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Abstract. Recent advances in implicit scene representation enable high-
fidelity street view novel view synthesis. However, existing methods op-
timize a neural radiance field for each scene, relying heavily on dense
training images and extensive computation resources. To mitigate this
shortcoming, we introduce a new method called Efficient Depth-Guided
Urban View Synthesis (EDUS) for fast feed-forward inference and effi-
cient per-scene fine-tuning. Different from prior generalizable methods
that infer geometry based on feature matching, EDUS leverages noisy
predicted geometric priors as guidance to enable generalizable urban view
synthesis from sparse input images. The geometric priors allow us to ap-
ply our generalizable model directly in the 3D space, gaining robustness
across various sparsity levels. Through comprehensive experiments on
the KITTI-360 and Waymo datasets, we demonstrate promising gener-
alization abilities on novel street scenes. Moreover, our results indicate
that EDUS achieves state-of-the-art performance in sparse view settings
when combined with fast test-time optimization.
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1 Introduction

Novel View Synthesis (NVS) of street scenes is a key issue in autonomous driv-
ing and robotics. Recently, Neural Radiance Fields (NeRF) [24] have evolved as
a popular scene representation for NVS. Several works [29, 41, 44, 48, 52] subse-
quently demonstrate promising NVS performance for street scenes.

However, these techniques are not applicable to sparse image settings, as
they are typical for autonomous driving. When vehicles move at high speeds, a
substantial portion of the content is captured from merely two or three view-
points. This insufficient overlap between consecutive views significantly hinders
the performance of existing methods. Furthermore, as the cameras are in forward
motion, the parallax angle between frames is typically small. This reduction in
parallax angle further amplifies the uncertainty of reconstruction.

Several recent methods address the sparse view setting: One line of works
[5,32,39] exploits external geometric priors or regularization terms, such as depth
⋆ Equally contributed. B Corresponding author.
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Fig. 1: Illustration. Left: Most existing generalizable NeRF methods rely on feature
matching for recovering the geometry, e.g., by constructing local cost volumes, poten-
tially overfitting certain reference camera pose distributions. Right: Our method lifts
geometric priors to the 3D space and fuses them into a global volume to be processed
by a generalizable network. This enhances robustness as the geometric priors are un-
affected by the reference image poses. We show synthesized images and depth maps
through a feed-forward inference in the middle.

maps, geometric continuity, and color cues, to enhance model performance. How-
ever, these approaches require per-scene optimization, which may take up to a
few hours to converge on a single scene.

Another line of research [3, 13, 42, 55], known as generalizable NeRF, resorts
to pre-training on large-scale datasets to gain domain-specific prior knowledge.
In new scenarios, these data-driven methods are able to efficiently infer novel
views from sparse inputs in a feed-forward manner, with the option for addi-
tional test-time optimization. Most of these methods rely on feature matching
to learn the geometry, which suffers from insufficient overlap and textureless
regions given sparse street views shown in Fig. 1. Furthermore, these methods
typically retrieve the nearest reference images for feature matching, potentially
leading to overfitting to specific camera pose configurations. This hampers their
generalization capability to unseen sparsity levels and various lengths of camera
baselines, especially in highly sparse settings. We hence ask the following ques-
tion: Can we develop an efficient and generalizable urban view synthesis method
capable of robustly handling diverse sparsity levels?

To tackle this challenge, we propose Efficient Depth-Guided Urban View
Synthesis (EDUS) which mitigates overfitting to a certain reference image pose
configuration. This is achieved by lifting the reference images to 3D space uti-
lizing approximate geometric priors, which are then processed by a feed-forward
network directly applied in 3D space. In contrast to existing generalizable NeRF
methods relying on feature matching for geometry prediction, whose perfor-
mance is dependent on the relative poses between reference images and the target
frame [3, 42], our method explicitly leverages geometric priors, e.g., monocular
depth. These priors remain unaffected by the reference image poses, making our
method more robust to various sparsity levels. In addition, our method allows
for accumulating geometric priors of reference frames within a large window
(60 meters) to learn a generalizable model in this global volume. This further
enables efficient per-scene fine-tuning by directly updating the global volume,
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circumventing the need to fine-tune numerous local volumes [3] or the entire
network [42,45].

In order to leverage the geometric prior within a limited distance while being
able to perform feed-forward inference for the full unbounded scene, we further
decompose the scene into three components: foreground regions, background,
and the sky, with a separate generalizable module designed for each. Specifically,
assuming a noisy point cloud of the foreground regions is provided by accumu-
lating monocular/stereo depth estimations of the reference views, we train a
generalizable 3D CNN to predict a feature volume. This 3D-to-3D generalizable
module enhances robustness against various reference pose configurations as its
input is the point cloud represented in world coordinates. While the 3D CNN
leads to good geometry prediction, it encounters challenges in capturing high-
frequency appearance details due to its inherent smoothness bias. To address this
limitation, we augment the model with 2D features retrieved from nearby input
views, enhancing the model’s ability to predict detailed appearance. Finally, we
leverage image-based rendering for the background and sky.

Our contributions in this paper can be summarized as follows: 1) We investi-
gate the utility of noisy geometric priors and 3D-to-3D refinement for generaliz-
able NeRF models, achieving promising feed-forward inference on various sparse
urban settings. Our global volume-based representation further allows for effi-
cient per-scene optimization which converges within five minutes. 2) We build our
generalizable model tailored for unbounded street scenes by utilizing three sepa-
rate generalizable components for the foreground, background, and the sky. This
allows us to leverage the geometric priors within limited distances while being
able to represent the full unbounded scene. 3) Our proposed approach outper-
forms baselines for sparse novel view synthesis on KITTI-360 dataset, including
geometric regularization-based methods and generalization-based methods. We
further demonstrate that our model trained on KITTI-360 shows convincing
generalization performance on the Waymo dataset.

2 Related Work

Novel View Synthesis: Neural Radiance Fields [24] revolutionized the task
of Novel View Synthesis (NVS). Many follow-up works improve NeRF to achieve
real-time rendering, fast training [6,21,34,35], scene editing [10], etc. In this work,
we focus on generalizable NeRF on street views which has many applications in
autonomous driving.
Street Scene NeRF: There are a few NeRF-based methods carefully designed
to deal with street scenes [18,26,29,44]. One line of methods [29,44,52] combines
LiDAR and RGB data for street scene reconstruction. In this work, we optionally
leverage LiDAR in the generalizable training stage and consider an RGB-only
setting for test scenes. Another line of methods consider the street scenes based
on RGB images [7, 8, 18, 26, 43]. All aforementioned methods takes relatively
dense images as input and consider per-scene optimization. Our method, in con-
trast, focuses on generalizable street scenes NeRF which is applicable to various
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sparsity levels. Methods for unbounded scene representation are also relevant
for street scenes [1,2,23,41]. Our method takes inspiration from these per-scene
optimization methods and decomposes the scene into foreground, background,
and sky with a generalizable module for each.

Sparse View NeRF: One line of works leverages depth or appearance regu-
larization [5, 14, 25, 28, 32, 39, 49] to address the challenging task of sparse view
synthesis. While leading to improvement in performance, these methods suffer
from long training time. In contrast, our method takes the geometric priors as
input to train a generalizable NeRF, enabling feed-forward inference and fast per-
scene optimization. Generalizable NeRF approaches are also intensively studied
in the literature [3, 15, 22, 42, 45, 46, 55]. Many works are built on image-based
rendering [42,55] or local cost volume [3,15,22]. As suggested in the current work
MuRF [45], these methods struggle to generalize well to large baselines. MuRF
tackles this issue by constructing a cost volume at the target view and achieves
strong generalization to multiple baselines. However, it requires a long time for
per-scene optimization, as the full computationally expensive model needs to
be fine-tuned. Our method is more closely related to PointNeRF [46] and NeO
360 [13], both reconstructing a scene representation in a global world coordi-
nate. PointNeRF leverages point clouds from a multi-view stereo algorithm and
builds a point-based radiance field. We instead apply a 3D CNN to the input
point cloud for refinement, allowing for better toleration of noisy point cloud
input. NeO 360 [13] proposes to learn a tri-plane-based global scene representa-
tion from sparse RGB images, enabling 360◦ on the synthetic dataset. However,
when it comes to complex street scenes with forward-moving cameras, NeO 360
struggles to directly predict the global scene representation. Our method tackles
this challenge by incorporating explicit geometric priors.

NVS with Point Cloud: There are many existing NVS methods that take
explicit geometric priors into account. [16,46] learn a scene starting from a coarse
point cloud, which can be obtained from multi-view stereo techniques [31] or
learning-based methods [50, 53, 54] by unprojecting depth maps. These point-
based works combine explicit geometric priors and implicit networks to regress
color and other attributes of each point in the point cloud, and then render 2D
images through volume rendering or rasterization. Other methods [19,30] project
the point cloud into feature images first and then learn a model to fill holes during
neural rendering. Instead, we only take as input the point cloud, extracting
geometry and appearance guidance for the generalizable reconstruction.

Some methods utilize encoders to process point clouds, followed by a volume-
based neural rendering procedure. [12,56] mainly focus on pre-trained point cloud
encoder for downstream tasks, and do not consider cases like sparse street views
into consideration. [47] reconstructs a driving scene well with either 2D images or
3D point cloud inputs, but it is limited by per-scene optimization. In contrast,
our work is a generalizable method designed for autonomous driving scenes,
which has a fast convergence speed and can obtain good reconstruction results
even in extremely sparse viewpoints with fine-tuning.
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Fig. 2: EDUS. Our model takes as input sparse reference images and renders a color
image at a target view point. This is achieved by decomposing the scene into three
generalizable modules: 1) depth-guided generalizable foreground fields to model the
scene within a foreground volume; 2) generalizable background fields to model the
background objects and stuff; and 3) generalizable sky fields. Our model is trained on
multiple street scenes using RGB supervision Lrgb and optionally LiDAR supervision
Llidar. We further apply Lsky to decompose the sky from the other regions and Lentropy

to penalize semi-transparent reconstructions.

3 Method

This paper explores the learning of a generalizable Neural Radiance Field (NeRF)
for rendering novel views from sparse reference images in unbounded street
scenes, with the option of test-time optimization. An overview of our EDUS is
presented in Fig. 2. Initially, we partition the scene into foreground, background,
and sky components. This partitioning facilitates the characterization of fore-
ground areas with restricted extent utilizing a 3D-to-3D adaptable framework,
while the remaining distant regions are modeled through image rendering tech-
niques. Throughout this paper, the term foreground denotes the region confined
within a predetermined volume, while background encompasses substances and
objects outside of this volume, excluding the sky. We develop distinct general-
izable modules for each component. The core of our method is the depth-guided
generalizable foreground field, effectively combining noisy geometric priors and
image-based rendering for representing close-range regions (Sec. 3.1). We fur-
ther exploit image-based rendering to model the background regions and the sky
(Sec. 3.2). Finally, these three parts are composed to represent the unbounded
street scenes (Sec. 3.3). Our method is trained on multiple street scenes and
enables feed-forward NVS on unseen validation scenes, with optional fine-tuning
for further improvement (Sec. 3.4).

3.1 Depth-Guided Generalizable Foreground Fields

Depth Estimation: We explore geometric priors of existing powerful depth
estimation methods to enhance our generalizable NeRF for foreground regions,
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i.e., regions within a close-range volume. Given N input images {Ii}Ni=0 for a
single scene, we exploit off-the-shelf depth estimators to predict metric depth
maps {Di}Ni=0. The depth estimator can be a stereo depth model [33] when the
input contains stereo pairs. Otherwise, we adopt a metric monocular depth esti-
mator [54] which provides less accurate but plausible metric depth estimations.
Point Cloud Accumulation: With the provided camera intrinsic matrices
{Ki}Ni=0 and camera poses {Ti}Ni=0, we unproject the predicted depth maps
{Di}Ni=0 into 3D space, and accumulate them in the world coordinate system to
form a scene point cloud P ∈ RNp×3. Specifically, for each pixel with homoge-
neous coordinate u from a given frame, its world coordinate x is computed as:
x =

(
dRiK

−1u+ ti
)
, where d denotes the pixel’s estimated depth and (Ri, ti)

is derived from the ith frame’s cam-to-world transformation Ti. Additionally, we
assign a 3-channel color value to each unprojected point by retrieving the color
from the RGB images. Note that we keep points that fall within the foreground
volume and omit the rest, as depth predictions are usually untrustworthy at far
regions.

We also utilize depth consistency check to filter noise. Specifically, we un-
project a depth map Di of ith frame to 3D and reproject it to a nearby view j,
obtaining a projected depth Di→j . Next, we compare Di→j and Dj , and mask
out pixels if the difference exceeds an empirical threshold σ = 0.2m.
Modulation-based 3D Feature Extraction: The resulting noisy foreground
point cloud serves as input for our generalizable feature extraction network f3D

θ .
We first discretize the point cloud P into a volume P ∈ RH×W×D×3, where
H×W ×D denotes the spatial resolution. The discretized point cloud is mapped
to a feature volume F ∈ RH×W×D×F , where F denotes the feature dimension:

F = f3D
θ (P). (1)

Notably, the design choice of f3D
θ affects the generalization performance. We

experimentally observe that a conventional 3D U-Net with encoder-decoder ar-
chitecture results in blurry artifacts when generalizes to new scenes, as shown
in supplementary material. Instead, we draw inspiration from [27,51] to employ
a 3D Spatially-Adaptive Normalization convolutional neural network (SPADE
CNN) to modulate feature volume generation at multiple scales, which is a pop-
ular strategy in semantic image synthesis. More specifically, our SPADE CNN
discards the encoder part and comprises 3 SPADE residual blocks and upsam-
pling layers. For each block, SPADE CNN downsamples the input volume P to
the corresponding spatial resolution and uses it to modulate layer activations
with learned scale and bias parameters. We hypothesize that SPADE CNN is
more effective in preserving the appearance information encoded in P thanks
to its multi-resolution modulation. Given a sampled point x ∈ R3 in the 3D
space, we retrieve its feature f3Dbg ∈ RF from F using trilinear interpolation.
More network details are provided in the supplementary materials.
Image-based 2D Feature Retrieval: While the SPADE CNN takes as input
the noisy depth predictions and achieves reasonable generalization, we observe
that using f3Dbg alone struggles to provide high-frequency details in appearance.
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This is due to two reasons: 1) the point cloud discretization limits the spatial
resolution; 2) the 3D CNN suffers from an inductive smoothness bias. Therefore,
we propose to additionally exploit the idea of image-based rendering to achieve
better generalization of the appearance. Inspired by [42], we first select n nearest
neighboring views from the target view based on the distances of the camera
poses. This forms a group of nearest reference images Î = {Ik}Kk=0. For each
sample point x, we project it to the reference frame in Î. Next, we retrieve the
colors from the reference frames based on bilinear interpolation, and concatenate
them to form a 2D feature vector f2Dfg ∈ R3K . We set K = 3 in this paper.
Color and Density Decoder: Given a 3D point confined to the foreground
volume, we predict its density σfg and color cfg based on the volumetric feature
f3Dfg and the 2D feature f2Dfg . More specifically, the density σfg is predicted by
applying a tiny MLP gθ to the volumetric feature f3Dfg .

For prediction of the color cfg , we concatenate f3Dfg and f2Dfg and feed them
into a six-layer MLP. The 3D location x and the viewing direction d are further
considered as input. This process can be expressed as:

σfg = gθ(f
3D
fg ), cfg = hθ(f

3D
fg , f2Dfg , γ(x),d) (2)

Different from the original NeRF [24], we apply positional encoding γ(·) to the lo-
cation x but not to the viewing direction d as we expect non-Lambertion objects
to be mainly modeled by the 2D feature f2Dfg . Please refer to the supplementary
material for more details.

3.2 Generalizable Background and Sky Fields

As mentioned above, the foreground volume only covers a limited street scene
and falls short in representing the distant landscape (often hundreds of meters
away) and the sky. Therefore, we model the background region and the sky
separately.
Image-based Background Modelling: An object placed outside the fore-
ground volume is regarded as a background landscape. Due to perspective pro-
jection, distant objects occupy only a small portion of the image and have less
detailed appearance. In this case, we observe that image-based rendering is suf-
ficient to faithfully reconstruct the background regions as relative depth changes
are small. Thus, we employ an MLP hbg

θ to jointly predict the background density
σbg and the color cbg based on 2D image-based feature f2Dbg :

σbg, cbg = hbg
θ (f2Dbg , γ(x),d) (3)

where x is spatial location and d is the view direction. Same to the foreground,
we retrieve color from nearby images and concatenate them to form vector f2Dbg .
Sky Modelling: Street scenes invariably contain the infinite sky region where
rays do not collide with any physical objects, leading to minimal changes in
appearance while moving forward. Thus, we omit the positional influence and
represent the sky as a view-dependent environment map. Given that the sky’s
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Sky Background Full Image

Fig. 3: Scene Decomposition Visual Results.

appearance between consecutive frames is remarkably similar, we retrieve the 2D
image feature f2Dsky from reference frames, as we discussed in Sec. 3.1, and then
blend the sky color using a single-layer MLP hsky

θ conditioned on view directions:

csky = hsky
θ (f2Dsky,d). (4)

3.3 Scene Decomposition

The composition of the foreground, background, and sky leads to our full model
for the unbounded street scenes, as shown in Fig. 3. Here, we elaborate on the
compositional volume rendering for each ray. To render a pixel, we cast a ray
r = ro+td from the camera center ro along its view direction d. We sample points
along the ray to query their color and density. The color and density of points
falling within the foreground volume are queried through Eq. (2), otherwise the
background model in Eq. (3) is applied.

We accumulate all foreground and background points to obtain the color and
the accumulated alpha mask:

C(fg+bg) =

M∑
i=1

Tk (1− exp (−σi)) ci, α(fg+bg) =

M∑
i=1

Tk (1− exp (−σi)) (5)

where Ti = exp
(
−
∑i−1

j=1 σj

)
denotes the accumulated transmittance. Finally,

we add the sky color of the ray assuming it is located at an infinite distance:

C = C(fg+bg) + (1− α(fg+bg))csky (6)

3.4 Training and Fine-tuning

we use multiple training losses to train on different scenes and (optional) test-
time optimization on a specific scene. The most common sensors used in self-
driving cars are cameras and LiDAR. Compared to cameras, LiDAR data are
more expensive to acquire and may not be deployed in unseen test scenarios.
As a result, we use LiDAR information only for training, to enhance geometric
understanding of the model. This leads to the training loss function and fine-
tuning loss functions as follows:

Ltraining = Lrgb + λ1Llidar + λ2Lsky + λ3Lentropy (7)
Lfine-tuning = Lrgb + λ2Lsky + λ3Lentropy (8)
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We now elaborate on the loss terms.
Photometric loss: We use the L2 loss to minimize the photometric loss be-
tween the rendered colors C and ground truth pixel color C:

Lrgb = ∥C−Cgt∥22 (9)

Sky loss: In order to separate the sky from the foreground and background
solid structures, we leverage a pre-trained segmentation model [38] to provide
pseudo sky mask M sky, and supervise the rendered sky mask with binary cross
entropy (BCE) loss:

Lsky = BCE
(
1− α(fg+bg),M sky

)
(10)

LiDAR loss: During training, we optionally exploit LiDAR as an extra sen-
sor to improve the reconstruction of our method. Given a set of collected lidar
samples r(z) = oℓ + zdℓ, Urban Radiance Fields [29] proposes line-of-sight loss
which encourages the ray distribution to approximate the Gaussian Distribution
N

(
0, ϵ2

)
, with ϵ being the bound width of the solid structure. As the assumption

of Gaussian distribution may not hold for all rays, we experimentally observe
that the loss in [29] leads to unstable training in our setting. Hence, we propose
to soft the strict constraints as follows:

Lempty =

∫ z−ϵ

tn

w(t)2dt, Lnear = 1−
∫ z+ϵ

z−ϵ

w(t)dt, Ldist =

∫ tf

z+ϵ

w(t)2dt (11)

where the bound width ϵ is set to 0.5 meters as initialization and we apply ex-
ponential decay to the minimum 0.1 meters, which enables gradually decreasing
ambiguities along the training step. Note that the second term Lnear encour-
ages our model to increase volumetric density within a certain range but without
specifying its distribution, whereas the first and third terms are required to keep
the space empty for the rest of the regions.
Entropy regularization loss: To penalize our model representing the distant
landscape as semi-transparent, we introduce the entropy regularization loss to
encourage opaque rendering followed by StreetSurf [9]:

Lentropy = −(αfg lnαfg + (1− αfg) ln(1− αfg)) (12)

4 Implementation details

Input Volume Masking: In the training stage, we randomly mask small
regions of the input volume P. Similar to Masked AutoEncoders [11], this trick
improves the completion capability when given a sparse and incomplete point
cloud. More details and ablation results are shown in the supplementary material.
Hierarchical Sampling: For rendering a ray, we follow NeuS [40] to perform
hierarchical sampling during training and inference. This is achieved by distribut-
ing the initial half of these samples uniformly, followed by iterative importance
sampling for the rest.
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Appearance Embedding: The images collected from urban scenarios fre-
quently present variable illumination or other environmental changes. Inspired
by [23, 37], we add per-frame appearance embedding to account for exposure
variations. For feed-forward inference on unseen scenes, we set the appearance
embeddings as the mean embedding averaged across all training frames. Once
fine-tuning is considered, we learn the appearance embedding of the reference
images and interpolate them for the test views.
Training Details: We train our neural network end-to-end using Adam op-
timizer [17] with initial learning rate 5 × 10−3. We set λ1 = 0.1, λ2 = 1 and
λ3 = 0.002 as loss weights in our work. During training, we randomly select a
single image and randomly sample 4096 pixels as a batch. Our EDUS is trained
on one RTX4090 GPU with 500k steps, which takes about 2 days.

5 Experiment

Dataset: We conduct generalizable training on the KITTI-360 dataset [20].
Specifically, we gather 80 sequences encompassing varied street perspectives for
training purposes, with each sequence comprising 60 stereo images alongside
their respective camera poses. In the case of training scenes, we optionally uti-
lize accumulated LiDAR points to supervise the geometry. Across all scenes,
we standardize the pose by centering the translation around the origin and es-
tablish the axis-aligned bounding box (AABB) to decompose the street scene.
The foreground range is set to [−12.6, 12.6 m] for X axes, [−3, 9.8 m] for Y
axes, [−20, 31.2 m] for Z axes, and dimension of the voxelized pointcloud is
128× 64× 256 since the voxel size is set to (0.2 m, 0.2 m, 0.2 m).

We use five public validation sets from the KITTI-360 dataset and five scenes
sourced from Waymo [36] as our test scenarios, with the Waymo dataset serv-
ing as an out-of-domain test set. It is important to note that the test sets from
KITTI-360 have no overlap with the training scenes. Each test sequence com-
prises 60 images covering approximately 60 meters. To further assess our robust-
ness against various levels of sparsity, we consider three sparsity settings: 50%,
80%, and 90% drop rates, where a higher drop rate indicates a more sparse set
of reference images. To ensure fairness in comparison, we employ the same test
images across all drop rates.
Depth: In this paper, we use both monocular and binocular depth to conduct
our experiment. For test sequences in KITTI-360, depth used as both supervision
and input is stereo depth generated by MobileStereoNet [33]. We only supervise
the regularization-based methods by left-eye depth. For the geometry-guided
methods, we use the left-eye depth values of corresponding training images and
aggregate them into a point cloud after depth consistency check [4]. For experi-
ments on Waymo, we employ Metric3D [54] to get metric monocular depth maps
and unproject them to form point clouds for evaluation.
Baselines: We conduct a comparative analysis of our method against two lines
of approaches. Firstly, we compare our model with generalizable approaches:
IBRNet [42], MVSNeRF [3], NeO 360 [13] and MuRF [45]. We train each model
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Methods Setting KITTI360drop50% KITTI360drop80% Waymodrop50%

PSNR↑SSIM↑ LPIPS↓ PSNR↑SSIM↑ LPIPS↓ PSNR↑SSIM↑ LPIPS↓

IBR-Net
No

per-scene
opt.

19.99 0.624 0.217 15.96 0.469 0.354 21.28 0.777 0.199
MVSNeRF 17.73 0.618 0.328 16.50 0.577 0.365 19.58 0.662 0.278
Neo360 13.73 0.394 0.624 12.98 0.357 0.659 14.07 0.541 0.708
MuRF 22.19 0.741 0.264 18.69 0.639 0.353 23.12 0.779 0.318
Ours 21.93 0.745 0.178 19.63 0.668 0.244 23.16 0.761 0.189
IBR-Net

Per-scene
opt.

21.17 0.657 0.199 17.98 0.529 0.279 23.39 0.825 0.163
MVSNeRF 19.47 0.647 0.310 18.06 0.602 0.353 24.28 0.759 0.207
Neo360 17.92 0.489 0.566 17.51 0.445 0.581 22.59 0.670 0.522
MuRF 23.71 0.762 0.233 19.70 0.666 0.321 28.30 0.846 0.175
Ours 24.43 0.793 0.136 20.91 0.712 0.220 28.45 0.834 0.132

Table 1: Quantitative Comparison on five test scenes among generalizable meth-
ods. All models are trained on the KITTI-360 dataset using drop 50% sparsity level.
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Drop 50% feed-forward Drop 80% feed-forward Drop 80% fine-tuned

Fig. 4: Qualitative Comparison with generalizable baselines.

from scratch on the 80 training sequences of KITTI-360, and assess their perfor-
mance both with and without per-scene fine-tuning. For all generalizable meth-
ods, we use three reference frames for training and inference. Secondly, we com-
pare with test-time optimization methods, including methods for sparse view
settings: MixNeRF [32], SparseNeRF [39], DS-NeRF [5], and one taking point
clouds as input: 3DGS [16]. To maintain parity in our evaluation, we furnish the
depth maps utilized in our method to train depth-supervision approaches [5,39],
and employ our accumulated point cloud as the initialization for 3DGS [16].

5.1 Comparison with Generalizable NeRFs

Feed-Foward Inference: We train all generalizable methods under 50% drop
rate setting on KITTI-360 and assess their performance using both the 50% and
80% drop rate sparsity levels on KITTI-360. Tab. 1 and Fig. 4 show the qualita-
tive and quantitative comparisons respectively. The results show that our pro-
posed EDUS achieves photorealistic novel view synthesis on the complex street
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Fig. 5: Zero-shot Inference on Waymo. Fig. 6: Training Time.

view using only feed-forward inference. More importantly, our method outper-
forms the baselines with a larger gap when evaluated at a higher unseen sparsity
level (drop 80%), as our method is less sensitive to the camera pose distribution.
IBR-Net and MVSNeRF are mainly suitable for small-scale, object-level scenes
and have difficulty handling unbounded street views, resulting in blurry images.
NeO 360 directly predicts a tri-plane-based radiance field from RGB images,
making it struggle to reconstruct the street scene of 60 meters driving distance.
Our concurrent work MuRF [45] achieves comparable PSNR and SSIM in drop
50% but sometimes shows blocky artifacts, resulting in worse LPIPS. Further-
more, our methods outperform all baselines on the unseen Waymo datasets,
demonstrating the generalization capability empowered by the geometric priors,
see Fig. 5.
Per-Scene Fine-Tuning: We further fine-tune all generalizable methods under
different sparsity levels, as shown in Tab. 1. For each novel street sequence, we
freeze our 3D CNN and directly fine-tune the feature volume to enable efficient
convergence. Note that our feature volume is initialized by running a single feed-
forward pass of the 3D CNN, yielding a good initialization and subsequently
yielding improved performance than baselines after fine-tuning.

Note that MuRF constructs local volume at each target view and requires
complete propagation of gradients, resulting in slower convergence during per-
scene optimization. In contrast, our global volume-based approach demonstrates
faster convergence speed, see Fig. 6, making it more suitable for urban scenes.
Besides, EDUS shows superior memory efficiency when handling full-resolution
(376 × 1408) inference with 6GB while MuRF requires splitting the same size
image into 4 patches, each consuming 16.2GB on a single RTX4090 (24GB).

5.2 Comparison with Test-Time Optimization NeRFs

We proceed to compare our method with test-time optimization approaches
across various sparsity levels. Tab. 2 and Fig. 7 demonstrate that our method
achieves state-of-the-art performance at high sparsity levels, attributable to the
robust initialization provided by our generalizable model. In the drop 50% set-
ting, the recent state-of-the-art method 3DGS [16] achieves the best SSIM and
LPIPS, but their performance experiences significant degradation in the 80%
and 90% settings. Our method achieves superior performance than other geo-
metric regularization [32] or depth-supervision [5, 39] methods. Although they
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Setting Methods Drop Rate Cost Time PSNR↑ SSIM↑ LPIPS↓

Geometric
Reg.

MixNeRF
50% ∼ 51min 21.50 0.625 0.357
80% ∼ 38min 18.89 0.558 0.404
90% ∼ 31min 17.89 0.529 0.416

SparseNeRF
50% ∼ 35min 21.34 0.642 0.552
80% ∼ 27min 19.18 0.607 0.559
90% ∼ 21min 17.94 0.559 0.608

DS-NeRF
50% ∼ 36min 20.40 0.604 0.601
80% ∼ 28min 18.91 0.581 0.620
90% ∼ 22min 17.91 0.564 0.632

Depth Input

3D GS
50% ∼ 29min 24.37 0.804 0.109
80% ∼ 18min 19.80 0.679 0.234
90% ∼ 10min 17.46 0.597 0.332

Ours
50% ∼ 5min 24.43 0.793 0.136
80% < 5min 20.91 0.712 0.220
90% < 5min 19.16 0.657 0.271

Table 2: Test-Time Optimization Comparison.

MixNeRF SparseNeRF DS-NeRF

3DGS Ours GT
Fig. 7: Qualitative Comparison with Test-Time Optimization baselines.

show good performance on small-scale datasets (e.g. DTU, LLFF datasets), they
struggle with urban scenes which contain more complex geometry layouts. In a
sparser setting, we maintain our advantages and achieve a PSNR of 20.91dB
in 80% drop rate and 19.16dB PSNR in 90% drop rate, respectively. Another
advantage of our work is that we achieve good quality with fast fine-tuning on
novel scenes. Given the same computation recourse, our training time (5 min-
utes) outperforms other baselines by a large margin, 5× faster than DS-Nerf [5]
and SparseNerf [39] and 10× faster than MixNeRF [32].

5.3 Ablation Study

In Tab. 3, we ablate the design choices of our method. We report the results on
KITTI-360 validation dataset with 50% drop rate. First, we replace the mod-
ulated SPADE CNN with the traditional 3D U-Net, yielding the results (3D
U-Net). This worsens feed-forward inference results, indicating that the mod-
ulated convolutions better preserve the information of the input point cloud.
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Ablation Feed-foward NVS Finetuning NVS
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

3D U-Net 21.49 0.716 0.194 24.14 0.789 0.145
w/o f3D

fg 15.71 0.532 0.441 18.91 0.609 0.343
w/o f2D

fg 18.28 0.593 0.342 21.41 0.648 0.315
w/o decomposition 20.65 0.684 0.195 22.54 0.754 0.175

w/o Llidar 21.75 0.742 0.189 23.77 0.788 0.139

Full model 21.93 0.745 0.178 24.43 0.793 0.136
Table 3: Ablation study. Metrics are averaged over the 5 test scenes.

Next, we remove the 3D feature from the full model, yielding a baseline similar
to IBRNet but augmented with scene decomposition (w/o f3Dfg ). This leads to
a significant drop in performance, indicating the importance of the geometric
priors. We also study the effect of the 2D image-based feature, and observe that
removing it leads to blurry rendering (w/o f2Dfg ). This demonstrates that the
3D feature f3Dfg alone is insufficient due to the inherent inductive bias of the
3D CNN. When removing the street decomposition and representing the entire
scene as foreground (w/o decomposition), it leads to artifacts in background re-
gions due to the incorrect geometric modeling. Finally, we demonstrate that the
LiDAR supervision of the training sequences leads to slight improvements (w/o
Llidar). We observe that the LiDAR supervision improves details, leading to a
larger improvement in LPIPS compared to PSNR and SSIM. Note that LiDAR
supervision is not applied during test, but only applied to the training sequences
to enhance our generalizable geometry prediction against noisy geometric priors.
Please refer to our supplementary material for qualitative comparisons.

6 Conclusion

The paper presents EDUS, a generalizable and efficient method for sparse urban
view synthesis. By integrating geometric priors into a generalizable model, we
demonstrate that our method achieves robust performance across various den-
sity levels and datasets. It further enables efficient fine-tuning and outperforms
existing sparse view methods based on good initialization. We will investigate
handling dynamic objects in street views in future work, which poses challenges
to generalizable approaches.
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