
3DEgo: 3D Editing on the Go!

Umar Khalid1,∗ , Hasan Iqbal2,∗ , Azib Farooq3 , Jing Hua2 , and Chen
Chen1

1 University of Central Florida, Orlando, FL, USA
2 Department of Computer Science, Wayne State University, Detroit, MI, USA

3 Department of Computer Science and Software Engineering, Miami University,
Oxford, OH, USA

Abstract. We introduce 3DEgo to address a novel problem of directly
synthesizing photorealistic 3D scenes from monocular videos guided by
textual prompts. Conventional methods construct a text-conditioned 3D
scene through a three-stage process, involving pose estimation using
Structure-from-Motion (SfM) libraries like COLMAP, initializing the
3D model with unedited images, and iteratively updating the dataset
with edited images to achieve a 3D scene with text fidelity. Our frame-
work streamlines the conventional multi-stage 3D editing process into
a single-stage workflow by overcoming the reliance on COLMAP and
eliminating the cost of model initialization. We apply a diffusion model
to edit video frames prior to 3D scene creation by incorporating our
designed noise blender module for enhancing multi-view editing consis-
tency, a step that does not require additional training or fine-tuning
of T2I diffusion models. 3DEgo utilizes 3D Gaussian Splatting to cre-
ate 3D scenes from the multi-view consistent edited frames, capitaliz-
ing on the inherent temporal continuity and explicit point cloud data.
3DEgo demonstrates remarkable editing precision, speed, and adaptabil-
ity across a variety of video sources, as validated by extensive evaluations
on six datasets, including our own prepared GS25 dataset. Project Page:
https://3dego.github.io/

Keywords: Gaussian Splatting · 3D Edititng · Cross-View Consistency

1 Introduction

In the pursuit of constructing photo-realistic 3D scenes from monocular video
sources, it is a common practice to use the Structure-from-Motion (SfM) library,
COLMAP [40] for camera pose estimation. This step is critical for aligning frames
extracted from the video, thereby facilitating the subsequent process of 3D scene
reconstruction. To further edit these constructed 3D scenes, a meticulous pro-
cess of frame-by-frame editing based on textual prompts is often employed [52].
Recent works, such as IN2N [11], estimate poses from frames using SfM [40] to
initially train an unedited 3D scene. Upon initializing a 3D model, the train-
ing dataset is iteratively updated by adding edited images at a consistent rate
⋆ Equal Contribution

https://orcid.org/0000-0002-3357-9720
https://orcid.org/0009-0005-2162-3367
https://orcid.org/0009-0006-7867-2546
https://orcid.org/0000-0002-3981-2933
https://orcid.org/0000-0003-3957-7061
https://3dego.github.io/


2 U. Khalid et al.

of editing. This process of iterative dataset update demands significant com-
putational resources and time. Due to challenges with initial edit consistency,
IN2N [11] training necessitates the continuous addition of edited images to the
dataset over a significantly large number of iterations. This issue stems from
the inherent limitations present in Text-to-Image (T2I) diffusion models [4, 37],
where achieving prompt-consistent edits across multiple images—especially those
capturing the same scene—proves to be a formidable task [7, 19]. Such incon-
sistencies significantly undermine the effectiveness of 3D scene modifications,
particularly when these altered frames are leveraged to generate unique views.

Text Prompt
“Make Him Einstein”

Text Prompt

“Make Him Einstein”

3D Editing

COLMAP

Initial 3D Model
(Unedited)

3DEgo Edited 3D Model

Poses

Frames

Input Video

Other Methods

Ours

Fig. 1: Our method, 3DEgo, streamlines the 3D
editing process by merging a three-stage workflow
into a singular, comprehensive framework. This
efficiency is achieved by bypassing the need for
COLMAP [40] for pose initialization and avoid-
ing the initialization of the model with unedited
images, unlike other existing approaches [7,11,19].

In this work, we address a
novel problem of efficiently re-
constructing 3D scenes directly
from monocular videos with-
out using COLMAP [40] aligned
with the editing textual prompt.
Specifically, we apply a diffusion
model [4] to edit every frame
of a given monocular video be-
fore creating a 3D scene. To ad-
dress the challenge of consistent
editing across all the frames, we
introduce a novel noise blender
module, which ensures each new
edited view is conditioned upon
its adjacent, previously edited
views. This is achieved by cal-
culating a weighted average of
image-conditional noise estima-
tions such that closer frames ex-
ert greater influence on the edit-
ing outcome. Our editing strategy utilizes the IP2P [4] 2D editing diffusion
model, which effectively employs both conditional and unconditional noise pre-
diction. Consequently, our method achieves multi-view consistency without the
necessity for extra training or fine-tuning, unlike prior approaches [7,27,46]. For
3D scene synthesis based on the edited views, our framework utilizes the Gaus-
sian Splatting (GS) [17] technique, capitalizing on the temporal continuity of
video data and the explicit representation of point clouds. Originally designed
to work with pre-computed camera poses, 3D Gaussian Splatting presents us
with the possibility to synthesize views and construct edited 3D scenes from
monocular videos without the need for SfM pre-processing, overcoming one of
NeRF’s significant limitations [25].

Our method grows the 3D Gaussians of the scene continuously, from the
edited frames, as the camera moves, eliminating the need for pre-computed cam-
era poses and 3D model initialization on original un-edited frames to identify



3DEgo: 3D Editing on the Go! 3

Original 3DGS "Turn this table into marble table"

Lo
ca

l E
d

it
in

g
M

u
lt

i-
Ed

it
in

g

"Give bulldozer brighter color and make Tyres blue""Make bulldozer red and give cones yellow color"Original 3DGS

O
b

j-
R

e
m

o
va

l

Original 3DGS Original 3DGS“Remove car" “Remove campsites"

Original 3DGS "Make him joker"

Fig. 2: 3DEgo offers rapid, accurate, and adaptable 3D editing, bypassing the need
for original 3D scene initialization and COLMAP poses. This ensures compatibility
with videos from any source, including casual smartphone captures like the Van 360-
degree scene. The above results identify three cases challenging for IN2N [11], where our
method can convert a monocular video into customized 3D scenes using a streamlined,
single-stage reconstruction process.

an affine transformation that maps the 3D Gaussians from frame i to accurately
render the pixels in frame i+ 1. Hence, our method 3DEgo condenses a three-
stage 3D editing process into a single-stage, unified and efficient framework as
shown in Figure 1. Our contributions are as follows:

– We tackle the novel challenge of directly transforming monocular videos into
3D scenes guided by editing text prompts, circumventing conventional 3D
editing pipelines.

– We introduce a unique auto-regressive editing technique that enhances multi-
view consistency across edited views, seamlessly integrating with pre-trained
diffusion models without the need for additional fine-tuning.

– We propose a COLMAP-free method using 3D Gaussian splatting for recon-
structing 3D scenes from casually captured videos. This technique leverages
the video’s continuous time sequence for pose estimation and scene develop-
ment, bypassing traditional SfM dependencies.

– We present an advanced technique for converting 2D masks into 3D space,
enhancing editing accuracy through Pyramidal Gaussian Scoring (PGS), en-
suring more stable and detailed refinement.

– Through extensive evaluations on six datasets—including our custom GS25
and others like IN2N, Mip-NeRF, NeRFstudio Dataset, Tanks & Temples,
and CO3D-V2—we demonstrate our method’s enhanced editing precision
and efficiency, particularly with 360-degree and casually recorded videos, as
illustrated in Fig. 2.



4 U. Khalid et al.

2 Related Work

A growing body of research is exploring diffusion models for text-driven im-
age editing, introducing techniques that allow for precise modifications based on
user-provided instructions [30,35,37,39]. While some approaches require explicit
before-and-after captions [12] or specialized training [38], making them less ac-
cessible to non-experts, IP2P [4] simplifies the process by enabling direct textual
edits on images, making advanced editing tools more widely accessible.

Recently, diffusion models have also been employed for 3D editing, focusing
on altering the geometry and appearance of 3D scenes [1, 4, 10, 13, 16, 18, 22–24,
26,28,31,43,44,48,49].

Traditional NeRF representations, however, pose significant challenges for
precise editing due to their implicit nature, leading to difficulties in localiz-
ing edits within a scene. Earlier efforts have mainly achieved global transfor-
mations [6, 14, 29, 45, 47, 51], with object-centric editing remaining a challenge.
IN2N [11] introduced user-friendly text-based editing, though it might affect the
entire scene. Recent studies [7,19,52] have attempted to tackle local editing and
multi-view consistency challenges within the IN2N framework [11]. Yet, no exist-
ing approaches in the literature offer pose-free capabilities, nor can they create
a text-conditioned 3D scene from arbitrary video footage. Nevertheless, existing
3D editing methods [11,52] universally necessitate Structure-from-Motion (SfM)
preprocessing. Recent studies like Nope-NeRF [3], BARF [25], and SC-NeRF [15]
have introduced methodologies for pose optimization and calibration concurrent
with the training of (unedited) NeRF.

In this study, we present a novel method for constructing 3D scenes directly
from textual prompts, utilizing monocular video frames without dependence on
COLMAP poses [40], thus addressing unique challenges. Given the complexities
NeRF’s implicit nature introduces to simultaneous 3D reconstruction and camera
registration, our approach leverages the advanced capabilities of 3D Gaussian
Splatting (3DGS) [17] alongside a pre-trained 2D editing diffusion model for
efficient 3D model creation.

3 Method

Given a sequence of unposed images alongside camera intrinsics, we aim to re-
cover the camera poses in sync with the edited frames and reconstruct a photo-
realistic 3D scene conditioned on the textual prompt.

3.1 Preliminaries

In the domain of 3D scene modeling, 3D Gaussian splatting [17] emerges as
a notable method. The method’s strength lies in its succinct Gaussian repre-
sentation coupled with an effective differential rendering technique, facilitating
real-time, high-fidelity visualization. This approach models a 3D environment



3DEgo: 3D Editing on the Go! 5

using a collection of point-based 3D Gaussians, denoted as H where each Gaus-
sian h = {µ,Σ, c, α}. Here, µ ∈ R3 specifies the Gaussian’s center location,
Σ ∈ R3×3 is the covariance matrix capturing the Gaussian’s shape, c ∈ R3 is
the color vector in RGB format represented in the three degrees of spherical
harmonics (SH) coefficients, and α ∈ R denotes the Gaussian’s opacity level.
To optimize the parameters of 3D Gaussians to represent the scene, we need to
render them into images in a differentiable manner. The rendering is achieved
by approximating the projection of a 3D Gaussian along the depth dimension
into pixel coordinates expressed as:

C =
∑
p∈P

cpτp

p−1∏
k=1

(1− αk), (1)

where P are ordered points overlapping the pixel, and τp = αpe
− 1

2 (xp)
TΣ−1(xp)

quantifies the Gaussian’s contribution to a specific image pixel, with xp measur-
ing the distance from the pixel to the center of the p-th Gaussian. In the original
3DGS, initial Gaussian parameters are refined to fit the scene, guided by ground
truth poses obtained using SfM. Through differential rendering, the Gaussians’
parameters, including position µ, shape Σ, color c, and opacity α, are adjusted
using a photometric loss function.

3.2 Multi-View Consistent 2D Editing

“Make him Hulk”

Score 
Blender

IP2P U-Net

W
Ei-1 Ei-2

fi

Fig. 3: Autoregressive Editing. At
each denoising step, the model pre-
dicts w + 1 separate noises, which are
then unified via weighted noise blender
(Eq. 4) to predict εθ(et, f, T ,W ).

In the first step, we perform 2D editing
with key editing areas (KEA) based on
the user-provided video, V , and editing
prompt, T .

From the given video V , we extract
frames {f1, f2, . . . , fN}. Analyzing the
textual prompt T with a Large Language
Model L identifies key editing attributes
{A1, A2, . . . , Ak}, essential for editing, ex-
pressed as L(T ) → {A1, A2, . . . , Ak}.
Utilizing these attributes, a segmenta-
tion model S delineates editing regions in
each frame fi by generating a mask Mi,
with KEA marked as 1, and others as
0. The segmentation operation is defined
as, S(fi, {A1, A2, . . . , Ak}) → Mi, ∀i ∈
{1, . . . , N}. Subsequently, a 2D diffusion
model E selectively edits these regions in
fi, as defined by Mi, producing edited
frames {E1, E2, . . . , EN} under guidance
from T , such that E(fi,Mi) → Ei.



6 U. Khalid et al.

Consistent Multi-View2D Editing. As discussed above, differing from IN2N
[11] that incorporates edited images gradually over several training iterations,
our approach involves editing the entire dataset at once before the training starts.
We desire 1) each edited frame, Ei follows the editing prompt, T , 2) retain the
original images’ semantic content, and 3) the edited images, {E1, E2, . . . , EN}
are consistent with each other.
(i) Multi-view Consistent Mask. As S doesn’t guarantee consistent masks
across the views of a casually recorded monocular video, we utilize a zero-shot
point tracker [34] to ensure uniform mask generation across the views. The pro-
cedure starts by identifying query points in the initial video frame using the
ground truth mask. Query points are extracted from these ground truth masks
employing the K-Medoids [32] sampling method. This method utilizes the clus-
ter centers from K-Medoids clustering as query points. This approach guarantees
comprehensive coverage of the object’s various sections and enhances resilience
to noise and outliers.
(ii)Autoregressive Editing. To address the issue of preserving consistency
across multiple views, we employ an autoregressive method that edits frames in
sequence, with IP2P [4] editing restricted to the Key Editing Areas (KEA) as
delineated by the relevant masks. Instead of editing each frame independently
from just the input images - a process that can vary significantly between adja-
cent images - we integrate an autoregressive editing technique where the frame
to be edited is conditioned on already edited adjacent frames.

As discussed above, we incorporate IP2P [4] as a 2D editing diffusion model.
The standard noise prediction from IP2P’s backbone that includes both condi-
tional and unconditional editing is given as,

ε̃θ(et, f, T ) = εθ(et,∅f ,∅T ) + sf
(
εθ(et, f,∅T )− εθ(et,∅f ,∅T )

)
+ sT

(
εθ(et, f, T )− εθ(et, f,∅T )

) (2)

where sf and sT are image and textual prompt guidance scale.We suggest
enhancing the noise estimation process with our autoregressive training frame-
work. Consider a set of w views, represented as W = {En}wn=1. Our goal is to
model the distribution of the i-th view image by utilizing its w adjacent, already
edited views. To achieve this, we calculate image-conditional noise estimation,
εθ(et, E,∅T ) across all frames in W . The equation to compute the weighted
average ε̄θ of the noise estimates from all edited frames within W , employing β
as the weight for each frame, is delineated as follows:

ε̄θ(et,∅T ,W ) =

w∑
n=1

βnε
n
θ (et, En,∅T ) (3)

Here, En represents the n-th edited frame within W , and βn is the weight
assigned to the n-th frame’s noise estimate. The condition that the sum of all
β values over w frames equals 1 is given by as,

∑w
n=1 βn = 1. This ensures that

the weighted average is normalized. As we perform 2D editing without any pose
priors, our weight parameter β is independent of the angle offset between the
frame to be edited, fn and already edited frames in W . To assign weight pa-
rameters with exponential decay, ensuring the closest frame receives the highest



3DEgo: 3D Editing on the Go! 7

weight, we can use an exponential decay function for the weight βn of the n-th
frame in W . By employing a decay factor λd (0 < λd < 1), the weight of each
frame decreases exponentially as its distance from the target frame increases.
The weight βn for the n-th frame is defined as, βn = λw−n

d . This ensures the,
E closest to the target, f (n = 1) receives the highest weight. To ensure the
sum of the weights to 1, each weight is normalized by dividing by the sum of all
weights, βn = λw−n∑w

j=1 λw−j .This normalization guarantees the sum of βn across all
n equals 1, adhering to the constraint

∑w
n=1 βn = 1.

Our editing path is determined by the sequence of frames from the captured
video. Therefore, during the editing of frame fn, we incorporate the previous
w edited frames into the set W , assigning the highest weight β to En−1. Using
Eq. 2 and Eq. 3, we define our score estimation function as following:

εθ(et, f, T ,W ) = γf ε̃θ(et, f, T ) + γE ε̄θ(et,∅T ,W ) (4)

where γf is a hyperparameter that determines the influence of the original frame
undergoing editing on the noise estimation, and γE represents the significance
of the noise estimation from adjacent edited views.

3.3 3D Scene Reconstruction

After multi-view consistent 2D editing is achieved across all frames of the given
video, V , we leverage the edited frames Ei and their corresponding masks Mi

to construct a 3D scene without any SfM pose initialization. Due to the explicit
nature of 3DGS [17], determining the camera poses is essentially equivalent to
estimating the transformation of a collection of 3D Gaussian points. Next, we
will begin by introducing an extra Gaussian parameter for precise local editing.
Subsequently, we will explore relative pose estimation through incremental frame
inclusion. Lastly, we will examine the scene expansion, alongside a discussion on
the losses integrated into our global optimization strategy.

3D Gaussians Parameterization for Precise Editing. Projecting KEA
(see Section 3.2) into 3D Gaussians, H, using M for KEA identity assignment,
is essential for accurate editing. Therefore, we introduce a vector, m associated
with the Gaussian point, h = {µ,Σ, c, α,m} in the 3D Gaussian set, Hi of the
ith frame. The parameter m is a learnable vector of length 2 corresponding to
the number of labels in the segmentation map, M . We optimize the newly intro-
duced parameter m to represent KEA identity during training. However, unlike
the view-dependent Gaussian parameters, the KEA Identity remains uniform
across different rendering views. Gaussian KEA identity ensures the continuous
monitoring of each Gaussian’s categorization as they evolve, thereby enabling
the selective application of gradients, and the exclusive rendering of targeted
objects, markedly enhancing processing efficiency in intricate scenes.

Next, we delve into the training pipeline inspired by [3, 8] in detail which
consists of two stages: (i) Relative Pose Estimation, and (ii) Global 3D Scene
Expansion.



8 U. Khalid et al.

Per Frame View Initialization. To begin the training process, , we randomly
pick a specific frame, denoted as Ei. We then employ a pre-trained monocular
depth estimator, symbolized by D, to derive the depth map Di for Ei. Utilizing
Di, which provides strong geometric cues independent of camera parameters,
we initialize 3DGS with points extracted from monocular depth through camera
intrinsics and orthogonal projection. This initialization step involves learning
a set of 3D Gaussians Hi to minimize the photometric discrepancy between
the rendered and current frames Ei. The photometric loss, Lrgb, optimize the
conventional 3D Gaussian parameters including color c, covariance Σ, mean µ,
and opacity α. However, to initiate the KEA identity and adjust mg for 3D
Gaussians, merely relying on Lrgb is insufficient. Hence, we propose the KEA
loss, denoted as LKEA, which encompasses the 2D mask Mi corresponding to Ei.
We learn the KEA identity of each Gaussian point during training by applying
LKEA loss (LKEA). Overall, 3D Gaussian optimization is defined as,

H∗
i = arg min

c,Σ,µ,α
Lrgb(R(Hi), Ei) + argmin

m
LKEA(R(Hi),Mi), (5)

where R signifies the 3DGS rendering function. The photometric loss Lrgb as
introduced in [17] is a blend of L1 and D-SSIM losses:

Lrgb = (1− γ)L1 + γLD-SSIM, (6)

LKEA has two components to it. (i) 2D Binary Cross-Entropy Loss, and (ii)
3D Jensen-Shannon Divergence (JSD) Loss, and is defined as,

LKEA = λBCELBCE + λJSDLJSD (7)

Let N be the total number of pixels in the M , and X represent the set of all
pixels. We calculate binary cross-entropy loss LBCE as following,

LBCE =− 1

N
∑
x∈X

[
Mi(x) log (R(Hi,m)(x)) +(1−Mi(x)) log (1−R(Hi,m)(x))

]
(8)

where M(x) is the value of the ground truth mask at pixel x, indicating whether
the pixel belongs to the foreground (1) or the background (0). The sum computes
the total loss over all pixels, and the division by N normalizes the loss, making it
independent of the image size. A rendering operation, denoted as R(Hi,m)(x),
produces mR for a given pixel x, which represents the weighted sum of the vector
m values for the overlapping Gaussians associated with that pixel. Here, m and
mR both have a dimensionality of 2 which is intentionally kept the same as the
number of classes in mask labels. We apply softmax function on mR to extract
KEA identity given as, KEA Identity = softmax(mR). The softmax output is
interpreted as either 0, indicating a position outside the KEA, or 1, denoting a
location within the KEA.

To enhance the accuracy of Gaussian KEA identity assignment, we also intro-
duce an unsupervised 3D Regularization Loss to directly influence the learning



3DEgo: 3D Editing on the Go! 9

of Identity vector m. This 3D Regularization Loss utilizes spatial consistency in
3D, ensuring that the Identity vector, m of the top k-nearest 3D Gaussians are
similar in feature space. Specifically, we employ a symmetrical and bounded loss
based on the Jensen-Shannon Divergence,

LJSD =
1

2Y Z

Y∑
y=1

Z∑
z=1

[
S(my) log

(
2S(my)

S(my) + S(m′
z)

)
+ S(m′

z) log

(
2S(m′

z)

S(my) + S(m′
z)

)]
(9)

Here, S indicates the softmax function, and m′
z represents the zth Identity vector

from the Z nearest neighbors in 3D space.
Relative Pose Initialization. Next, the relative camera pose is estimated for
each new frame added to the training scheme. Hi

∗ is transformed via a learnable
SE-3 affine transformation Mi to the subsequent frame i + 1, where Hi+1 =
Mi ⊙ Hi. Optimizing transformation Mi entails minimizing the photometric
loss between the rendered image and the next frame Ei+1,

Mi
∗ = argmin

Mi

Lrgb(R(Mi ⊙Hi), Ei+1), (10)

In this optimization step, we keep the attributes of Hi
∗ fixed to distinguish

camera motion from other Gaussian transformations such as pruning, densifi-
cation, and self-rotation. Applying the above 3DGS initialization to sequential
image pairs enables inferring relative poses across frames. However, accumulated
pose errors could adversely affect the optimization of a global scene. To tackle
this challenge, we propose the gradual, sequential expansion of the 3DGS.

Gradual 3D Scene Expansion. As illustrated above, beginning with frame
Ei, we initiate with a collection of 3D Gaussian points, setting the camera pose
to an orthogonal configuration. Then, we calculate the relative camera pose
between frames Ei and Ei+1. After estimating the relative camera poses, we
propose to expand the 3DGS scene. This all-inclusive 3DGS optimization refines
the collection of 3D Gaussian points, including all attributes, across I iterations,
taking the calculated relative pose and the two observed frames as inputs. With
the availability of the next frame Ei+2 after I iterations, we repeat the above
procedure: estimating the relative pose between Ei+1 and Ei+2, and expanding
the scene with all-inclusive 3DGS.

To perform all-inclusive 3DGS optimization, we increase the density of the
Gaussians currently under reconstruction as new frames are introduced. Fol-
lowing [17], we identify candidates for densification by evaluating the average
magnitude of position gradients in view-space. To focus densification on these
yet-to-be-observed areas, we enhance the density of the universal 3DGS every I
step, synchronized with the rate of new frame addition. We continue to expand
the 3D Gaussian points until the conclusion of the input sequence. Through the
repetitive application of both frame-relative pose estimation and all-inclusive
scene expansion, 3D Gaussians evolve from an initial partial point cloud to a
complete point cloud that encapsulates the entire scene over the sequence. In



10 U. Khalid et al.

our global optimization stage, we still utilize the LKEA loss as new Gaussians
are added during densification.
Pyramidal Feature Scoring. While our 2D consistent editing approach, de-
tailed in Section 3.2, addresses various editing discrepancies, to rectify any
residual inconsistencies in 2D editing, we introduce a pyramidal feature scor-
ing method tailored for Gaussians in Key Editing Areas (KEA) identified with
an identity of 1. This method begins by capturing the attributes of all Gaussians
marked with KEA identity equal to 1 during initialization, establishing them as
anchor points. With each densification step, these anchors are updated to mirror
the present attributes of the Gaussians. Throughout the training phase, an intra-
point cloud loss, Lipc is utilized to compare the anchor state with the Gaussians’
current state, maintaining that the Gaussians remain closely aligned with their
initial anchors. Lipc is defined as the weighted mean square error (MSE) between
the anchor Gaussian and current Gaussian parameters with the older Gaussians
getting higher weightage.
Regularizing Estimated Pose. Further, to optimize the estimated relative
pose between subsequent Gaussian set, we introduce point cloud loss, Lpc similar
as in [3]. While we expand the scene, Lipc limits the deviation of the Gaussian
parameters while Lpc regularizes the all-inclusive pose estimation.

Lpc = DChamfer(M∗
iH∗

i ,H∗
i+1) (11)

Given two Gaussians, hi and hj , each characterized by multiple parameters en-
capsulated in their parameter vectors θi and θj respectively, the Chamfer dis-
tance DChamfer between hi and hj can be formulated as:

DChamfer(hi, hj) =
∑
p∈θi

min
q∈θj

∥p− q∥2 +
∑
q∈θj

min
p∈θi

∥q − p∥2 (12)

This equation calculates the Chamfer distance by summing the squared Eu-
clidean distances from each parameter in hi to its closest counterpart in hj ,
and vice versa, thereby quantifying the similarity between the two Gaussians
across all included parameters such as color, opacity, etc. Combining all the loss
components results in the total loss function during scene expansion,

LT = λrgbLrgb + λKEALKEA + λipcLipc + λpcLpc (13)

where λrgb, λKEA, λipc and λpc act as weighting factors for the respective loss
terms.

4 Evaluation

4.1 Implementation Details

In our approach, we employ PyTorch [33] for the development, specifically fo-
cusing on 3D Gaussian splatting. GPT-3.5 Turbo [5] is used for identifying the
editing attributes to identify the KEA. For segmentation purposes, SAM [20] is



3DEgo: 3D Editing on the Go! 11

Original 3DGS

"Give the wheels Blue Color and Make the recycle 
bins brown"

"Make the recycle bins green"

IN
2

N
O

u
rs

Original 3DGS IN2N Ours IN2N Ours IN2N Ours

"Turn him into Einstein and give his jacket 
blue color"

"Turn him into Einstein and give his jacket 
batman suit touch"

"Give him red hair"

Fig. 4: Qualitative comparison of our method with the IN2N [11] over two separate
scenes. When the editing prompt requests "Give the wheels Blue Color and Make the
recyclebins brown," IN2N [11] inadvertently alters the complete van color to blue as
well, instead of just changing the tire color. It must be noted that IN2N [11] uses poses
from COLMAP, while 3DEgo estimates poses while constructing the 3D scene.

used to generate the masks based on the key editing attributes identifying the
KIA. For zero-shot point tracking, we employ a point-tracker as proposed in [34].
The editing tasks are facilitated by the Instruct Pix2Pix [4] 2D diffusion model
by incorporating the masks to limit the editing within KEA. Additional details
are in supplementary material .

4.2 Baseline and Datasets

We carry out experiments across a variety of public datasets as well as our
prepared GS25 dataset.

Table 1: Average runtime efficiency across 25
edits from the GS25 dataset (Approx. minutes).
Method COLMAP Model Initialization Scene Editing

Instruct-N2N [11] 13min 22min 250min
Ours ✗ ✗ 25min

GS25 Dataset comprises 25 ca-
sually captured monocular videos
using mobile phones for compre-
hensive 3D scene analysis. This
approach ensures the dataset’s
utility in exploring and enhancing
360-degree real-world scene recon-
struction technologies. To further
assess the efficacy of the proposed
3D editing framework, we also
conducted comparisons across 5 public datasets: (i) IN2N [11], (ii) Mip-
NeRF [2],(iii) NeRFstudio Dataset [42], (iv) Tanks & Temples [21] and (v) CO3D-
V2 [36]. We specifically validate the robustness of our approach on the CO3D
dataset, which comprises thousands of object-centric videos. In our study, we
introduce a unique problem, making direct comparisons with prior research chal-
lenging. Nonetheless, to assess the robustness of our method, we contrast it with



12 U. Khalid et al.

Original 3DGS Gaussian Grouping Ours

Fig. 5: Our approach surpasses Gaussian Grouping [50] in 3D object elimination across
different scenes from GS25 and Tanks & Temple datasets. 3DEgo is capable of eliminat-
ing substantial objects like statues from the entire scene while significantly minimizing
artifacts and avoiding a blurred background.

state-of-the-art (SOTA) 3D editing techniques that rely on poses derived from
COLMAP. Additionally, we present quantitative evaluations alongside pose-free
3D reconstruction approaches, specifically NoPeNeRF [3], and BARF [25]. In
the pose-free comparison, we substitute only our 3D scene reconstruction com-
ponent with theirs while maintaining our original editing framework unchanged.
We present a time-cost analysis in Table 1 that underscores the rapid text-
conditioned 3D reconstruction capabilities of 3DEgo.

4.3 Qualitative Evaluation

As demonstrated in Figure 4, our method demonstrates exceptional prowess in
local editing, enabling precise modifications within specific regions of a 3D
scene without affecting the overall integrity. Our method also excels in multi-
attribute editing, seamlessly combining changes across color, texture, and ge-
ometry within a single coherent edit. We also evaluate our method for the object
removal task. The goal of 3D object removal is to eliminate an object from a 3D
environment, potentially leaving behind voids due to the lack of observational

Table 2: Comparing With Pose-known Methods. Quantitative evaluation of 200
edits across GS25, IN2N, Mip-NeRF, NeRFstudio, Tanks & Temples, and CO3D-V2
datasets against the methods that incorporate COLMAP poses. The top-performing
results are emphasized in bold.

Datasets DreamEditor IN2N Ours
CTIS↑ CDCR↑ E-PSNR↑ CTIS↑ CDCR↑ E-PSNR↑ CTIS↑ CDCR↑ E-PSNR↑

GS25 (Ours) 0.155 0.886 22.750 0.142 0.892 23.130 0.169 0.925 23.660
Mip-NeRF 0.149 0.896 23.920 0.164 0.917 22.170 0.175 0.901 24.250
NeRFstudio 0.156 0.903 23.670 0.171 0.909 25.130 0.163 0.931 24.990
CO3D-V2 0.174 0.915 24.880 0.163 0.924 25.180 0.179 0.936 26.020
IN2N 0.167 0.921 24.780 0.179 0.910 26.510 0.183 0.925 26.390
Tanks & Temples 0.150 0.896 23.970 0.170 0.901 23.110 0.164 0.915 24.190



3DEgo: 3D Editing on the Go! 13

Table 3: Comparing With Pose-Unknown Methods. Quantitative analysis of
200 edits applied to six datasets, comparing methods proposed for NeRF reconstruction
without known camera poses. The top-performing results are emphasized in bold.

Datasets BARF [25] Nope-NeRF [3] Ours
CTIS↑ CDCR↑ E-PSNR↑ CTIS↑ CDCR↑ E-PSNR↑ CTIS↑ CDCR↑ E-PSNR↑

GS25 (Ours) 0.139 0.797 20.478 0.128 0.753 19.660 0.169 0.925 23.660
Mip-NeRF 0.134 0.806 21.332 0.147 0.820 18.799 0.175 0.901 24.250
NeRFstudio 0.140 0.813 20.116 0.138 0.773 21.360 0.163 0.931 24.990
CO3D-V2 0.157 0.820 21.148 0.129 0.824 17.971 0.179 0.936 26.020
IN2N 0.150 0.829 22.092 0.161 0.818 22.604 0.183 0.925 26.390
Tanks & Temples 0.135 0.806 21.573 0.157 0.810 20.904 0.164 0.915 24.190

data. For the object removal task, we identify and remove the regions based
on the 2D mask, M . Subsequently, we focus on inpainting these "invisible re-
gions" in the original 2D frames using LAMA [41]. In Figure 5, we demonstrate
our 3DEgo’s effectiveness in object removal compared to Gaussian Grouping.
Our method’s reconstruction output notably surpasses that of Gaussian Group-
ing [50] in terms of retaining spatial accuracy and ensuring consistency across
multiple views.

4.4 Quantitative Evaluation

Original 3DGS IN2N IP2P+COLMAP Ours

"Turn his beard into blue color"

Fig. 6: Our method, 3DEgo achieves
precise editing without using any SfM
poses. To construct the IP2P+COLMAP
3D scene, we train nerfacto [42] model on
IP2P [4] edited frames.

In our quantitative analysis, we em-
ploy three key metrics: CLIP Text-
Image Direction Similarity (CTIS) [9],
CLIP Direction Consistency Score
(CDCR) [11], and Edit PSNR (E-
PSNR). We perform 200 edits across
the six datasets listed above. We
present quantitative comparisons with
COLMAP-based 3D editing tech-
niques in Table 2. Additionally, we
extend our evaluation by integrating
pose-free 3D reconstruction methods
into our pipeline, with the perfor-
mance outcomes detailed in Table 3.

5 Ablations

To assess the influence of different el-
ements within our framework, we em-
ploy PSNR, SSIM, and LPIPS metrics across several configurations. Given that
images undergo editing before the training of a 3D model, our focus is on deter-
mining the effect of various losses on the model’s rendering quality. The outcomes
are documented in Table 4, showcasing IP2P+COLMAP as the baseline, where



14 U. Khalid et al.

images are edited using the standard IP2P approach [4] and COLMAP-derived
poses are utilized for 3D scene construction.

Table 4: Ablation study results on GS25
dataset.

Method PSNR↑ SSIM↑ LPIPS↓
Ours 27.86 0.90 0.18
IP2P+COLMAP 23.87 0.79 0.23
Ours w/o LKEA 26.73 0.88 0.19
Ours w/o Lipc 22.46 0.0.78 0.24
Ours w/o Lpc 25.18 0.84 0.20

Although the IP2P+COLMAP
setup demonstrates limited textual
fidelity due to editing inconsis-
tencies (see Figure 6), we are
only interested in the rendering
quality in this analysis to ascer-
tain our approach’s effectiveness.
Table 4 illustrates the effects of
different optimization hyperparam-
eters on the global scene expan-
sion. The findings reveal that ex-
cluding LKEA in the scene expan-
sion process minimally affects ren-
dering quality. On the other hand, omitting Lipc leads to unwanted
densification resulting in the inferior performance of the trained model.

6 Limitation

Original 3D Model "Make the car golden and give wheels blue color" "Give the car pink color and make recycle bins brown"

Fig. 7: Due to the limitations of the IP2P
model, our method inadvertently alters the
colors of the van’s windows, which is not
the desired outcome.

Our approach depends on the pre-
trained IP2P model [4], which has
inherent limitations, especially evi-
dent in specific scenarios. For in-
stance, Figure 7 shows the challenge
with the prompt “Make the car golden
and give wheels blue color". Unlike
IN2N [11], which introduces unspe-
cific color changes on the van’s win-
dows. Our method offers more tar-
geted editing but falls short of gener-
ating ideal results due to IP2P’s limi-
tations in handling precise editing tasks.

7 Conclusion

3DEgo marks a pivotal advancement in 3D scene reconstruction from monocular
videos, eliminating the need for conventional pose estimation methods and model
initialization. Our method integrates frame-by-frame editing with advanced con-
sistency techniques to efficiently generate photorealistic 3D scenes directly from
textual prompts. Demonstrated across multiple datasets, our approach show-
cases superior editing speed, precision, and flexibility. 3DEgo not only simplifies
the 3D editing process but also broadens the scope for creative content gener-
ation from readily available video sources. This work lays the groundwork for
future innovations in accessible and intuitive 3D content creation tools.



3DEgo: 3D Editing on the Go! 15

Acknowledgement

This work was partially supported by the NSF under Grant Numbers OAC-
1910469 and OAC-2311245.

References

1. Bao, C., Zhang, Y., Yang, B., Fan, T., Yang, Z., Bao, H., Zhang, G., Cui, Z.:
Sine: Semantic-driven image-based nerf editing with prior-guided editing field. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition. pp. 20919–20929 (2023)

2. Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P.: Mip-
nerf 360: Unbounded anti-aliased neural radiance fields. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 5470–
5479 (2022)

3. Bian, W., Wang, Z., Li, K., Bian, J.W., Prisacariu, V.A.: Nope-nerf: Optimising
neural radiance field with no pose prior. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition. pp. 4160–4169 (2023)

4. Brooks, T., Holynski, A., Efros, A.A.: Instructpix2pix: Learning to follow image
editing instructions. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 18392–18402 (2023)

5. Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Nee-
lakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot
learners. Advances in neural information processing systems 33, 1877–1901 (2020)

6. Chiang, P.Z., Tsai, M.S., Tseng, H.Y., Lai, W.S., Chiu, W.C.: Stylizing 3d scene
via implicit representation and hypernetwork. In: Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision. pp. 1475–1484 (2022)

7. Dong, J., Wang, Y.X.: Vica-nerf: View-consistency-aware 3d editing of neural ra-
diance fields. Advances in Neural Information Processing Systems 36 (2024)

8. Fu, Y., Liu, S., Kulkarni, A., Kautz, J., Efros, A.A., Wang, X.: Colmap-free 3d
gaussian splatting (2023), https://arxiv.org/abs/2312.07504

9. Gal, R., Patashnik, O., Maron, H., Chechik, G., Cohen-Or, D.: Stylegan-nada: Clip-
guided domain adaptation of image generators. arXiv preprint arXiv:2108.00946
(2021)

10. Gao, W., Aigerman, N., Groueix, T., Kim, V.G., Hanocka, R.: Textdeformer: Ge-
ometry manipulation using text guidance. arXiv preprint arXiv:2304.13348 (2023)

11. Haque, A., Tancik, M., Efros, A.A., Holynski, A., Kanazawa, A.: Instruct-nerf2nerf:
Editing 3d scenes with instructions. In: Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision. pp. 19740–19750 (2023)

12. Hertz, A., Mokady, R., Tenenbaum, J., Aberman, K., Pritch, Y., Cohen-Or,
D.: Prompt-to-prompt image editing with cross attention control. arXiv preprint
arXiv:2208.01626 (2022)

13. Hong, F., Zhang, M., Pan, L., Cai, Z., Yang, L., Liu, Z.: Avatarclip: Zero-shot text-
driven generation and animation of 3d avatars. ACM Transactions on Graphics
(TOG) 41(4), 1–19 (2022)

14. Huang, Y.H., He, Y., Yuan, Y.J., Lai, Y.K., Gao, L.: Stylizednerf: consistent 3d
scene stylization as stylized nerf via 2d-3d mutual learning. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 18342–
18352 (2022)

https://arxiv.org/abs/2312.07504


16 U. Khalid et al.

15. Jeong, Y., Ahn, S., Choy, C., Anandkumar, A., Cho, M., Park, J.: Self-calibrating
neural radiance fields. In: ICCV (2021)

16. Karim, N., Khalid, U., Iqbal, H., Hua, J., Chen, C.: Free-editor: Zero-shot text-
driven 3d scene editing. arXiv preprint arXiv:2312.13663 (2023)

17. Kerbl, B., Kopanas, G., Leimkühler, T., Drettakis, G.: 3d gaussian splatting for
real-time radiance field rendering. ACM Transactions on Graphics (ToG) 42(4),
1–14 (2023)

18. Khalid, U., Iqbal, H., Karim, N., Hua, J., Chen, C.: Latenteditor: Text driven local
editing of 3d scenes. arXiv preprint arXiv:2312.09313 (2023)

19. Kim, S., Lee, K., Choi, J.S., Jeong, J., Sohn, K., Shin, J.: Collaborative score
distillation for consistent visual editing. In: Thirty-seventh Conference on Neu-
ral Information Processing Systems (2023), https://openreview.net/forum?id=
0tEjORCGFD

20. Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., Xiao, T.,
Whitehead, S., Berg, A.C., Lo, W.Y., et al.: Segment anything. arXiv preprint
arXiv:2304.02643 (2023)

21. Knapitsch, A., Park, J., Zhou, Q.Y., Koltun, V.: Tanks and temples: Benchmarking
large-scale scene reconstruction. ACM Transactions on Graphics (2017)

22. Kobayashi, S., Matsumoto, E., Sitzmann, V.: Decomposing nerf for editing via
feature field distillation. arXiv preprint arXiv:2205.15585 (2022)

23. Li, Y., Lin, Z.H., Forsyth, D., Huang, J.B., Wang, S.: Climatenerf: Physically-
based neural rendering for extreme climate synthesis. arXiv e-prints pp. arXiv–2211
(2022)

24. Li, Y., Dou, Y., Shi, Y., Lei, Y., Chen, X., Zhang, Y., Zhou, P., Ni, B.:
Focaldreamer: Text-driven 3d editing via focal-fusion assembly. arXiv preprint
arXiv:2308.10608 (2023)

25. Lin, C.H., Ma, W.C., Torralba, A., Lucey, S.: Barf: Bundle-adjusting neural radi-
ance fields. In: ICCV (2021)

26. Liu, H.K., Shen, I., Chen, B.Y., et al.: Nerf-in: Free-form nerf inpainting with rgb-d
priors. arXiv preprint arXiv:2206.04901 (2022)

27. Long, X., Guo, Y.C., Lin, C., Liu, Y., Dou, Z., Liu, L., Ma, Y., Zhang, S.H., Haber-
mann, M., Theobalt, C., et al.: Wonder3d: Single image to 3d using cross-domain
diffusion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 9970–9980 (2024)

28. Michel, O., Bar-On, R., Liu, R., et al.: Text2mesh: Text-driven neural stylization
for meshes. In: CVPR 2022. pp. 13492–13502 (2022)

29. Nguyen-Phuoc, T., Liu, F., Xiao, L.: Snerf: stylized neural implicit representations
for 3d scenes. arXiv preprint arXiv:2207.02363 (2022)

30. Nichol, A., Dhariwal, P., Ramesh, A., Shyam, P., Mishkin, P., McGrew, B.,
Sutskever, I., Chen, M.: Glide: Towards photorealistic image generation and editing
with text-guided diffusion models. arXiv preprint arXiv:2112.10741 (2021)

31. Noguchi, A., Sun, X., Lin, S., Harada, T.: Neural articulated radiance field. In:
ICCV 2021. pp. 5762–5772 (2021)

32. Park, H.S., Jun, C.H.: A simple and fast algorithm for k-medoids clustering. Expert
systems with applications 36(2), 3336–3341 (2009)

33. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,
T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing sys-
tems 32 (2019)

34. Rajič, F., Ke, L., Tai, Y.W., Tang, C.K., Danelljan, M., Yu, F.: Segment anything
meets point tracking. arXiv preprint arXiv:2307.01197 (2023)

https://openreview.net/forum?id=0tEjORCGFD
https://openreview.net/forum?id=0tEjORCGFD


3DEgo: 3D Editing on the Go! 17

35. Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., Chen, M.: Hierarchical text-
conditional image generation with clip latents. arXiv preprint arXiv:2204.06125
(2022)

36. Reizenstein, J., Shapovalov, R., Henzler, P., Sbordone, L., Labatut, P., Novotny,
D.: Common objects in 3d: Large-scale learning and evaluation of real-life 3d cat-
egory reconstruction. In: Proceedings of the IEEE/CVF International Conference
on Computer Vision. pp. 10901–10911 (2021)

37. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution
image synthesis with latent diffusion models. In: CVPR 2022. pp. 10684–10695
(2022)

38. Ruiz, N., Li, Y., Jampani, V., Pritch, Y., Rubinstein, M., Aberman, K.: Dream-
booth: Fine tuning text-to-image diffusion models for subject-driven generation.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 22500–22510 (2023)

39. Saharia, C., Chan, W., Saxena, S.e.a.: Photorealistic text-to-image diffusion models
with deep language understanding. NeurIPS 2022 35, 36479–36494 (2022)

40. Schonberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: CVPR (2016)
41. Suvorov, R., Logacheva, E., Mashikhin, A., Remizova, A., Ashukha, A., Silvestrov,

A., Kong, N., Goka, H., Park, K., Lempitsky, V.: Resolution-robust large mask
inpainting with fourier convolutions. In: Proceedings of the IEEE/CVF winter
conference on applications of computer vision. pp. 2149–2159 (2022)

42. Tancik, M., Weber, E., Ng, E., Li, R., Yi, B., Wang, T., Kristoffersen, A., Austin, J.,
Salahi, K., Ahuja, A., et al.: Nerfstudio: A modular framework for neural radiance
field development. In: ACM SIGGRAPH 2023 Conference Proceedings. pp. 1–12
(2023)

43. Tschernezki, V., Laina, I., Larlus, D., Vedaldi, A.: Neural feature fusion fields:
3d distillation of self-supervised 2d image representations. In: 2022 International
Conference on 3D Vision (3DV). pp. 443–453. IEEE (2022)

44. Wang, C., Chai, M., He, M., et al.: Clip-nerf: Text-and-image driven manipulation
of neural radiance fields. In: CVPR 2022. pp. 3835–3844 (2022)

45. Wang, C., Jiang, R., Chai, M., He, M., Chen, D., Liao, J.: Nerf-art: Text-driven
neural radiance fields stylization. IEEE Transactions on Visualization and Com-
puter Graphics (2023)

46. Weng, H., Yang, T., Wang, J., Li, Y., Zhang, T., Chen, C., Zhang, L.: Consis-
tent123: Improve consistency for one image to 3d object synthesis. arXiv preprint
arXiv:2310.08092 (2023)

47. Wu, Q., Tan, J., Xu, K.: Palettenerf: Palette-based color editing for nerfs. arXiv
preprint arXiv:2212.12871 (2022)

48. Xu, T., Harada, T.: Deforming radiance fields with cages. In: Computer Vision–
ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022,
Proceedings, Part XXXIII. pp. 159–175. Springer (2022)

49. Yang, B., Bao, C., Zeng, J., Bao, H., Zhang, Y., Cui, Z., Zhang, G.: Neumesh:
Learning disentangled neural mesh-based implicit field for geometry and texture
editing. In: European Conference on Computer Vision. pp. 597–614. Springer
(2022)

50. Ye, M., Danelljan, M., Yu, F., Ke, L.: Gaussian grouping: Segment and edit any-
thing in 3d scenes. arXiv preprint arXiv:2312.00732 (2023)

51. Zhang, K., Kolkin, N., Bi, S., Luan, F., Xu, Z., Shechtman, E., Snavely, N.: Arf:
Artistic radiance fields. In: European Conference on Computer Vision. pp. 717–733.
Springer (2022)



18 U. Khalid et al.

52. Zhuang, J., Wang, C., Lin, L., Liu, L., Li, G.: Dreameditor: Text-driven 3d scene
editing with neural fields. In: SIGGRAPH Asia 2023 Conference Papers. pp. 1–10
(2023)


	3DEgo: 3D Editing on the Go!

