporal correlations. In: Pro-
ceedings of the IEEE/CVF international conference on computer vision. pp. 3106–
3115 (2019)

39. Zamir, S.W., Arora, A., Khan, S., Hayat, M., Khan, F.S., Yang, M.H.: Restormer:
Efficient transformer for high-resolution image restoration. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 5728–
5739 (2022)

40. Zhang, K., Liang, J., Van Gool, L., Timofte, R.: Designing a practical degradation
model for deep blind image super-resolution. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision. pp. 4791–4800 (2021)

41. Zhang, L., Zhang, L., Bovik, A.C.: A feature-enriched completely blind image qual-
ity evaluator. IEEE Transactions on Image Processing 24(8), 2579–2591 (2015)

42. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable
effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. pp. 586–595 (2018)

43. Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using
very deep residual channel attention networks. In: Proceedings of the European
conference on computer vision (ECCV). pp. 286–301 (2018)


	RealViformer: Investigating Attention for Real-World Video Super-Resolution

