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The supplementary features the following sections:

— Training details in Sec. [A]
Details of low-level characteristics change in Sec. [B]
— Comparison with StableSR in Sec.[C]
Supplemental ablations in Sec.
e Sec. Perception-distortion trade-off related to Rinirq and Rinter-
e Sec. [D.B} Influence of degradation for synthesizing labeled data.
e Scc. Importance of Gram Matrix in R;pter-
e Sec. [D.d} Rationale for using VGG features for distance calculation.
Details of color correction in Sec. [El
— Visual comparisons in Sec. [F}
Limitations in Sec.

A Training Detalils

Balance of Loss Terms. Here, we specify the weights of terms in Eq. (10),
Eq. (11) and Eq. (12) in the main paper. The weights a;_3 in Eq. (10) are to
balance the objectives in supervised training for labeled data, {w;}i=0,1,2,3 in
Eq. (11) are for balancing the focus of ¢; loss on wavelet channels {LL,HL,LH HH}
accordingly, and A\;_3 of Eq. (12) balance the optimization aims in unsupervised
training. The values of ay_3 and {w;}i=0,1,2,3 are shown in Tab. 4] and we use
Az = 0.01 in Eq. (12). The discussion of A;_5 is in Sec.

Table 4: Weights (a1—3) of loss terms in Eq. (10) and weights (Ao—3) for wavelet
channels in Eq. (11). We use the same weight 0.1 for channel {HL,LH}.

a1 || a3 |Wo |Wi—2| w3

Value|0.5]1.0/0.01{1.0| 0.1 [0.001

Choice of VGG19 feature layers. In the main paper, we use VGG19 to
extract feature maps from output high-resolution images for the calculation of
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Rintra and Riper in Eq. (6) and Eq. (8). In Tab. [5| we provide the choices of @;;
and in two equations the weights of them. We use multi-level features to capture
more comprehensive representations. We choose slightly deeper feature maps for
Rinira than R;pier to focus more on content-related information.

Table 5: Choices of VGG19 feature layers for distance calculation of Rintre and Rinter
and layer weights respectively.

Rintra |conv2_ 2 conv3 4 conv4d 4 convb 4
Weights| 0.1 0.3 1.0 1.0
Rinter |conv2_ 1 conv3 1conv4d 1convd 1
Weights| 0.25 0.25 0.25 0.25

Others. The EMA implementation of our method requires a warm-up process
to create an initial difference between the generalist and specialist predictions
before optimizing for R;,¢rq and Ripter. As such, the model is first trained with
the supervised loss in Eq. (10) only for k iterations. For all experiments in the
main paper, we set k = 5.

Computation cost. All methods in the main paper are trained with two RTX
A5000 GPUs. The Naive Distillation (ND) requires ~11 hours for training and
the EMA version of our method requires ~14 hours respectively. Our method,
as a learning framework, does not affect inference speed. The inference time
depends on the chosen model.

B Low-Level Characteristics Change

We note that visualizations and KL Divergence are tools to provide evidence for
closer low-level characteristics rather than evaluate the model performance.

Fig. 5 of the main paper visualizes distributions of low-level characteristics
following |[3]. Specifically, we exact feature maps represented by an SRGAN [2]
model pretrained with bicubic-interpolated data. Such feature maps are called
Deep Degradation Representations in 3], which contain indicative information
for low-level characteristics such as blurriness or sharpness. In our paper, we call
them low-level features to avoid ambiguous reuse of the word "degradation". For
visualization, we split low-level features into 50 x50 patches and project flattened
patch features to 50-dimensional vectors through PCA. We further visualize the
projected features in the 2D plane through t-SNE.

As stated in [3], visualization is far from perfect. When real-world and syn-
thetic datasets have very different spatial layouts, it is hard to exhibit mean-
ingful distribution shifts of low-level characteristics through visualization. Thus,
we calculate the KL Divergence between low-level features to show how the dif-
ference between distributions changes quantitatively. Fig.6 in the main paper
shows the effect of our EMA version. The specialist Mg is initialized with gen-
eralized RealESRGAN and gets specialization for bicubic interpolation through
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supervised training on labeled synthetic data. We use unlabeled real-world pre-
dictions from pretrained Mg and Mg after adaptation. We use labeled synthetic
predictions from adapted Mg, featuring high image quality. We calculate the
KL Divergence between the labeled and unlabeled predictions before or after
adaptation. The extraction of low-level features follows the same procedure as
in Fig.5.

In Fig. [I0] we supplement the KL Divergence comparisons for the static
version of our method, which also shows a closer distribution after adaptation.

50 le-8 KL Divergence

45 I Before I After

v

4.0

35

3.0

25

’ “, VNS

(a) LR (b) StableSR (c) Ours

2.0

15

1.0
Canon NTIRE20 P11 Nikon  Pana*

Fig.10: KL Divergence change
brought by the static version of our
method. The KL Divergence decreases

after applying our method (red bars). Fig. 11: Visual comparison to StableSR.

C Comparison with StableSR

Tab. 2 in the main paper lists the existing state-of-the-art methods that are able
for direct comparisons. Here we compare with StableSR , a recent diffusion
model for RWSR. We did not include StableSR. in the main paper for two reasons:

1. StableSR uses a much higher number of parameters than our model (152.7M
versus 16.7M). The significantly larger model capacity makes the comparison
unfair;

2. The testing settings in the paper of StableSR require a restricted input size,
which is different from the standard settings we follow in the main paper.

We test StableSR on the RealSR dataset following the standard testing set-
tings. We follow the official testing scripﬂ to make predictions for full input
images with arbitrary spatial size. As shown in Tab. [ we offer evaluation met-
rics used in Tab. 2 together with that in the StableSR paper. Our methods
achieve competitive performances despite a nearly ten times lighter model size,

3 https://github.com/IceClear /StableSR
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outscoring StableSR in four out of six evaluation metrics. Comparing visually,
our method predicts fewer hallucinations and clearer borders, as shown in Fig.

Besides, we emphasize that our method provides a novel learning perspective
for unsupervised RWSR instead of designing new model architectures, such as
diffusion-based models.

Table 6: Quantitative comparison with StableSR following standard test settings. The
best scores are bold. Our method scores better on four of six metrics for each tested
dataset.

Dataset Canon

Metrics |[PSNR1 SSIM1T LPIPS| NRQM?T CLIP-IQA1T MUSIQ?T

StableSR| 24.84 0.7584 0.2431 5.8396 0.6181 61.75
Ours | 26.13 0.7626 0.2517 6.1323 0.5532 62.67

Dataset Nikon

Metrics |[PSNR1 SSIM1T LPIPS| NRQM?T CLIP-IQAT MUSIQ?T

StableSR| 24.9 0.7376 0.2742 5.5872 0.6155 57.94
Ours | 25.07 0.7294 0.2713 6.1276 0.5739 61.18

D Supplemental Ablations

D.a Perception-Fidelity Trade-Off

Ablation in Sec. 4.4 of the main paper shows the different preferences of R;ntrq
and R, towards fidelity and perceptual quality, where we experiment on the
EMA version of our method. Tab. [7] complements corresponding experiments
on the static version of our method. We have similar observations as the EMA
version experiments, where using one of R;ptrq O Ripter only yields high scores
regarding fidelity (PSNR) or perception (NRQM). We further show visual exam-
ples in Fig. where using both R;pier and R;p4rq can produce sharper patterns
without artifacts.

Table 7: Ablation of R;nire and Rinter on static version of our method. The best and
second best results are bolded and underlined.

Canon NTIRE20
Mth| Rintra Rinter | 5oxpm NRQM |PSNR NRQM
a. v 26.47 5.0157 |25.89 5.8333
b. v/ |24.81 6.3381|25.16 6.4379
Ows| v/ v |25.92 5.8479 |25.89 6.2762
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Fig. 12: Visual examples for methods in Tab. Iﬂ Using Rinter only yields artifact points,
while Rinirq only produce blurry patterns.

As we mentioned in the main paper, the ratio of weights for R;p;q and Ripnger,
represented as ra = \1/)\g, relates to a trade-off between fidelity and percep-
tual quality of the trained model, where A o are weights from Eq. (12). Fig.
demonstrates examples of this trade-off phenomenon. With increasing propor-
tion of Riptre (ra = 0.1 to ra = 1), the perceptual score (NRQM) decreases
while the fidelity score (PSNR) increases.
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Fig. 13: Perception-fidelity trade-off experimented on the EMA version of our method,
taking BSRGAN as the pre-trained model.

D.b Synthetic Degradation of XT

Synthetic degradation of X* is set to bicubic interpolation in the main paper,
which is simple and excludes other degradations suspected to overlap with the
degradation of unlabeled data. We explore the method’s sensitivity to synthetic
operation and substitute the bicubic interpolation by randomly selecting the
downsampling kernel from bilinear, area, and bicubic with equal probability. As
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shown in Tab. 8] changing the synthetic degradation to more complex interpola-
tions will not eliminate the improvements over the pretrained generalist model
brought by our method, while extending the type of synthetic degradations does
slightly decrease the overall performance. Our method uses the high-quality pre-
dictions of synthetic data as references. We speculate that using inputs with
more complex synthetic degradation will increase the difficulty of learning high-
quality predictions. Thus, we finally choose degradation in {X*} to be a simple
bicubic interpolation.

Table 8: Ablation of synthetic process for { X*}. Comb. represents a random selection
from a combination of {bicubic, area, bilnear}. The best and second best scores are
bolded and underlined.

Lot Canon NTIRE20 P11
¢ PSNR NRQM |PSNR NRQM |[PSNR NRQM
Bicubic |25.94 6.0647 |26.42 6.2263|27.40 5.3722
Comp. [25.98 5.9655|25.97 6.1987|27.32 5.3720
Generalist| 24.74 6.0649| 25.08 6.1213 | 26.73 5.2530

D.c Designs in R;pter

We provide ablation on the Gram Matrix in distance calculation for R;,;.,. Here,
we skip the Gram Matrix and use the ¢; differences between features as distances
to enforce consistency. As shown in the last column of Tab. [9] skipping Gram
Matrix yields a significant performance drop.

Table 9: Ablation on Rinter: Method £1 skips Gram Matrix calculation. Ablation on
VGG: Alex. replaces VGG with AlexNet.

‘ Ours ‘ 2 Alex.
PSNR 1| 26.42 | 25.72 24.73
LPIPS ||0.2475|0.2683 0.2882

D.d Rationale of Using VGG Feature

As explained in Sec. 3.3 in the main paper, we choose VGG feature space for
distance calculation because of its ability to capture not only semantic but also
low-level characteristics. Besides, its wide use in perceptual loss promises that
VGG representations are suitable for optimizing SR models. Thus, we project
predictions into the VGG feature space to enforce the consistency relationships.
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Fig. is a schematic diagram exhibiting relationships between model predic-
tions in the VGG feature space. Regardless of input degradation, the low-level
characteristics of predictions from the generalist are similar, and we make the
same assumption for the specialist model; In contrast, the low-level characteris-
tics of predictions from different models differ.

VGG Feature Space

/ Unlabeled Real-Word Data

Semantic / Labeled Synthetic Data

Fig. 14: Schematic diagram of the relationships between specialist and generalist pre-
dictions. Predictions from the same model have similar low-level characteristics re-
gardless of the input degradation; predictions from different models differ in low-level
characteristics. The diagram is for explanation and does not represent the true feature
space.

Here, we further demonstrate the rationality of using VGG features by com-
paring them with two alternations. First, we exploit the low-level features used
for exhibiting changes in low-level characteristics. As explained in Sec. pre-
trained SRGAN extracts representations named low-level features in this paper.
These features focus on low-level characteristics and produce indicative visual-
izations in a low-dimensional embedding space [3]. However, being effective for
visualization does not ensure they are suitable for optimizing an SR model.

If the low-level features are ideal representations of low-level characteristics
for optimization, then enforcing similarity between such features of real-world
and synthetic predictions from the specialist Mg should close their low-level
characteristics and improve the quality of real-world predictions. In our prelim-
inary experiments, we extracted low-level features from model predictions and
passed them through the Gram Matrix to obtain features for optimization. We
minimized the difference between the above features of real-world and synthetic
predictions from Mg, along with the supervised loss £, on labeled predictions.
The loss functions are as follows:

Luy= ||Gram(Fsrgan(Yé])> - Gram(Fsrgan(Yé))||f +Lr, (12)
where Fgygqn refers to the model for extracting low-level features and || - ||

represents Frobenius norm. However, it is observed that this optimization led
to collapsed model predictions during experimentation. As a result, collecting
representations of low-level characteristics for optimization is a non-trivial task,
and we plan to consider it as a future work.
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Second, we tried an alternative classification model, Alexnet , to explore
whether features from an arbitrary classification model can serve our optimiza-
tion. However, replacing VGG with Alexnet cannot achieve competitive perfor-
mance, as shown in Tab.[0] We speculate that the architecture and depth of the
classification network will affect the features’ compatibility with the optimiza-
tion process. As VGG is commonly used in the SR context, we use it directly in
the main paper.

E Color Correction

We rectify the color of output images by normalizing the mean and variance
of each color channel with those of the corresponding input channels. For the
RGB format HR prediction }A’S{J of LR input XY, the kth color channel 175? [k] is
corrected as follows:

o

D oxtk
o (Yg [K] e

+ (XY [K]), (13

~—
~

)}U[k] ng[k] _:U(AU[
)

where 1(+) and o(+) computes mean and standard deviation of the color channels.

e
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Fig.15: Visual comparisons with state-of-the-art methods on RealSR-Canon and
RealSR-Nikon datasets.
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F Visual Comparison

Visual Comparisons with SOTAs are provided in Fig. [[5] Our method pro-
duces clear patterns with fewer artifacts.

G Limitation

As discussed in Sec. [D-a] the preference of models trained by our method is
related to weights for R;,¢rq and Rinter, which are hyperparameters need tun-
ing. The balanced ratios can differ for different pre-trained models and differ-
ent datasets. Although tuning for the balance weights is feasible, an automatic
balance of the two regularizers through a certain training algorithm is more
convenient. We leave it to future work.
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