
20 H. Jiang and Z. Lu

A Segmentation Details

A.1 Extracting Targets via LLM

In order to extract the target name from a natural language instruction, we
resort to GPT-4 [1]. We input the following prompt:

You are a helper agent in Minecraft. I will describe a task, and
your job is to identify the specific entity (name of blocks, anim-
als, or items) that I need to directly interact with to complete
this task. This means you should tell me what entity I need to aim
at with the crosshair in the center of my screen, assuming I have
all the necessary items and tools in my inventory. Please provide
the name of the target entity.

Requirements:

1. For tasks with multiple possible solutions or those requiring
additional context, provide the most straightforward or common
solution.

2. Only output the target entity after "Target: ", DO NOT add other
examples, descriptions, or explanations.

For example:

Task: "Obtain 8 obsidian blocks with a diamond pickaxe and a water
bucket."

Thinking: "To mine obsidian, the player must aim their crosshair at
an obsidian block and use a diamond or netherite pickaxe on it. Ob-
sidian is created when flowing water touches a lava source block.
Therefore, the entity to aim at for this task is obsidian."

Target: "Obsidian"

Task: "Obtain milk with an empty bucket."

Thinking: "To fill a bucket with milk, the player must aim their
crosshair at a cow and use the empty bucket on it. Therefore, the
entity to aim at for this task is a cow."

Target: "Cow"

We try some instructions without telling the name of the true target entity:

We:

Task: "Harvest wool"

Thinking:

GPT-4:



COPL 21

To harvest wool in Minecraft, you need to aim your crosshair at a
sheep and use shears on it. This will allow you to collect wool
without harming the sheep.

Target: "Sheep"

We:

Task: "Collect beef"

Thinking:

GPT-4:

To collect beef in Minecraft, you need to aim your crosshair at a
cow and use a weapon or your hand to kill it. Upon death, the cow
will drop beef.

Target: "Cow"

We:

Task: "Get mutton as food"

Thinking:

GPT-4:

To get mutton as food in Minecraft, you need to aim your crosshair
at a sheep and use a weapon or your hand to kill it. Upon death,
the sheep will drop mutton.

Target: "Sheep"

These results show that GPT-4 understands the underlying relationship be-
tween the target item (wool, beef, mutton) and the target animal (sheep, cow,
sheep) based on its prior knowledge about Minecraft. Certainly, GPT-4 also
works on instructions containing the target entity directly:

We:

Task: "Harvest a flower"

Thinking:

GPT-4:

To harvest a flower in Minecraft, you need to aim your crosshair at
the specific flower you want to collect and either use your hand or
any tool to break and collect it.

Target: "Flower"

We:

Task: "Hunt a cow"

Thinking:



22 H. Jiang and Z. Lu

(a) chicken (b) horse (c) llama

(d) spider (e) mushroom cow (f) sand

Fig. 6: Confidence map instances of targets: (a) chicken, (b) horse, (c) llama, (d)
spider, (e) mushroom cow, and (f) sand.

GPT-4:

To hunt a cow in Minecraft, you need to aim your crosshair at a cow
and use a weapon or your hand to kill it.

Target: "Cow"

A.2 Negative Words

For better segmentation, the negative word list should contain names of objects
that frequently appear in Minecraft. To this end, we utilize the TF-IDF algorithm
to select top-100 words from the subtitles of YouTube videos [17], excluding
stop words like “we” and “is”, as well as modal particles such as “yeah” and “uh”.
Additionally, we filter out verbs and some irrelevant nouns from the top-100
words to reduce noise. The final negative word list is shown below:

diamond, block, village, house, iron, farm, chest, dragon,
redstone, water, tree, zombie, sword, stone, door, armor, lava,
fish, portal, chicken, wood, wall, glass, cave, stair, bed,
torch, fire, creeper, island, food, slab, book, head, button,
apple, skeleton, potion, spider, egg, pickaxe, arrow, boat,
horse, hopper, box, wool, table, seed, cow, brick, trap, dog,
bow, dirt, roof, leaves, sand, window, bucket, coal, hole, pig,
ice, bone, stick, flower, tower, sheep, grass, sky.

Furthermore, in constructing text embeddings, we employ prompt engineer-
ing to improve zero-shot ability on classification [44]. Same as MaskCLIP [67],
we utilize 85 prompt templates such as “a photo of many {}.". The mean of
these embeddings is set to be the text embedding of the target. During segmen-
tation, if the target object already exists in the list, it will be removed from the
list in advance.

A.3 Segmentation Results

We provide more examples of confidence maps, as illustrated in Figure 6. Our
modified MineCLIP effectively locates these target objects.



COPL 23

Fig. 7: Comparison between Grounded SAM and our method on seven objects.

A.4 Off-the-shelf Object Detection Models

We choose one off-the-shelf object detection model, Grounded SAM [25, 33],
to evaluate its effectiveness in Minecraft. In order to conduct a fair side-by-
side comparison between it and our method, we Google searched “minecraft
[object name] screenshot” in the image tab, and selected the first two images
that include objects and have them fully in the field of view. The evaluation
objects includes pig, cow, sheep, mushroom cow, tree, flower, and horse. We
follow the setting in the official demo5 to evaluate the effectiveness of Grounded
SAM on detecting these objects in Minecraft. For both Grounded SAM and our
modified MineCLIP in this evaluation, we use the same word list which consists
of the seven evaluation objects and grass.

The detection results of the two methods are illustrated in Figure 7. For
a more detailed evaluation, we quantify the number of objects present in each
image, the number detected by Grounded SAM, and the number detected by
our method. These quantitative results are summarized in Table 5. Across all
images, there are 24 target objects. Grounded SAM can successfully identify 14
objects, which translates to a detection rate of 58.3%. In contrast, our method
demonstrates a significantly higher efficacy, successfully detecting 22 of the 24
objects, achieving a detection rate of 91.7%. There are two failures in our method.
One is the sunflower in the bottom-right corner of the first flower image, and the
5 https://github.com/IDEA-Research/Grounded-Segment-Anything/blob/main/
grounded_sam_colab_demo.ipynb

https://github.com/IDEA-Research/Grounded-Segment-Anything/blob/main/grounded_sam_colab_demo.ipynb
https://github.com/IDEA-Research/Grounded-Segment-Anything/blob/main/grounded_sam_colab_demo.ipynb


24 H. Jiang and Z. Lu

Table 5: Result statistics of Grounded SAM and our method on seven objects.

Object Ground-truth Grounded SAM Ours

pig 3 3 3
cow 3 2 3

sheep 2 0 2
mushroom cow 4 0 4

tree 6 6 5
flower† 4 2 3
horse 2 1 2
total 24 14 22

† We also count the two flowers held in players’ hands.

other is the tree in the left of the second tree image. In both cases, our method
generates some activation in the target patches, but it does not cover the entire
object (flower) or is relatively weak (tree). We regard them as failures for a more
strict result.

B Policy Learning Details

B.1 Observation Space and Action Space

The observation space adopted in our experiments consists of RGB, compass,
GPS, voxels, and biome index. The shape and description of each modality are
listed in Table 6. We simplify the original action space of MineDojo [17] into a 2-
dimensional multi-discrete action space. The first dimension contains 12 discrete
actions about movement: no_op, move forward, move backward, move left, move
right, jump, sneak, sprint, camera pitch -30, camera pitch +30, camera yaw -30,
and camera yaw +30. The second dimension includes 3 discrete actions about
interacting with items: no_op, attack, and use.

Table 6: Observation space adopted in our experiments.

Modality Shape Description

RGB (3, 160, 256) Ego-Centric RGB frames.
Compass (4,) Sine and cosine of yaw and pitch.

GPS (3,) GPS location of the agent.
Voxels (27,) Indices of 3× 3× 3 surrounding blocks.

Biome_ID (1,) Index of the environmental biome.



COPL 25

MineCLIP
image

encoder

Flatten

MLP
[128, 128, 128]

Image Confidence map

MLP
[128, 128, 128]

Emb (8)

MLP
[128, 128, 128]

MLP
[128, 128, 128]

MLP
[128, 128, 128]

Emb (8)

Voxels Biome_IDGPSCompass

MLP
[128, 128, 128]

Emb (8)

Previous action

Policy head Value head

Concatenation

GRU [256]

MLP [256, 256, 256]MLP [256, 256, 256]

MLP [512]

Fig. 8: Network architecture of COPL agent.

B.2 Network Architecture

The input of COPL agent includes observations from the environment listed in
Table 6, the agent’s action taken at the last time step at−1, and the confidence
map. As illustrated in Figure 8, all inputs except the RGB image are processed by
MLPs with three hidden layers and ReLU activation. In this step, voxels, biome
index, and previous action are first embedded into dense vectors. The RGB image
is processed using the MineCLIP image encoder to generate an embedding. All
these processed features are concatenated and processed by an MLP with one
hidden layer and ReLU activation. Then a GRU layer is implemented to integrate
the historical information. The policy head and the value head take as input the
output of GRU and both process it using an MLP with three hidden layers and
ReLU activation. The policy head generates the distribution of actions, and the
value head outputs the estimated value of the current state. Some variants are
as follows: (1) Single-task model: In single-task experiments, the agent does
not take as input the confidence map; (2) LCRL: The branch of confidence
map is replaced by the MineCLIP text encoder processing the target name or
the instruction; (3) One-Hot: The branch of confidence map is replaced by an
MLP processing the one-hot vector which indicates the index of the current task.
The MLP has one hidden layer with size 32 and ReLU activation.

C Single-Task Experiments

C.1 Settings

Our single-task experiments include four tasks: hunt a cow, hunt a sheep,
hunt a pig, and hunt a chicken. The parameters we used to make environ-
ments in MineDojo are listed in Table 7. In all tasks, the agent spawns in plains



26 H. Jiang and Z. Lu

Table 7: Single-task settings in our experiments.

Task Target Initial Animals Range1 Inventory Biome Length2

hunt a cow cow cow, sheep, pig 7 diamond_sword plains 200
hunt a sheep sheep cow, sheep, pig 7 diamond_sword plains 200
hunt a pig pig cow, sheep, pig 7 diamond_sword plains 200
hunt a chicken chicken cow, sheep, chicken 7 diamond_sword plains 200

1 Range indicates the spawn range of initial animals.
2 Length indicates the maximum length of one episode.

0.0 0.2 0.4 0.6 0.8 1.0
Steps (1e6)

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s r

at
e

Focal
MineCLIP
NDCLIP

Sparse

(a) hunt a cow

0.0 0.2 0.4 0.6 0.8 1.0
Steps (1e6)

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s r

at
e

Focal
MineCLIP
NDCLIP

Sparse

(b) hunt a sheep

0.0 0.2 0.4 0.6 0.8 1.0
Steps (1e6)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Su
cc

es
s r

at
e

Focal
MineCLIP
NDCLIP

Sparse

(c) hunt a pig

0.0 0.2 0.4 0.6 0.8 1.0
Steps (1e6)

0.0

0.1

0.2

0.3

0.4

Su
cc

es
s r

at
e

Focal
MineCLIP
NDCLIP

Sparse

(d) hunt a chicken

Fig. 9: Learning curves of PPO with focal reward, MineCLIP reward, NDCLIP reward,
and environmental sparse reward only, on four Minecraft tasks.

biome holding a diamond sword. Several animals including the target spawn near
the agent. The agent will receive a +100 reward after successfully killing the tar-
get animal. Each episode is limited to a maximum of 200 steps. The challenge lies
in the fact that animals will flee after being attacked, thus requiring the agent
to keep chasing the target and attacking. Killing a cow, sheep, or pig requires
at least two attacks, while killing a chicken only requires at least one attack.
Although it takes fewer attacks to kill a chicken, aiming at the small size of
the chicken poses an additional challenge. For ablation experiments on Gaussian
kernel, we double the initial animals and increase the animal spawn range to 10.

C.2 Learning Curves

Learning curves of four methods on for Minecraft tasks are shown in Figure 9.
Each curve shows the mean success rate of four runs with different seeds and
shaded regions indicate standard error (the same applies hereinafter). We can
observe that only our focal reward leads to the mastery of all four skills by
guiding the agent to consistently approach the target.

C.3 Additional Experiments

We conduct additional single-task experiments on three harvest tasks includ-
ing milk a cow, shear a sheep, and chop a tree, where MineCLIP reward
achieves nonzero success rates [17]. The environment parameters for each task



COPL 27

Table 8: Single-task settings in additional experiments.

Task Target Initial Animals Range Inventory Biome Length

milk a cow milk_bucket cow, sheep, pig 10 bucket plains 200
shear a sheep wool cow, sheep, pig 10 shears plains 200
chop a tree log cow, sheep, pig 7 golden_axe forest 200

0 1 2 3 4 5
Steps (1e5)

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s r

at
e

Focal
MineCLIP
Sparse

(a) milk a cow

0 1 2 3 4 5
Steps (1e5)

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s r

at
e

Focal
MineCLIP
Sparse

(b) milk a cow

0 1 2 3 4 5
Steps (1e5)

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s r

at
e

Focal
MineCLIP
Sparse

(c) milk a cow

Fig. 10: Learning curves of PPO with focal reward, MineCLIP reward, and environ-
mental sparse reward only, on three Minecraft tasks: (a) milk a cow, (b) shear a
sheep, and (c) chop a tree.

can be found in Table 8. As shown in Figure 10, our focal reward outperforms
MineCLIP reward on milk a cow and shear a sheep. Regarding chop a tree,
our focal reward and MineCLIP reward achieve similar performance, both with
3 out of 4 runs having learned this skill. To break a wood block, the agent needs
to continuously take attack actions for around 6 steps. Therefore, we believe that
the main challenge for RL in this task lies in exploration. It is difficult for an
RL algorithm, such as PPO, with a stochastic policy to explore and exploit a
behavior pattern that requires consecutive actions over 6 steps, especially given
the sparse environmental reward signal. Using an off-policy RL algorithm or
self-imitation may help address this problem.

To quantitatively assess the accuracy of our focal reward as a proxy for esti-
mating the distance between the agent and the target object, we calculate the
correlation coefficient between the reward and the ground-truth distance to the
target object at each step. The ground-truth distance to the target object is ob-
tained through an internal function of the environment simulator [17], which is
typically not available during normal gameplay and not available in all environ-
ments. Therefore, for generality, we cannot directly use the distance as a reward
for training. We run our trained models on four tasks. For each task, we sam-
ple 10,000 steps and record focal rewards, MineCLIP rewards, and ground-truth
distance. If the target object is not in the sight of the agent, the ground-truth
distance is set to the inf. Given that the data distribution is not close to a nor-
mal distribution, we calculate the Spearman rank correlation coefficient instead
of the Pearson correlation coefficient, as shown in Table 9. The results demon-
strate that the correlation between our focal reward and the distance to the
target object is higher than the correlation between the MineCLIP reward and



28 H. Jiang and Z. Lu

Table 9: Spearman’s rank correlation coefficient between rewards and distance to the
target object in sight.

Rewards cow sheep pig chicken

Focal -0.704 -0.701 -0.761 -0.835
MineCLIP -0.374 -0.585 -0.460 -0.544

the distance, suggesting that our focal reward better approximates the actual
distance.

D Multi-Task Experiments

D.1 Settings

Hunting domain. The hunting domain consists of four instructions: “hunt a
cow”, “hunt a sheep”, “hunt a pig”, and “hunt a chicken”. At the start of
each episode, one instruction is randomly selected, and an environment is built
with the parameters listed in Table 10. The agent will receive a +100 reward
after successfully killing the target animal specified in the instruction. If the
agent mistakenly kills the animal which is the target of other instructions, no
reward is given and the episode ends. This setup encourages the agent to attack
the correct animal rather than indiscriminately attacking any animal.

The object-level generalization evaluation for the hunting domain also con-
tains four instructions: “hunt a mushroom cow”, “hunt a spider”, “hunt a
llama”, and “hunt a horse”. The environment parameters can be found in Ta-
ble 11. We slightly increase the maximum episode length for “hunt a spider”,
“hunt a llama”, and “hunt a horse”, given that killing them requires more at-
tacks as a result of their higher health compared to other animals. For each
instruction, we run the test model for 100 episodes to calculate its success rate
and precision (same in the harvest domain).

Harvest domain. The harvest domain consists of four instructions: “milk a
cow”, “shear a sheep”, “harvest a flower”, and “harvest leaves”. Same as
the hunting domain, one instruction is randomly selected at the start of each
episode, and an environment is generated with the parameters listed in Table 12.
The agent will receive a +100 reward after successfully acquiring the target
item. If the agent mistakenly acquires the target item corresponding to other
instructions, no reward is given and the episode ends. Note that the target item
required to finish the task may not always be the same as the target object that
the agent needs to approach. For example, in the instruction “milk a cow”, the
target item is a milk_bucket, while the target object that the agent needs to
approach is a cow.

The object-level generalization evaluation for the harvest domain contains
four instructions: “harvest water”, “shear a mushroom cow”, “collect sand”,



COPL 29

Table 10: Multi-task settings in the hunting domain.

Instruction Target Initial Animals Range Inventory Biome Length

hunt a cow cow cow, sheep, pig,
chicken

10 diamond_sword plains 500

hunt a sheep sheep cow, sheep, pig,
chicken

10 diamond_sword plains 500

hunt a pig pig cow, sheep, pig,
chicken

10 diamond_sword plains 500

hunt a chicken chicken cow, sheep, pig,
chicken

10 diamond_sword plains 500

Table 11: Generalization evaluation settings in the hunting domain.

Instruction Target Initial Animals Range Inventory Biome Length

hunt a mush-
room cow

mushroom
cow

mushroom cow,
spider, llama,
horse

10 diamond_sword plains 500

hunt a spider spider mushroom cow,
spider, llama,
horse

10 diamond_sword plains 800

hunt a llama llama mushroom cow,
spider, llama,
horse

10 diamond_sword plains 800

hunt a horse horse mushroom cow,
spider, llama,
horse

10 diamond_sword plains 800

and “collect dirt”. For each instruction, there is a distraction item. If the agent
mistakenly acquires the distraction item, no reward is given and the episode ends.
For “harvest water”, the distraction item is milk_bucket, as the agent can also
acquire a bucket of milk with the given empty bucket from a cow. Similarly,
the distraction items for the other three instructions are wool, dirt, and sand,
respectively.

Here we briefly introduce the behavior patterns required by the harvest do-
main instructions. “Milk a cow” and “harvest water” require the agent to ap-
proach the target object (cow/water), aim at it, and take use action. “Harvest
a flower”, “collect sand”, and “collect dirt” require the agent to approach
the target object (flower/sand/dirt), aim at it, take attack action to break it,
and move closer to pick up the dropped item. “Shear a sheep” and “harvest
leaves” are the same except that they require taking use action instead of attack
action. In all these tasks except “collect sand” and “collect dirt”, the agent



30 H. Jiang and Z. Lu

Table 12: Multi-task settings in the harvest domain.

Instruction Target1 Initial Animals Range Inventory Biome Length

milk a cow milk_bucket cow, sheep, pig 10 bucket plains 200
shear a sheep wool cow, sheep, pig 10 shears plains 200
harvest a flo-
wer

red_flower cow, sheep, pig 10 - flower_forest 200

harvest leaves leaves cow, sheep, pig 10 shears flower_forest 200
1 Target here represents the parameter for making a MineDojo environment, i.e., the

target item required to finish the task. It differs from the target object specified in
the instruction.

Table 13: Generalization evaluation settings in the harvest domain.

Instruction Target Initial Animals Range Inventory Biome Length

harvest water water_
bucket

cow, sheep,
mushroom cow

10 bucket river 200

shear a
mushroom cow

mushroom cow, sheep,
mushroom cow

10 shears plains 200

collect sand sand cow, sheep,
mushroom cow

10 diamond_shovel river 200

collect dirt dirt cow, sheep,
mushroom cow

10 diamond_shovel river 200

needs only one attack or use action to finish the task. Therefore, individually, the
harvest tasks are easier than the hunting tasks. “Collect sand” and “collect
dirt” require the agent to continuously attack multiple times to break a sand
or dirt block.

D.2 Learning Curves

We show the learning curves of COPL, LCRL[t], LCRL[i], and One-Hot on each
task. As illustrated in Figures 11 and 12.

D.3 Precision

In the hunting domain, precision is defined as the number of correct kills on
the specified target animal divided by the number of kills on any animal. The
high precision, as reported in Table 14, proves COPL’s ability to distinguish the
target animal from other animals, rather than indiscriminately attacking them,
even if these animals are all out of the training scope. As for the harvest domain,
precision is related to the distraction item claimed in Appendix D.1, as harvesting
the distraction item requires the same tool as the target item. Precision shown



COPL 31

0.0 0.4 0.8 1.2 1.6 2.0
Steps (1e6)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Su
cc

es
s r

at
e

COPL
LCRL[t]
LCRL[i]
One-Hot

(a) hunt a cow

0.0 0.4 0.8 1.2 1.6 2.0
Steps (1e6)

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s r

at
e

COPL
LCRL[t]
LCRL[i]
One-Hot

(b) hunt a sheep

0.0 0.4 0.8 1.2 1.6 2.0
Steps (1e6)

0.0
0.1
0.2
0.3
0.4
0.5
0.6

Su
cc

es
s r

at
e

COPL
LCRL[t]
LCRL[i]
One-Hot

(c) hunt a pig

0.0 0.4 0.8 1.2 1.6 2.0
Steps (1e6)

0.0

0.1

0.2

0.3

0.4

Su
cc

es
s r

at
e

COPL
LCRL[t]
LCRL[i]
One-Hot

(d) hunt a chicken

Fig. 11: Learning curves of COPL, LCRL[t], LCRL[i], and One-Hot on four hunting
instructions: (a) “hunt a cow”, (b) “hunt a sheep”, (c) “hunt a pig”, and (d)“hunt a
chicken”.

0.0 0.3 0.6 0.9 1.2 1.5
Steps (1e6)

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s r

at
e

COPL
LCRL[t]
LCRL[i]
One-Hot

(a) milk a cow

0.0 0.3 0.6 0.9 1.2 1.5
Steps (1e6)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Su
cc

es
s r

at
e

COPL
LCRL[t]
LCRL[i]
One-Hot

(b) shear a sheep

0.0 0.3 0.6 0.9 1.2 1.5
Steps (1e6)

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Su
cc

es
s r

at
e

COPL
LCRL[t]
LCRL[i]
One-Hot

(c) harvest a flower

0.0 0.3 0.6 0.9 1.2 1.5
Steps (1e6)

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Su
cc

es
s r

at
e

COPL
LCRL[t]
LCRL[i]
One-Hot

(d) harvest leaves

Fig. 12: Learning curves of COPL, LCRL[t], LCRL[i], and One-Hot on four har-
vest instructions: (a) “milk a cow”, (b) “shear a sheep”, (c) “harvest a flower”, and
(d)“harvest leaves”.

in Table 15 is defined as the number of times correctly harvesting the specified
target item divided by the total number of times harvesting the target item
or the distraction item. Similar to the results in the hunting domain, COPL
exhibits better identification ability on unseen targets, compared to LCRL[t]
and LCRL[i], suggesting that the zero-shot object-level generalization of COPL
emerges from grounding the unseen target object in a simple two-dimensional
visual representation, given that all methods perform equally on training tasks.

E Hyperparameters

E.1 PPO Hyperparameters

In our experiments, we use PPO [48] as our base RL algorithm. Table 16 lists
the hyperparameters for PPO across all tasks. Unlike MineAgent [17], our imple-
mentation does not include self-imitation learning and action smoothing loss. We
find that vanilla PPO is able to achieve high performance in our experiments. For
single-task experiments, we train RL models for 1,000,000 environment steps. For
multi-task experiments in the hunting domain, we train RL models for 2,000,000
environment steps. For multi-task experiments in the harvest domain, we train
RL models for 1,500,000 environment steps.

E.2 Intrinsic Reward Coefficient

To determine the optimal scale of intrinsic reward that can effectively guide
reinforcement learning while avoiding conflicts with the environmental reward,



32 H. Jiang and Z. Lu

Table 14: Precision (%) on hunting test tasks.

Tasks COPL LCRL[t] LCRL[i] [7] STEVE-1

llama 88.8±7.5 43.3±13.5 55.8±16.7 36.7 6.3
horse 89.8±7.5 13.3±2.2 14.8±11.2 28.0 9.4
spider 96.8±1.9 47.0±33.0 56.5±40.0 23.3 93.6
mushroom 97.0±2.0 69.0±26.9 0.0±0.0 55.3 6.8
Avg. 93.1±3.4 41.5±3.8 42.3±2.1 35.8 29.0

Table 15: Precision (%) on harvest test tasks.

Tasks COPL LCRL[t] LCRL[i] STEVE-1

water 55.8±11.9 31.8±11.6 28.5±3.0 91.3
mushroom 74.8±10.5 56.3±8.2 48.8±9.1 0.0
sand 70.5±31.2 10.5±12.6 14.3±10.9 12.0
dirt 95.3±2.6 57.8±43.1 60.8±23.5 98.6
Avg. 74.1±10.4 39.3±16.4 38.1±7.3 50.5

we conduct an experiment to evaluate the performance of our focal reward with
different λ values. Figures 13a and 13b illustrates the performance of our focal
reward with different λ, including 0.5, 5, and 50, on hunt a cow and hunt a
sheep. Focal reward with λ = 5 outperforms λ = 50 and λ = 0.5 on two tasks.
Therefore, we consistently set λ = 5 for all experiments in the main text.

Regarding the MineCLIP reward, we set the coefficient to 1.0, following the
original setting of MineAgent in [17]. The optimal coefficient of ND reward in [55]
for find task is 0.003, and its sparse environmental reward is 1.0. Considering the
environmental reward is set to 100 in our experiments, we decided to increase
the coefficient for NDCLIP from 0.003 to 0.3 in our implementation.

E.3 Gaussian Kernel

The introduction of a Gaussian kernel is to guide the agent to center a target
object within its field of view. The Gaussian kernel should create a high contrast
between the center and the edge, as well as between the edge and areas outside
the field of view. Therefore, the variance of the Gaussian kernel would influence
the performance of the focal reward. To evaluate the impact of different vari-
ances, we conduct an experiment with σ = (H/5,W/5), σ = (H/3,W/3), and
σ = (H/2,W/2). As illustrated in Figures 13c and 13d, σ = (H/3,W/3) outper-
forms the others. We suppose that a wider Gaussian kernel with σ = (H/2,W/2)
fails to provide sufficient contrast between the center and the edge. Conversely,
a narrower Gaussian kernel with σ = (H/5,W/5) cannot provide sufficient con-
trast between the edge and areas outside the field of view.



COPL 33

Table 16: Hyperparameters for PPO across all tasks.

Hyperparameter Value

num steps 1000
num envs 4

num minibatches 4
num epoches 8
GAE lambda 0.95

discounted gamma 0.99
entropy coef 0.005

PPO clip 0.2
learning rate 1e-4

optimizer Adam
recurrent data chunk length 10

gradient clip norm 10.0
network initialization orthogonal
normalize advantage true

0.0 0.2 0.4 0.6 0.8 1.0
Steps (1e6)

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s r

at
e

= 50
= 5
= 0.5

(a) hunt a cow

0.0 0.2 0.4 0.6 0.8 1.0
Steps (1e6)

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s r

at
e

= 50
= 5
= 0.5

(b) hunt a sheep

0.0 0.2 0.4 0.6 0.8 1.0
Steps (1e6)

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s r

at
e

 = (H/5, W/5)
 = (H/3, W/3)
 = (H/2, W/2)

w/o Gaussian

(c) hunt a cow

0.0 0.2 0.4 0.6 0.8 1.0
Steps (1e6)

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s r

at
e

 = (H/5, W/5)
 = (H/3, W/3)
 = (H/2, W/2)

w/o Gaussian

(d) hunt a sheep

Fig. 13: (a)(b) Learning curves of PPO using the focal reward with different λ on two
Minecraft tasks. (c)(d) Learning curves of PPO using the focal reward with different
Gaussian variances on two Minecraft tasks.

F Baselines Implementation

MineCLIP. We adopt the provided prompt templates in MineDojo to de-
sign task prompts for MineCLIP reward computation in single-task experi-
ments. For hunting tasks, we use the prompt “hunt a {animal} on plains
with a diamond sword”. For additional harvest tasks in Appendix C.3, we use
the prompts “obtain milk from a cow in plains with an empty bucket”,
“shear a sheep in plains with shears”, and “chop trees to obtain log
with a golden axe”, respectively.

[7]. We use the released plains model6 for evaluation. The goal is set to be the
name of the target animal.

6 https://github.com/CraftJarvis/MC-Controller

https://github.com/CraftJarvis/MC-Controller


34 H. Jiang and Z. Lu

Table 17: Success rates (%) of STEVE-1 with different prompts.

Animals “kill” “hunt” “combat”

cow 6 0 0
sheep 14 0 6
pig 9 0 4

chicken 6 0 7

(a) (b) (c) (d)

Fig. 14: (a)(b) Screenshots of the agent trained with MineCLIP reward. (c)(d) Screen-
shots of the agent trained with our focal reward targeting hole.

STEVE-1 [32]. We use the released model7 for evaluation. However, STEVE-1
is designed for another simulator, MineRL [20], with a different action space from
MineDojo. We build a wrapper to map STEVE-1’s actions into the action space
of MineDojo. As noted in the STEVE-1 paper, prompt engineering significantly
impacts its performance. Therefore, we attempt three templates for the hunting
domain tasks, including “kill a {animal}”, “hunt a {animal}”, and “combat
a {animal}”. As shown in Table 17, “kill a {animal}" achieves the highest
performance and STEVE-1 cannot understand the original instruction “hunt a
{animal}” at all. Consequently, we use “kill a {animal}” as prompts given
to STEVE-1 for the experiments in the main text. For tasks in the harvest
domain, we use prompts “milk a cow”, “shear a sheep”, “break a flower”,
“break leaves”, “collect water”, “shear a mushroom”, “collect sand”, and
“collect dirt”, respectively. The verbs break and collect are selected by
referring to the prompts provided in the STEVE-1 paper. “Milk a cow”, “shear
a sheep”, and “shear a mushroom cow” follow original instructions, as we find
that “collect {milk/wool/mushroom}” does not work.

G Creative Tasks

For dig a hole, the agent spawns with a diamond shovel; for lay the carpet,
the agent spawns with 64 carpets. For each task, we train an agent with MineCLIP
reward and an agent with our focal reward. The prompts used to calculate
MineCLIP reward are “dig a hole” and “put carpets on the floor”, respec-
tively. We run the trained models in the environment and record the agent’s
7 https://github.com/Shalev-Lifshitz/STEVE-1

https://github.com/Shalev-Lifshitz/STEVE-1


COPL 35

depth and the number of placed carpets, averaged on 10 episodes. As illustrated
in Figure 5b, the agents trained with MineCLIP reward and our focal reward
targeting carpet show the same behavior pattern that keeps laying carpets.
However, on dig a hole, the two agents learn different behaviors, as shown in
Figure 5a: the agent trained with our focal reward targeting hole keeps getting
deeper, while the elevation of the one trained with MineCLIP reward does not
change too much. By examining their trajectories in the environment, we find
that the agent trained with MineCLIP reward tends to dig one block and then
stand beside this shallow hole and look at it, as shown in Figures 14a and 14b.
In contrast, the agent trained with our focal reward stands inside the dug hole
and continuously digs downwards, as shown in Figures 14c and 14d. Both be-
havior patterns are consistent with the description of “dig a hole” and can be
considered reasonable.


