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Abstract. With the development of neural radiance fields and gener-
ative models, numerous methods have been proposed for learning 3D
human generation from 2D images. These methods allow control over
the pose of the generated 3D human and enable rendering from different
viewpoints. However, none of these methods explore semantic disentan-
glement in human image synthesis, i.e., they can not disentangle the
generation of different semantic parts, such as the body, tops, and bot-
toms. Furthermore, existing methods are limited to synthesize images at
5122 resolution due to the high computational cost of neural radiance
fields. To address these limitations, we introduce SemanticHuman-HD,
the first method to achieve semantic disentangled human image synthe-
sis. Notably, SemanticHuman-HD is also the first method to achieve 3D-
aware image synthesis at 10242 resolution, benefiting from our proposed
3D-aware super-resolution module. By leveraging the depth maps and
semantic masks as guidance for the 3D-aware super-resolution, we sig-
nificantly reduce the number of sampling points during volume rendering,
thereby reducing the computational cost. Our comparative experiments
demonstrate the superiority of our method. The effectiveness of each pro-
posed component is also verified through ablation studies. Moreover, our
method opens up exciting possibilities for various applications, including
3D garment generation, semantic-aware image synthesis, controllable im-
age synthesis, and out-of-distribution image synthesis. Our project page
is at https://pengzheng0707.github.io/SemanticHuman-HD/

Keywords: Generative models · 3D-aware human image synthesis ·
Compositional image synthesis

1 Introduction

Human image synthesis plays a crucial role in the field of artificial intelligence.
This area holds significant potential for applications in virtual reality, virtual
try-on, video games, and more. Traditional 2D generative models can only syn-
thesize single-view images. On the other hand, recent advancements, such as
the development of the neural radiance field (NeRF) [35], have led to a surge
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(a) Semantic-Aware Virtual Try-On (b) Synthesized Results

Fig. 1: (a) Semantic-aware virtual try-on. Given a real image, we first employ GAN
inversion to obtain its semantic latent code. Subsequently, we replace the top and
bottom garment by manipulating the semantic latent code. Here, the top is randomly
generated by our model, and the bottom is disentangled from another GAN inversion
result. (b) Controllable image synthesis. Our method allows for generating the same
person in different poses as well as rendering them from different viewpoints.

of interest in 3D-aware image synthesis. These methods [5, 37, 52] allow precise
control over the viewpoint of synthesized images. While many 3D generative
models [5,22,33,37,42,43] focus primarily on portrait synthesis, there is a grow-
ing body of work dedicated to full-body human image synthesis. However, none
of the existing human image synthesis models fully address semantic disentan-
glement during generation.

To achieve semantic disentanglement, some methods [33,60] employ K local
3D generators to model K NeRFs. Each NeRF corresponds to a specific seman-
tic part in the synthesized image. In the case of CNeRF [33], each generator
outputs the color, density and semantic value for a sampled point. The colors
outputted by each generator are then weighted and summed, with the weights
corresponding to semantic values. While this approach successfully disentangles
colors, the geometry of different semantic parts remains entangled. This limita-
tion arises because the densities output by each generator are simply summed.
In contrast, 3D-SSGAN [31] effectively disentangles both texture and geometry.
However, it maps 2D feature maps into 3D space, limiting its ability to model
complex geometric structures such as full-body humans. Furthermore, the meth-
ods mentioned above are specifically designed for portrait synthesis and cannot
be naively applied to full-body image synthesis. This limitation arises due to
the intricate poses and geometries inherent in the human body. As for full-body
image synthesis, AttriHuman-3D [54] proposes a framework for semantic-aware
human image synthesis, in which decomposed feature planes corresponding to
distinct semantic parts are generated using a single 2D generator. While such
design of using one generator to generate all semantic parts makes AttriHuman-
3D more efficient than previous methods [33,60], entanglement between different
semantic parts still exist from their results.
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On the other hand, synthesizing high-resolution images using NeRF-based
methods [35] poses challenges such as high computational cost, each pixel re-
quires sampling numerous points for the accurate integration of colors. Some
works [12,31,33,57] employ a super-resolution module to circumvent direct ren-
dering of high-resolution images. However, this strategy might impact the 3D
consistency. Other works [1, 8, 19] propose more efficient way to render high-
resolution (5122) images without a super-resolution module. Nevertheless, this
resolution may still not satisfy the demands of users, e.g., the need of 10242

images.
To address these issues, we propose SemanticHuman-HD, a novel method for

high-resolution human image synthesis with semantic disentanglement. Unlike
previous methods, our method generates each semantic part in a completely in-
dependent way. Specifically, we propose a two-stage training process. In the first
stage, we synthesize human images, depth maps, semantic masks, and normal
maps at 2562 resolution. In the second stage, we employ a novel 3D-aware super-
resolution module to synthesize 10242 resolution images. This module leverages
the depth map and semantic mask synthesized in the first stage as guidance,
significantly reducing the computational cost in volume rendering. To demon-
strate the superiority of our method, we conduct quantitative and qualitative
comparison experiments with state-of-the-art (SOTA) methods. Meanwhile, the
effectiveness of each component proposed in this paper is verified in the ablation
studies. In summary, our contributions are as follows:

1. We propose SemanticHuman-HD, the first method to achieve semantic disen-
tanglement in 3D-aware human image synthesis. In our method, the under-
lying representation of each part is independent from other parts, leading to
exciting applications such as 3D garment generation, semantic-aware virtual
try-on, garment-level image editing and out-of-distribution image synthesis.

2. Leveraging our 3D-aware super-resolution module, SemanticHuman-HD at-
tains 10242 resolution image synthesis. Importantly, our proposed super-
resolution module preserves 3D consistency throughout the synthesis.

3. Comparing to SOTA human image synthesis methods, our SemanticHuman-
HD demonstrates clear superiority in both quantitative measures (e.g., FID)
and qualitative evaluation.

2 Related Work

2.1 3D-Aware Image Synthesis

Generative adversarial networks (GANs) [25–27] have demonstrated impressive
results on image synthesis tasks. While certain GAN-based methods [39, 44]
achieve pose control in image synthesis, they suffer from a lack of 3D-consistency
due to their reliance on 2D feature representations. The advent of neural radiance
fields (NeRF) [2,35,36,46,56] have opened the door to learn 3D-aware image syn-
thesis from 2D image datasets. Numerous works [5,6,14,16,17,37,40,51,52] com-
bine NeRF with GAN to achieve 3D-aware image synthesis. Notably, EG3D [5]
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proposed a tri-plane representation as an efficient alternative to the compu-
tationally expensive point-based MLP. Beyond GAN-based generative models,
diffusion models have gained prominence in recent years. Several diffusion model-
based 3D-aware image synthesis methods [7, 21, 30, 34, 38, 47, 50] have emerged.
However, these methods either are general models or only focus on portrait syn-
thesis, making them incapable of synthesizing high quality human images.

2.2 3D-Aware Human Image Synthesis

3D-aware human image synthesis faces significant challenges, primarily because
humans exhibit articulation and appear in diverse poses and clothing. gDNA [49]
introduces a multi-subject forward skinning module for 3D human generation
supervised by human scans. Some works [13,15,23,53,55,57,59] leverage human
prior [4] and NeRF [35] to learn 3D-aware human image synthesis from 2D image
datasets. AG3D [12] proposes to model the deformation of loose clothing using
Fast-SNARF [9]. Additionally, it introduces a normal discriminator to improve
geometric details in the generated results. EVA3D [19] adopts a compositional
human NeRF representation for high-resolution (5122) 3D-aware human image
synthesis, all without relying on super-resolution modules. By leveraging vertex-
based radiance fields, VeRi3D [8] allows local editing of generated results by
replacing features at specified vertices. GSM [1] is an efficient framework for 3D
human generation, which employs Gaussian shell maps to model feature volumes.
Similar to VeRi3D, GSM also achieves local editing by a similar way. While some
methods [20, 24, 28, 45] focus on 3D human generation using diffusion models,
they struggle to synthesize photorealistic images due to limitations inherent in
the diffusion model. Notably, none of these methods explore semantic-aware
image synthesis. i.e., they cannot edit specific semantic parts of synthesized
images while keeping other regions unchanged.

2.3 Semantic-Aware Image Synthesis

Some methods [10,11,22,29,31,33,41–43,60] explore semantic-aware image syn-
thesis, supervised by semantic masks. To translate a single-view semantic mask
into a NeRF, Sem2NeRF [10] encodes the mask into latent code, controlling
the 3D scene representation of a pre-trained decoder. Unlike Sem2NeRF, which
requires a semantic mask as input, NeRFaceEditing [22] and IDE-3D [42] aim
to achieve 3D-aware paired semantic mask and image synthesis by learning a
semantic mask volume. Specifically for human image synthesis, 3D-SGAN [58]
proposes a semantic-guided architecture comprising two generators: one for 3D-
aware semantic mask synthesis and the other for translating the semantic mask
into the corresponding image. Nevertheless, in these methods, different semantic
parts are entangled during synthesis.

Several methods [31, 33, 41] have explored semantic disentangled synthesis.
SemanticStyleGAN [41] uses K local generators to generate K semantic parts
in synthesized image. These generators are supervised by paired portraits and
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semantic masks. The design of K local generators ensures semantic disentangle-
ment, enabling shape and texture changes in specific semantic regions while pre-
serving others. CNeRF [33] and LC-NeRF [60] extend SemanticStyleGAN into
the realm of 3D-aware image synthesis by learning compositional NeRFs. 3D-
SSGAN [31] lifts the 2D generator into 3D space for efficiency and stronger disen-
tanglement. Unfortunately, the aforementioned semantic disentangled methods
can only be used in portrait synthesis due to the complexities of human poses.

For human image synthesis, both VeRi3D [8] and GSM [1] can achieve coarse-
grained disentanglement during inference, as their features are closely tied to
SMPL [4] vertices, although these vertices do not align with semantic masks.
On the other hand, AttriHuman-3D [54] achieves semantic-aware human image
synthesis, but it relies on a single generator to produce all semantic parts, lacking
true semantic disentanglement. In summary, no existing method achieves 3D-
aware human image synthesis with full semantic disentanglement. Furthermore,
all these methods, whether utilizing the super-resolution module or not, can only
synthesize 5122 resolution images. In contrast, our proposed method achieves 3D-
aware human image synthesis by independently generating each semantic part.
Additionally, we introduce a 3D-aware super-resolution module, enabling the
synthesis of 10242 resolution images.

3 Method

The overview of our method is depicted in Fig. 2, and it comprises two stages.
In the first stage, given the human pose P and semantic label Ls, each gener-
ator Gk generates a tri-plane representation, which models one semantic part.
The K tri-plane representations are further rendered into a 2562 resolution im-
age, depth map, semantic mask and normal map using the semantic renderer.
Moving to the second stage, we feed the K tri-plane representations into the
3D-aware super-resolution module. This module enhances the resolution of each
tri-plane representation, resulting in higher-quality outputs. Specifically, these
refined tri-plane representations can be rendered into a 10242 resolution image,
with the depth map and semantic mask serving as guidance. The details of each
component are introduced below.

3.1 Semantic Disentangled Neural Radiance Field

Semantic Mapper: Given random noise z sampled from a Gaussian distribu-
tion, the Semantic Mapper maps it to latent code W , conditioned on human
pose P and semantic label Ls. Here, the pose P corresponds to the parameter
of SMPL [4], while semantic label Ls indicates whether the image contains spe-
cific types of garments, e.g., dress, skirt or hat. The latent code W is further
extended into a semantic latent code W+, where W+ = W 1 ×W 2...×WK and
each W k controls the generation of the kth semantic part. In theory, K can take
any value, but in our method, we set K to 6, corresponding to the body, tops,
outer, bottoms, shoes and accessories, respectively. During training, we enforce
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Fig. 2: Pipeline of SemanticHuman-HD. In stage 1, given random noise z, the Semantic
Mapper maps it to K latent code Wk, conditioned on human pose P and semantic label
Ls. Each local generator Gk then maps Wk into a tri-plane representation T 256

k . For
each pixel in the synthesized image, we sample 72 points in posed space, which are
subsequently deformed into canonical space using the deformer. These sampled points
allow us to interpolate within the tri-plane representation, obtaining color and density
information for each point. Finally, the Semantic Renderer renders the image, depth
map, semantic mask, and normal map at 2562 resolution. In stage 2, we employ a
convolutional network to obtain high-resolution tri-plane representations, denoted as
T 1024
k . To enhance efficiency, we significantly reduce the number of sampling points per

pixel using semantic and depth-guided sampling. Ultimately, we render the image and
normal map at 10242 resolution.

W 1 = W 2... = WK to ensure that different local generators generate consistent
parts. For example, men typically do not wear skirts or dresses. During infer-
ence, simply modifying W k allows us to edit the synthesized image in the kth
semantic part.

Local Generator: Similar to CNeRF [33], we employ K local 3D generators
to model K semantic parts. However, unlike CNeRF, the generation of different
semantic parts in our method are entirely independent. This independence is the
key idea behind disentangling both geometry and texture. Conditioned on pose
P and semantic label Ls, each local generator Gk maps the latent code Wk into
a tri-plane representation. For each sampled point x, we calculate the density
σ(x), color c(x), normal n(x) and semantic value s(x) as follows:

σ(x) =

K∑
k=1

(σ(x)k), c(x) =

K∑
k=1

c(x)k × s(x)k, (1)

s(x) = Concatenate(s(x)1, s(x)2, ..., s(x)K), (2)
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n(x) = ∇x(d(x)
SMPL +

K∑
k=1

∆d(x)k), (3)

s(x)k =
σ(x)k∑K
k=1 σ(x)

k
, σ(x)k = Sigmoid(d(x)SMPL +∆d(x)k). (4)

Here, ∆d(x)k and c(x)k are sampled from kth tri-plane representation, while
d(x)SMPL is sampled from the signed distance field (SDF) of canonical SMPL
model [4]. Notably, as demonstrated in Eq. 4, we initially convert local SDF
∆d(x)k to local density σ(x)k and then sum them to obtain the final density
σ(x). This approach differs from [33, 54, 60], which first sum local SDF ∆d(x)k

to obtain final SDF d(x) and subsequently convert it to density σ(x). This dif-
ference allows us to obtain local density σ(x)k and then map it into semantic
value s(x)k, thereby enabling the disentanglement of geometry across different
semantic parts. For further details on this distinction, please refer to [33,54,60].

Semantic Renderer: Similar to NeRF [35], we cast a ray r for each pixel along
its view direction v from camera center o: r(t) = o+ tv. The color C(r), semantic
mask S(r), depth D(r) and normal N(r) of each ray r can be rendered as follows:

Φ(r) =

∫ tf

tn

T (t) · σ(r(t)) · ϕ(r(t))dt, (5)

D(r) =

∫ tf

tn

T (t) · σ(r(t)) · tdt, (6)

where T (t) = exp(−
∫ t

tn

σ(r(s))ds). (7)

In the equations above, (Φ, ϕ) represents universal symbols, that can correspond
to (C, c), (S, s) or (N, n). For clarity, we intentionally omitted details about
the deformer, so in Eq. 5 and Eq. 6, each point r(t) is actually transformed from
posed space to canonical space. For further information about the deformer,
please refer to AG3D [12].

3.2 3D-Aware Super-Resolution Module

In stage 2, we train a 3D-aware super-resolution module to synthesize 10242

resolution images, building upon the K local generator pre-trained in stage 1.
The core concept behind this module lies in leveraging semantic mask and depth
map synthesized during stage 1 to significantly reduce the number of sampling
points. Theoretically, our method achieves a remarkable reduction, i.e., from 432
to 11, where 432 = 72×6. Here, 72 represents 36 points for uniform sampling and
36 points for importance sampling, while 6 corresponds to the number of local
generators. Even in the general case, without relying on our specialized semantic
disentangled generation, this module can still reduce the sampling points from
72 to 11. The rationale behind this specific number will be explained below.
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Depth-Guided Sampling: Given a 2562 resolution depth image Dorigin, we
perform depth aggregation by considering neighboring pixels for each individual
pixel. Depth aggregation serves the purpose of preventing incorrect depth values
in regions with depth discontinuities when upsampling the depth maps. The
formulation is as follows:

D(x, y, i) =


Dorigin(x+ δix, y + δiy) , i ∈ {1, ..., 9}
Dorigin(x, y) + τ , i ∈ {10}
Dorigin(x, y)− τ , i ∈ {11},

(8)

δix = (i− 1)/3− 1, δiy = (i− 1)%3− 1. (9)
Here, D(x, y, i) represents the ith channel of depth value for pixel (x, y). For i ∈
{1, 2, ..., 9}, D(x, y, i) contains the depths of neighboring pixels. In other cases,
it contains depths sampled around Dorigin(x, y), following Eq. 8. To enhance the
resolution of D, we first sort the aggregated depth values for each pixel and then
upsample them to 10242 resolution.

Semantic-Guided Sampling: In stage 2, we address the computational cost
associated with having K local generators. Since our goal is to increase the
resolution of the synthesized image while preserving its structure, we focus on
the most important semantic part for each pixel. Specifically, we upsample the
semantic mask synthesized by the generator (as described in Eq. 5) to 10242

resolution. By querying the weights of different semantic parts for each pixel
based on the upsampled semantic mask, we can mask out those parts whose
weights fall below the threshold δ.

3.3 Training

Loss Function: In stage 1, a low-resolution discriminator D256, which com-
prises image discriminator Dimage, semantic discriminator Dsemantic, normal
discriminator Dnormal and face discriminator Dface, is employed to train K lo-
cal generators. In stage 2, we freeze the K generators and focus on training the
3D-aware super-resolution module, and only one high-resolution image discrim-
inator D1024 is used in this stage. To ensure consistency between I256 and I1024,
we introduce an upsample loss term: Lupsample = ∥Downsample(I1024) − I256∥.
The loss functions for both stages are as follows:

L1 = L256 + LAG3D, L2 = L1024 + Lupsample + LAG3D, (10)

where L256 and L1024 represent GAN loss for D256 and D1024 respectively. LAG3D

is a loss function adopted from AG3D [12].

Implementation Details: The models are trained on 4 NVIDIA A40 GPUs
for 9 days. The training in stage 1 takes 6 days, and stage 2 takes 3 days.
Additionally, all the experiments mentioned in the paper were also conducted
using the A40. During the training in stage 1, the normal discriminator is used
only for the last 3 days of training.
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4 Experiments

Datasets: The DeepFashion dataset [32] comprises 12,701 pairs of human im-
ages and corresponding semantic masks. For our training and evaluation, we
utilize 8,037 pairs from this dataset. During training, we leverage a pre-trained
model [48] to obtain normal maps, and we convert the semantic masks from
24 categories into 6 simplified categories. For instance, dresses and rompers are
grouped under the broader category of "tops". Additionally, the SMPL [4] pa-
rameters for each image are provided by AG3D [12]. All experiments in this
paper are conducted using the DeepFashion dataset, and all models are trained
on this dataset.

Metrics: We evaluate our method using two key metrics: Frechet Inception Dis-
tance (FID) [18] and Kernel Inception Distance (KID) [3]. These metrics assess
the diversity and quality of synthesized images by measuring their similarity to
real images. Given that different methods yield relatively random results, all FID
and KID scores reported in this paper are based on 50,000 synthesized images
to ensure fair comparison.

Baselines: To demonstrate the superiority of our method, we compare against
several baselines: AG3D [12] is a SOTA method for 3D-aware human image
synthesis. EVA3D [19] and GSM [1] achieve 5122 resolution image synthesis
without a super-resolution module. AttriHuman-3D [54] enables semantic-aware
generation and VeRi3D [8] allows local editing of synthesized images. Other
works [23,53,55,57] have not released their training code or pre-trained models,
so we do not include them in our comparison.

4.1 Comparison

Human Image synthesis: Table 1 presents quantitative comparisons between
our method and several SOTA methods. Our method consistently produces su-
perior image quality at both 5122 and 10242 resolutions. While AG3D [12] ranks
as the second-best method in terms of image quality, it relies on a 2D super-
resolution module, which compromises 3D consistency. EVA3D [19], capable of
synthesizing 5122 resolution images without a super-resolution module, unfortu-
nately suffers from circular artifacts due to its network design. On the other hand,
GSM [1] and VeRi3D [8] allow local editing, but their lack of semantic aware-
ness results in artifacts. AttriHuman-3D [54], while enabling semantic-aware
synthesis, entangles different semantic parts during generation. In summary, our
method uniquely achieves a comprehensive set of capabilities: local editing, se-
mantic disentangled synthesis, and 3D garment generation. Moreover, leveraging
our 3D-aware super-resolution module, we stand out as the sole method capable
of synthesizing 10242 resolution images, as demonstrated qualitatively in Fig. 3.
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Table 1: Quantitative comparisons. ⋆ denotes the use of a super-resolution module
that is not 3D-aware. Some results are marked with ⋇, indicating that these results are
quoted from other papers because the authors did not release their training code or pre-
trained model. A: Local editing. B: Semantic-aware synthesis. C: Semantic disentangled
synthesis. D: 3D Garment generation.

Method A B C D Resolution FID↓ 1000×KID↓

AG3D ✘ ✘ ✘ ✘ 512⋆ 11.33 5.75
EVA3D ✘ ✘ ✘ ✘ 512 15.89 9.25
GSM ✔ ✘ ✘ ✘ 512 15.78⋇ /
VeRi3D ✔ ✘ ✘ ✘ 512 21.4⋇ /
AttriHuman-3D ✔ ✔ ✘ ✘ 512⋆ 16.85⋇ /

SemanticHuman-HD ✔ ✔ ✔ ✔
512
1024

10.04
8.708.708.70

5.02
4.044.044.04

Ours AG3D AttriHuman-3D EVA3D GSM VeRi3D

Fig. 3: Qualitative comparison. To better assess the detailed quality of the generated
results, we zoom in on the face and clothing areas in the synthesized images. Notably,
the image synthesized by our method is at 10242 resolution, whereas the results from
other methods are only at 5122 resolution.

Local Editing: Both AttriHuman-3D [54] and our method exhibit semantic
awareness. However, AttriHuman-3D employs a single generator to generate tri-
plane representations corresponding to different semantic parts. Unfortunately,
this design entangles different semantic parts. Consequently, when editing a spe-
cific semantic part, it may not seamlessly match other regions. GSM [1] and
VeRi3D [8] allow local editing by manipulating features of specified vertices.
Although SMPL [4] provides category labels for these vertices, the resulting ed-
its lack semantic awareness, leading to suboptimal image quality. A comparison
of the editing capabilities across different methods is illustrated in Fig. 4. For
additional evidence of semantic disentangled synthesis, refer to Fig. 5.

Computational Efficiency: Our proposed super-resolution module signifi-
cantly reduces the number of required sampling points, thereby minimizing com-
putational costs. Comparative experiments on computational resources, specif-
ically GPU memory usage during training, are detailed in Table 2. The results
clearly demonstrate that our method outperforms other methods in terms of
computational efficiency. As a consequence, we can successfully synthesize 10242

resolution images—a feat that other methods may struggle to achieve.
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Ours AttriHuman-3D VeRi3D GSM

Fig. 4: Comparison for local editing. For each edited image, we zoom in on key areas
to demonstrate the editing capabilities.

Origin Accessories Body Shoes Tops Bottoms Outer

Fig. 5: Semantic disentangled image synthesis. By modifying the latent code of a
specified semantic part, we can alter that specified part in the synthesized image.

4.2 Ablation Study

3D-Aware Super-Resolution Module: Our proposed super-resolution mod-
ule enhances the resolution of synthesized images from 2562 to 10242 while pre-
serving 3D consistency. Quantitative results in Table 3 demonstrate that this
super-resolution module significantly improves the quality of synthesized images.
Qualitative results in Fig. 6 showcase the effectiveness of this module.

Depth Aggregation: Within our super-resolution module, we introduce depth
aggregation to address discontinuities in depth maps. Consider two adjacent
regions with depth values around 1 and 5, respectively. Direct upsampling would
yield a depth value of 3 at the boundary. Obviously, the pixels on the boundary
should belong to one of the two parts, so the correct depth value should align with
either 1 or 5. Our solution involves aggregating the depth values of neighboring
points, ensuring that both depth values (1 and 5) are preserved in our aggregated
depth map, thereby facilitating accurate rendering. The qualitative results in Fig.
6 validate the effectiveness of depth aggregation.

Upsample Loss: During super-resolution module training, we employ an up-
sample loss to ensure consistency between the original image and the image after
super-resolution. Quantitative results reported in Table 3 confirm the effective-
ness of this upsample loss.
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Table 2: Efficiency comparisons.
EVA3D [19] and AG3D [12] are un-
able to synthesize 10242 resolution
images.

Methods Resolution Mem

EVA3D 512 34G
AG3D 512 21G
Ours 512 10G
Ours 1024 31G

Table 3: Quantitative ablation studies. The re-
sults validate the effectiveness of our proposed
components. SR: Super-Resolution. DA: Depth
Aggregation. UL: Upsample Loss.

Methods Resolution FID ↓ 1000×KID↓
w/o SR 256 13.47 9.13
w/o DA 1024 9.38 4.56
w/o UL 1024 13.52 8.18
Ours 1024 8.708.708.70 4.044.044.04

w/o depth aggregation w/ depth aggregation

(b) Ablation on the super-resolution module(a) Ablation on the depth aggregation

Fig. 6: Qualitative ablation studies. (a) The results on the left are synthesized by
the model that dose not use depth aggregation, while the images on the right are
synthesized by the opposite approach. (b) For each paired set of images, the original
image from stage 1 is on the left, and the image after super-resolution is on the right.

4.3 Applications

Our method can achieve many interesting applications, some of which are show-
cased below. Additional results are provided in the supplementary material.

Semantic-Aware Virtual Try-On: To further demonstrate the capabilities of
our method, we combine GAN inversion to achieve semantic-aware virtual try-
on, as shown in Fig. 1. Notably, our method can disentangle specific garments
from the results obtained by GAN inversion and even place these garments into
new images. As far as we know, we are the only method that achieves this,
leading to a special application: you can combine the bottoms from one image
and randomly generated tops with your own image, all while controlling the pose
and viewpoint of the newly synthesized image.

3D Garment Generation: Our method disentangles both geometry and tex-
ture, enabling 3D garment generation. Specifically, by setting the density of other
semantic parts (excluding the specified part) to 0, we obtain the generation of
specific items such as dresses, shoes, and hats. Refer to Fig. 7 for results.
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(a) Garment Generation (b) Garment Inversion

Fig. 7: Garment generation. We independently generate 3D garments by setting the
density of other semantic parts (excluding the specified part) to 0. The corresponding
normal map for each synthesized image is also displayed to demonstrate the geometric
quality of the results. (a) Results randomly generated by our model. (b) Results ob-
tained from GAN inversion.

Out-of-distribution Image Synthesis: Leveraging our disentangled synthe-
sis, we can create out-of-distribution images (e.g., think of a man wearing a
dress) by manipulating the semantic latent code. Fig. 8 showcases some intrigu-
ing out-of-distribution image synthesis results that defy typical dataset or daily
life representations.

Controllable Image Synthesis: The synthesis of our method is conditioned
on pose P and semantic label Ls. The results of conditional image synthesis
are shown in Fig. 9. Furthermore, our method allows to control the pose of the
generated 3D human and render it from various viewpoints, as shown in Fig. 1.

5 Limitation

Our method faces certain limitations, which we discuss below. Dataset con-
straints: the quality of synthesized results suffer when dealing with poses or
viewpoints that are rarely encountered in the dataset. Unfortunately, optimizing
the network alone does not fully address this issue. To overcome this limita-
tion, we require higher-quality datasets. Challenges with 2D supervision: while
obtaining 2D human images is relatively easy, training a model only based on
2D images proves challenging when aiming for results with accurate geometries.
A potential solution could involve training a model supervised by both 3D hu-
man models and 2D images, leveraging complementary information from both
domains. Hand generation challenges: existing methods struggle with hand gen-
eration, and achieving realistic hand deformations remains difficult. Addressing
this limitation is an ongoing area of research.
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Fig. 8: Out-of-distribution image synthesis. To achieve out-of-distribution image syn-
thesis, we assign different semantic labels to various semantic parts, e.g., if we set the
semantic label corresponding to the body as "male", and the label corresponding to
the tops as "dress", we can synthesize an image of a man wearing a dress.

Fig. 9: Conditional image synthesis. For each paired set of images, the image on the
right is synthesized conditioned on the semantic label Ls and human pose P of the real
image on the left.

6 Conclusion

In this paper, we introduce SemanticHuman-HD, the pioneering method for
achieving semantic disentangled human image synthesis. By leveraging our pro-
posed 3D-aware super-resolution module, our method is also the first to success-
fully synthesize images at an impressive 10242 resolution. Notably, the proposed
3D-aware super-resolution can be easily employed in NeRF-based generative
models. Our experiments consistently demonstrate the superiority of our pro-
posed method. Furthermore, we showcase a range of interesting applications,
including 3D garment generation, semantic-aware virtual try-on, controllable
image synthesis, garment-level image editing and out-of-distribution image syn-
thesis. Looking ahead, we will consider addressing the limitations mentioned in
Section 5: dataset constraints, challenges with 2D supervision, and hand gen-
eration challenges. Specifically, we are particularly focused on overcoming the
challenges related to 2D supervision. A generative model capable of achieving
high-quality geometric details in 3D human generation is highly needed in the
areas of virtual reality, video games and beyond.
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