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Abstract. Weather forecasting requires both deterministic outcomes for
immediate decision-making and probabilistic results for assessing uncer-
tainties. However, deterministic models may not fully capture the spec-
trum of weather possibilities, and probabilistic forecasting can lack the
precision needed for specific planning, presenting significant challenges
as the field aims for enhance accuracy and reliability. In this paper, we
propose the Deterministic Guidance-based Diffusion Model (DGDM) to
exploit the benefits of both deterministic and probabilistic weather fore-
casting models. DGDM integrates a deterministic branch and a diffusion
model as a probabilistic branch to improve forecasting accuracy while
providing probabilistic forecasting. In addition, we introduce a sequen-
tial variance schedule that predicts from the near future to the distant
future. Moreover, we present a truncated diffusion by using the result
of the deterministic branch to truncate the reverse process of the dif-
fusion model to control uncertainties. We conduct extensive analyses of
DGDM on the Moving MNIST. Furthermore, we evaluate the effective-
ness of DGDM on the Pacific Northwest Windstorm (PNW)-Typhoon
satellite dataset for regional extreme weather forecasting, as well as on
the WeatherBench dataset for global weather forecasting dataset. Exper-
imental results show that DGDM achieves state-of-the-art performance
not only in global forecasting but also in regional forecasting scenarios.
The code is available at: https://github.com/DongGeun-Yoon/DGDM.
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1 Introduction

Weather is a critical variable that impacts various aspects of daily life, including
aviation, logistics, agriculture, and transportation. To provide accurate weather
forecasting, the numerical weather prediction (NWP) model has been predom-
inantly used for most weather forecasting since the 1950s [4, 7]. NWP employs
a simulation-centric framework with vertical and horizontal grids that divide
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Fig. 1: Probabilistic models exhibit high diversity, posing challenges in selecting sam-
ples close to GT. In contrast, deterministic models produce a single output, restricting
their capacity to capture weather possibility. DGDM provides precise probabilistic fore-
casting with deterministic guidance.

the Earth’s atmosphere. Each grid cell translates the governing atmospheric be-
havior into partial differential equations (PDEs), which are then solved using
numerical integral methods. Even a single 10-day forecasting simulation with
the NWP model requires hours of computation across hundreds of supercom-
puter nodes. Despite these efforts, phenomena such as turbulent motion and
tropical cumulus convection, which occur on a horizontal scales smaller than a
few kilometers, cannot be captured by a single deterministic forecasting because
they are smaller than the grid of the NWP model. Also, the nonlinearity and
randomness inherent in atmospheric phenomena pose significant challenges to
conducting accurate simulations [18].

To address the inherent uncertainty resulting from nonlinear and random
atmospheric phenomena, NWP models add small random perturbations to the
observed weather conditions and perform multiple simulations to consider the
possible scenarios. This ensemble forecasting is effective in representing uncertain
events. However, configuring numerous ensemble members for the NWP model
is challenging because it requires a significant amount of computation and time
to generate a single forecasting.

Several data-driven weather forecasting methods have been proposed [3, 19]
to address the temporal and spatial resolution problems in NWP models. While
all have surpassed the performance of NWP in 10-day global weather forecast-
ing, they are fundamentally deterministic models that are difficult to account
for uncertainties and therefore fail to capture the spectrum of weather possibil-
ities. Recently, probabilistic weather forecasting models [10,20] using the latent
diffusion model [26] have been proposed for precipitation nowcasting. These mod-
els have shown success in data-driven short-term weather forecasting. However,
as depicted in Fig. 1, probabilistic models tend to generate multiple outcomes
with varying degrees of accuracy, which may result in the selection of samples
that different significantly from the ground truth. Therefore, data-driven weather
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forecasting encounters a trade-off problem where deterministic models have high
performance but lack ensemble capabilities, and probabilistic models generate
diverse samples but with lower accuracy.

In this paper, we introduce a Deterministic Guidance-based Diffusion Model
(DGDM) for probabilistic weather forecasting. DGDM addresses the limitation
that data-driven weather forecasting models are deterministic, and solves the
problem that probabilistic weather forecasting models produce plausible futures
rather than accurate forecasting. DGDM is structured into two branches: the
deterministic branch and the probabilistic branch. In the training phase, the
deterministic branch takes the observed weather condition as its input and aims
to minimize discrepancies with the future weather condition. Simultaneously,
the probabilistic branch uses both the observed weather condition and the fu-
ture weather condition to train a direct mapping between the domains, using a
Brownian bridge stochastic process [21]. To improve the quality of the video, we
introduce a sequential variance schedule (SVS) that adjusts the diffusion step for
each video frame. Since forecasting the immediate future is easier than forecast-
ing the distant future, SVS shortens the diffusion steps for near-term forecasting
while maintaining longer steps for more distant forecasting. In reverse process,
the near-term futures, which have shorter diffusion steps become the conditions
for later frames. In the inference phase, we can use the results of deterministic
branch to obtain a pseudo intermediate state. This pseudo intermediate state is
then employed to truncate the diffusion process, starting reverse process from
the pseudo intermediate state instead of the initial state. Truncated diffusion not
only allows DGDM to manage the inherent uncertainty in weather forecasting,
allowing control over the spectrum of possible future weather, but also to reduce
the number of diffusion steps without degrading performance.

For comparison with other baselines and analysis, we experiment with the
synthetic dataset Moving MNIST [28]. We release the Pacific Northwest Wind-
storm (PNW)-Typhoon weather satellite dataset to verify the effectiveness of
DGDM in regional extreme weather forecasting. Then, we validate DGDM for
global weather forecasting using the WeatherBench [25] dataset. Our evaluation
results show that DGDM achieves state-of-the-art performance in both low-
resolution global and high-resolution regional weather forecasting.

Our contributions are summarized as follows:

– We present DGDM, a diffusion model that integrates a deterministic model
for high-accuracy probabilistic weather forecasting.

– We propose SVS that generates from near-future to distant-future frames
in order, with the near-futures acting as a condition of the later frames to
improve the video quality.

– We present a truncated diffusion that controls the diversity of potential
future weather conditions using the results of the deterministic branch.

– We introduce PNW-Typhoon dataset designed to evaluate regional extreme
weather forecasting. We also rigorously evaluate the effectiveness of DGDM
using the Moving MNIST, PNW-Typhoon, and WeatherBench datasets.
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2 Related Work

2.1 Data-driven Weather Forecasting

Data-driven weather forecasting is gaining significant attention for its ability
to provide accuracy comparable to NWP models even without supercomputing
resources. In particular, in many countries where supercomputers cannot be
operated, data-driven weather forecasting is a new paradigm that can perform
weather forecasting with a single GPU server.

Shi et al . [27] introduced a ConvLSTM to predict precipitation via autore-
gressive inference. Furthermore, Ayzel et al . [1] and Trebing et al . [31] presented
a data-driven short-term precipitation forecasting leveraging the U-net architec-
ture. Beyond precipitation, studies such as [3, 6, 19] have proposed data-driven
models for forecasting global climate variables. The Fourier-based neural network
model [6] was designed to generate global data-driven forecasting for atmospheric
variables. Subsequently, models such as GraphCast [19] and Pangu-Weather [3]
have outperformed NWP in 10-day forecasting. While there have been signifi-
cant advancements, these data-driven forecasting models are deterministic. This
means that they are difficult to represent nonlinear and uncertainty phenomena.

2.2 Video Frame Prediction

Video frame prediction has various applications such as weather forecasting [11],
human motion prediction [17], traffic flow prediction [37] and human robot in-
teraction [8]. Video frame prediction is primarily divided into two main cat-
egories: autoregressive and non-autoregressive methods. Traditionally, autore-
gressive methods, employing architectures such as ConvLSTM [27] and RNN [12,
33, 34], have been foundational in the field of video frame prediction. Notably,
PhyDNet was introduced in [12], which consists of a two-branch deep architec-
ture designed to disentangle physical dynamics from unknown factors. PhyDNet
achieved state-of-the-art performance across multiple datasets through a recur-
rent physical cell (PhyCell) that executes PDE-constrained prediction in a latent
space. Despite various advances, autoregressive methods inherently suffer from
deteriorating performance due to error accumulation with increasing lead time4.

To tackle the problem of error accumulation inherent in autoregressive mod-
els, recent research has turned towards non-autoregressive approaches [9, 16,23,
29,38]. For instance, Gao et al . [9] designed a non-autoregressive model featuring
a multi-in-multi-out structure called SimVP to prevent error accumulation over
specified target lead times. However, most video frame prediction models were
developed based on minimizing the mean squared error (MSE) between predic-
tions and ground truth, which is unsuitable for probabilistic weather forecasting.

4 Lead time: The time interval between the beginning and end of weather forecast.
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2.3 Video Generation

Video generation technology has made great progress by applying a variety of
approaches, including GAN [22], VAE [2, 24], and diffusion models [14, 15, 32].
Babaeizadeh et al . [2] argued for the importance of incorporating uncertainty in
real-world video prediction, utilizing VAE to effectively manage this uncertainty.
Chatterjee et al . [5] introduced a Bayesian network and hierarchical framework
designed to address real-world uncertainty. After denoising diffusion probabilistic
models (DDPM) [13], there has been notable progress in the video generation
field. Ho et al . [14] proposed a video diffusion model (VDM) that generates videos
by gradually denoising noisy videos. VDM is trained to maximize the variational
lower bound of the log-likelihood of the data and achieves impressive results
on video generation. Afterward, RaMViD [15], which proposed random-mask
video diffusion, and MCVD [32], which integrated video prediction, generation,
and interpolation into one framework, were proposed. While these probabilistic
models can generate plausible future frames, they are not optimized for accurate
forecasting.

Therefore, the direct use of video generation models for weather forecasting is
unsuitable. Gao et al . [10] and Leinonen et al . [20] have attempted precipitation
nowcasting through latent diffusion model [26]. Nevertheless, the use of ensemble
methods poses significant challenges due to their high diversity. The proposed
DGDM addresses this issue by effectively merging probabilistic and deterministic
models, offering a truncated diffusion method that can still control the range of
possible future weather scenarios.

3 Method

The objective of DGDM is to forecast future weather condition y ∈ RC×L̂×H×W

given the observed weather condition x ∈ RC×L×H×W . Where H, W , and C rep-
resent the height, width, and channels, respectively. L and L̂ denote the lengths
of the observed and target frames. As shown in Fig. 2, DGDM consists of two
branches: a deterministic branch and a probabilistic branch. Furthermore, the re-
sults of the deterministic branch are used to modulate uncertainties, which helps
to control the diversity of possible future weather in the probabilistic branch.

3.1 Deterministic Branch

The deterministic branch (DB) adopts a non-autoregressive structure, which is
beneficial for achieving high reconstruction accuracy as it prevents error accu-
mulation at fixed lead times. Following previous architecture of video frame pre-
diction models [9,29], we comprise DB as an encoder e(·), a translator st(·), and
a decoder d(·) structure. Given an input x, the loss function of DB is formulated
as:

LDB = ∥y − d(st(e(x)))∥2. (1)
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Fig. 2: Overview of DGDM: During training, DGDM simultaneously trains both the
deterministic and probabilistic models. During inference, the results of the deterministic
model are used to truncate the reverse process of the probabilistic model.

3.2 Probabilistic Branch
The probabilistic forecasting method in NWP is to apply different small random
perturbations to the observed conditions each time the model is run, thereby
generating diverse outcomes. Inspired by the NWP process, which produces
probabilistic predictions through deterministic start and end points coupled with
perturbations to the observed conditions, we adopt a diffusion model using Brow-
nian bridge as the probabilistic branch (PB) of the DGDM.

Brownian Bridge Diffusion Process When we consider the problem as one
of predicting the stochastic trajectories between an observed weather condition
x and a future weather condition y, a Brownian bridge can be applied as a
continuous-time stochastic model where the probability distribution during the
diffusion process is conditional on the starting and ending states. Specifically,
the state distribution at each time step of a Brownian bridge process starting
from point y = x0 with x0 ∼ qdata(x0) at t = 0 and ending at point x = xT at
t = T can be formulated as:

p(xt|x0, xT ) = N
(
(1− t

T
)x0 +

t

T
xT ,

t(T − t)

T
I

)
, (2)

where N denotes the normal distribution and I is the identity matrix that scales
the variance of the distribution. We can define the Brownian bridge diffusion
process in the simplified notation of DDPM as follows:

q(xt|x0, xT ) = N(xt; (1−mt)x0 +mtxT , δtI),

x0 = y,mt =
t

T
.

(3)

Here, mt denotes a time weight, linearly increasing from 0 to 1 with respect to
t. Concurrently, δt is a variance, calculated as 2(mt −m2

t ). Note that, as in the
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case of image to image translation tasks where the Brownian bridge diffusion
process has been successfully applied BBDM [21].

Deterministic Guidance-based Diffusion Model Compared to general
diffusion models that generate from noise, Brownian bridge diffusion process
generates from input. Therefore, using input x directly leads to two main is-
sues. First, the target length L̂ must match the input length L for the diffusion
model to function properly, which complicates the control of output length L̂.
Second, there is a large time interval between the first frame of the input and
the first frame of the target, and the other frames have the same time interval.
This makes the direct use of x to perform Eq. (3) inefficient. To address these
issues, we use only the last frame (LF) of x for PB. This approach proves to be
efficient because the amount of change from the last frame to the future frame
is minimal, and it eliminates the constraint on the length of outputs by using
the last frame as many times as L̂. Consequently, the forward process of PB is
defined as follows:

xt = (1−mt)x0 +mtx̄+
√
δtϵ,

xt−1 = (1−mt−1)x0 +mt−1x̄+
√
δt−1ϵ.

(4)

Here, x0 is the future frame y and x̄ denotes the input of PB, which replicate LF
of x as many as L times. Concurrently, ϵ corresponds to Gaussian noise, specif-
ically N ∼ (0, 1). However, as x̄ consists of identical frames, spatial-temporal
modeling is not feasible. To resolve this issue, we employ the feature z extracted
from st(e(x)) in the DB to perform cross-attention [26] as a condition in PB.
Therefore, PB is trained using following function.

LPB = E
∣∣∣∣∣∣mt(x̄− x0) +

√
δtϵ− ϵθ(xt, t, z)

∣∣∣∣∣∣2 . (5)

The DB and PB are jointly trained in an end-to-end manner, and the total
objective function for DGDM is defined as follows:

Ltotal = λPBLPB + λDBLDB, (6)

where λPB and λDB are both set to 1.

Sequential Variance Schedule Forecasting the immediate future is easier
due to the minimal change from the given frame, while uncertainty increases
with longer lead times. We therefore introduce a sequential variance schedule
(SVS), which varies the diffusion step for each frame accordingly. As depicted
in Fig. 3, the near future is relatively predictable, thus we set a short diffusion
step to complete it first, and then sequentially complete the far future. Since the
completed near frames are subsequently used as a condition for generating the
far future, SVS contribute to improve the quality of the video. Given the total
number of diffusion steps T , the output length L̂, and stride of diffusion steps
per frame S, the diffusion step for each frame index i is defined by the equation:

SVS = {T − (L̂− i) · S : i = 1, . . . , L̂}. (7)
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Fig. 3: Reverse process of DGDM. The frames with shorter lead time are generated
before the frames with longer lead time and become the condition of the later frames.
The reverse process is truncated by the pseudo intermediate state x̂t.

3.3 Inference

For probabilistic forecasting, the reverse process of the Brownian bridge starts
at xT = x̄. Similar to the reverse process of DDPM, we then proceed through
the reverse process that incrementally moves from xt to xt−1 with the trained
model.

pθ(xt−1|xt) = N(xt−1;µθ(xt, t, z), δ̃tI), (8)

where µθ(xt, t, z) denotes the estimated mean value of the noise, and δ̃t is the
variance of noise. We reach the ending point of the diffusion process, where
x0 = y. For acceleration, the inference process integrates a non-Markovian chain,
as detailed in BBDM [21].

Truncated Diffusion with Deterministic By incorporating the results of
DB ŷ into the reverse process, we truncate the diffusion process, as illustrated
in Fig. 3. Since DB is trained to minimize the different between prediction and
ground truth, ŷ closely resembles y. By substituting ŷ for x0 in Eq. (4), we obtain
a pseudo intermediate state x̂t.

x̂t = (1−mt)ŷ +mtx̄+
√

δtϵ. (9)

Note that x̂t is not precisely identical to xt, but the Brownian bridge is a stochas-
tic process, thus we use x̂t in the reverse process without additional training. By
starting the reverse process with x̂t instead of xT and reducing the number of
diffusion steps, we not only control the diversity but also improve the inference
speed.
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4 Experiments

4.1 Experimental Setting
Dataset We experiment on two weather datasets: PNW-Typhoon and Weath-
erbench [25] datasets. For comparison with other baselines and analysis, we
experiment with the synthetic dataset Moving MNIST [28].

– Moving MNIST [28] The Moving MNIST dataset contains 10,000 video
sequences in which two digits move independently around the frame. The
digits frequently intersect with each other and bounce off the edges of the
frame. The values of C,L, L̂,H,W are 1, 10, 10, 64, and 64 respectively.

– PNW-Typhoon The Pacific Northwest Windstorm (PNW)-Typhoon dataset
is a collection of typhoons observed from 2019 to 2023 using GK2A (GEO-
KOMPSAT-2A) satellite. PNW-Typhoon dataset uses observations at 1-
hour intervals over the East Asia regions with a 2 km spatial resolution.
All data preprocessing strictly adhered to the official GK2A user manual5.
In our experiments, we use channels of the infrared ray (IR) at 10.5 µm,
short wave (SW) at 0.38 µm, and water vapor (WV) at 0.69 µm. Typhoons
from 2019 to 2022 are used for training, while the ones from 2023 are used for
testing. The values for C,L, L̂,H,W are 3, 10, 10, 128, and 128, respectively.

– Weatherbench [25] The WeatherBench dataset is a comprehensive weather
data consisting of various climatic factors. We employ the WeatherBench-S
framework from [30], where each climatic factor is trained individually. Raw
data is re-gridded to a 5.625◦ resolution, corresponding to a 32×64 grid. We
use from 2010 to 2015 for training, 2016 for validation, and 2017 and 2018
for test. The values for C,L, L̂,H,W are 1, 12, 12, 32, and 64, respectively.

Evaluation Metric For evaluating DGDM, we use mean squared error (MSE)
to heavily penalize larger errors and mean absolute error (MAE) for a linear error
penalty. We utilize peak signal-to-noise ratio (PSNR) to evaluate the quality of
signal representation against corrupting noise, and structural similarity index
measure (SSIM) [36] to assess perceptual results. Additionally, we employ Frechet
video distance (FVD) to measure the similarity between the generated videos
and the ground truth videos in feature space.

Implementation Details For our implementation, the Adam optimizer is
employed with a learning rate of 1e−4 for the probabilistic branch and 3e−4 for
the deterministic branch. We adopt a forwarding process of 1,000 steps and a
reverse process of 200 steps. And, the reverse process is truncated after 100 steps.
The number of training epochs varies by dataset: 2,000 for the Moving MNIST,
200 for the PNW-Typhoon dataset, and 50 for the WeatherBench dataset. All
experiments are conducted using the PyTorch framework on a single A100 GPU.
Detailed network architectures are provided in the supplementary material.
5 https : / / nmsc . kma . go . kr / enhome / html / base / cmm / selectPage . do ? page =
satellite.gk2a.intro

https://nmsc.kma.go.kr/enhome/html/base/cmm/selectPage.do?page=satellite.gk2a.intro
https://nmsc.kma.go.kr/enhome/html/base/cmm/selectPage.do?page=satellite.gk2a.intro


10 Yoon et al.

Table 1: Performance comparison results from the Moving MNIST. For diffusion
models, the amount of computation is indicated by the number of steps required in
the reverse process. Bold indicates the best performance, and underline indicates the
second-best performance.

Model Diversity #Param. #Flops Evaluation metric
MAE↓ MSE↓ PSNR↑ SSIM↑ FVD↓

ConvLSTM [27] × 15.0M 56.79G 90.63 29.79 22.14 0.928 79.193
PredRNN [34] × 23.8M 0.12T 72.82 23.96 23.28 0.946 50.407

PredRNN++ [33] × 38.6M 0.17T 69.58 22.05 23.65 0.950 45.731
MIM [35] × 38.0M 179.20G 70.67 22.92 23.53 0.948 47.530

PhyDNet [12] × 3.1M 15.30G 61.47 20.35 24.21 0.955 38.752
SimVP [9] × 58.0M 9.43G 89.04 32.14 21.83 0.926 72.969
TAU [29] × 46.8M 15.95G 51.46 15.68 25.71 0.966 28.169
VDM [14] ✓ 35.7M 1000 × 77.45G 123.12 86.33 18.71 0.879 8.800

MCVD [32] ✓ 28.0M 100 × 9.92G 172.47 64.68 19.23 0.565 8.161
RaMViD [15] ✓ 235.1M 1000 × 1.05T 123.76 81.26 18.87 0.878 12.059
PreDiff [10] ✓ 129.4M 1000 × 0.70T 81.16 42.20 19.05 0.931 7.889
DGDM-DB × 27.0M 11.46G 56.45 17.88 24.94 0.961 19.216
DGDM-PB ✓ 63.3M 100 × 77.29G 50.21 20.96 25.08 0.962 7.461
DGDM-Best × 63.3M 10 × 100 × 77.29G 47.31 19.14 25.59 0.966 7.427

DGDM-Average ✓ 63.3M 10 × 100 × 77.29G 48.54 20.52 25.22 0.966 9.617

Input

Ground Truth

TAU

DGDM-DB

DGDM-PB

PreDiff

step 1 step 2 step 3 step 4 step 5 step 6 step 7 step 8 step 9 step 10

Fig. 4: Visualization of Moving MNIST. The red dash line guides the location of digits.

4.2 Experimental Results

Moving MNIST We compare the performance with existing data-driven de-
terministic models [9,12,27,29,33–35] and probabilistic models [10,14,15,32]. As
shown in Table 1, deterministic models without diversity achieve better scores in
MSE, PSNR, and SSIM, but probabilistic models obtain better FVD. This sug-
gests that while deterministic models are adept at predicting future movements
in the Moving MNIST, they struggle to produce finer details. On the other hand,
despite being a probabilistic model, DGDM demonstrates superior performance
in MAE, SSIM, and FVD by incorporating the deterministic branch. DGDM-
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Table 2: Performance comparison results from the PNW-Typhoon dataset include IR,
WV, and SW channels are infrared red, water vapor, and short wave, respectively.

Model
PNW-Typhoon

MSE↓ MAE↓ PSNR↑ SSIM↑ FVD↓
IR SW WV IR SW WV IR SW WV IR SW WV IR SW WV

ConvLSTM [27] 937.80 1075.43 409.65 2973.50 3221.82 1952.39 13.06 14.31 17.94 0.399 0.400 0.642 1689.39 1321.36 993.59
PredRNN [34] 774.73 804.28 253.28 2342.76 2933.85 1756.32 14.23 14.57 18.34 0.401 0.403 0.629 1640.11 1293.09 1033.27

PredRNN++ [33] 667.18 739.01 213.51 2372.64 3088.18 1552.26 13.51 14.55 20.29 0.414 0.410 0.630 1340.61 1040.10 926.51
MIM [35] 625.99 683.51 195.14 2398.68 3127.97 1567.28 13.85 13.95 17.55 0.392 0.392 0.613 1262.59 969.19 954.53

PhyDNet [12] 655.14 728.93 189.02 2460.73 3144.94 1675.00 14.42 14.10 18.96 0.408 0.398 0.576 1305.54 1007.79 944.65
SimVP [9] 643.06 706.72 204.33 2452.73 3079.17 1609.57 14.01 14.21 19.17 0.401 0.406 0.598 1283.45 991.53 940.42
TAU [29] 565.47 664.50 166.11 2117.84 2842.39 1493.33 15.12 14.82 19.49 0.404 0.418 0.603 997.47 880.41 891.90
VDM [14] 881.08 1128.37 401.52 2794.82 3355.41 2063.66 13.43 12.31 17.07 0.371 0.383 0.607 830.29 727.09 573.47

MCVD [32] 605.51 904.93 472.19 2166.98 2799.92 2300.42 14.89 13.57 16.74 0.430 0.433 0.647 737.99 439.97 481.70
RaMViD [15] 770.72 1152.08 341.68 2781.69 3355.09 1803.71 13.96 12.55 18.39 0.392 0.392 0.624 1091.97 935.57 395.73
PreDiff [10] 568.93 683.72 141.51 2050.45 2299.12 1064.25 14.64 14.01 20.78 0.418 0.414 0.632 760.73 487.65 548.54
DGDM-DB 495.52 576.78 133.16 1949.46 2162.01 1031.67 15.89 15.43 21.79 0.442 0.436 0.653 819.72 710.32 799.30
DGDM-PB 461.90 540.79 121.27 1875.08 2065.37 1003.18 16.08 15.57 21.91 0.478 0.457 0.678 705.56 422.03 508.36
DGDM-Best 459.85 533.35 120.75 1871.08 2047.80 1000.82 16.10 15.63 21.93 0.480 0.460 0.679 698.93 414.07 502.26

DGDM-Average 456.11 516.66 120.34 1863.26 2004.71 998.31 16.15 15.83 21.96 0.482 0.483 0.682 733.03 482.80 531.14

IR
S

W
W

V

TAU DGDM-DB DGDM-PBPreDiff Ground TruthInput

Lead time = 0 Lead time = 19

Fig. 5: Qualitative comparison results on the PNW-Typhoon. TAU and PreDiff are
the best-performing approaches in deterministic and probabilistic models, respectively.

DB and DGDM-PB represent the results from the deterministic and probabilistic
branches of DGDM, respectively. Notably, when selecting the best performance
from several samples, DGDM-Best shows impressive results. DGDM-Average,
which averages multiple samples to simulate an ensemble method, achieves im-
proved scores in MAE, MSE, PSNR, and SSIM. However, the performance of
FVD declined when samples are selected randomly. These experimental results
indicate that DGDM is a model that meets our accuracy expectations while
producing diverse outputs.

As illustrated in Fig. 4, these experimental analyses provide insights that
confirm our observations: deterministic models precisely predict locations but
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Table 3: Quantitative comparison results on the WeatherBench dataset.

Model
WeatherBench

Temperature (t2m) Humidity (r) Wind (uv10)
MSE RMSE MSE RMSE MSE RMSE

ConvLSTM [27] 1.521 1.233 35.146 5.928 1.898 1.378
PredRNN [34] 1.331 1.154 37.611 6.133 1.881 1.372

PredRNN++ [33] 1.634 1.278 35.146 5.928 1.873 1.369
MIM [35] 1.784 1.336 36.534 6.044 3.140 1.772
SimVP [9] 1.238 1.113 34.355 5.861 1.999 1.414
TAU [29] 1.162 1.078 31.831 5.642 1.593 1.262
VDM [14] 2.343 1.530 43.293 6.579 2.235 1.495

MCVD [32] 2.512 1.584 45.691 6.759 2.221 1.490
RaMViD [15] 1.908 1.381 39.028 6.247 2.764 1.662
DGDM-DB 1.177 1.085 30.624 5.533 1.742 1.320
DGDM-PB 1.155 1.075 29.529 5.434 1.772 1.331
DGDM-Best 1.025 1.012 28.572 5.345 1.591 1.262

DGDM-Average 1.183 1.087 30.326 5.506 1.644 1.282

lack the clarity of the GT, while probabilistic models, despite their clarity, do
not predict locations as accurately. Since probabilistic model, PreDiff has a lot
of diversity, the generated samples are different in a large gap, making it difficult
to use the ensemble method. However, DGDM demonstrates a close resemblance
to GT in both location accuracy and clarity.

PNW-Typhoon Since the typhoon is an extreme weather event that has
many nonlinearities and changes rapidly, forecasting the typhoon 10-hours later
is challenging. Table 2 shows that most of the deterministic models struggle to
capture the uncertainty of typhoons, resulting in poor accuracy. On the other
hand, the probabilistic models show similar accuracy to the deterministic mod-
els, particularly PreDiff [10] outperforms the deterministic models in WV. This
suggests that probabilistic models have potential for accounting for uncertainty.
Then, DGDM superior other models and the simple averaging ensemble method
obtain best performance.

In typhoon analysis, factors like the eye of the typhoon, its size, and the way
clouds disperse and coalesce are important. As depicted in Fig. 5, while TAU [29]
forecasts the size of the typhoon well, the results are too blurry to definitively
assess the cloud patterns. On the other hand, PreDiff provides clearer images
but falls short in forecasting the size of the typhoon and cloud formation of left
down size of figure. DGDM most accurately simulates the size of a typhoon and
is also the most precise in forecasting the formation and dissipation of clouds.

WeatherBench Table 3 shows the results of quantitative experiments in a
global weather forecasting dataset WeatherBench. DGDM-Best, a method of
selecting the sample with the highest performance among all 20 samples, achieves
the best performance in the WeatherBench dataset. In addition, DGDM-Average,
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Table 4: Quantitative comparisons on components of DGDM.

Components Deterministic Probabilsitic
DB PB BB LF SVS MAE FVD MAE FVD
✓ 58.13 18.50 - -

✓ - - 123.20 8.80
✓ ✓ 95.09 58.83 110.07 14.74

✓ ✓ - - 89.45 17.05
✓ ✓ ✓ 56.71 20.51 52.04 10.06
✓ ✓ ✓ ✓ 56.18 18.72 50.35 9.31
✓ ✓ ✓ ✓ ✓ 56.45 19.22 50.22 8.28

Input

GT

PB PB+BB DB+PB DB+PB+BB

Deterministic

Probabilistic

Fig. 6: Visualization the results by components.

which ensembles all models, shows the second-best performance in the Humidity
modality. These experimental results indicate that DGDM has high usability
even if a single output is not selected and simply ensembled with average.

4.3 Ablation Study

Effect of Each Component As shown in Table 4 and Fig. 6, using only PB
produces plausible and clear results, but the location and shape is different from
GT. When PB is combined with the BB, the shape of the results is more aligned
with GT, and PB guided by DB corrects the location. Moreover, using last frame
(LF) for PB is not only remove the output length constraint but also improves
the performance. Note that, SVS enhances MAE and FVD performance and also
accelerates inference speed for frames with shorter lead times. While the total
diffusion step for the video remains constant, SVS generates frames earlier for
shorter lead times due to the fewer diffusion steps allocated for them. These
experimental results demonstrate that all components of DGDM are comple-
mentary to each other. Interestingly, it has been observed that when DB and
PB are trained together, the performance of DB also improves.

Effect of Truncated Diffusion with Deterministic Table 5 shows the re-
sults of the reverse process based on the number of denoising steps. When using
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Table 5: Quantitative results with different denoising steps.

Denoising steps
Evaluation metric

MSE MAE FVD
Mean STD Mean STD Mean STD

w/o truncated
diffusion

200 23.621 0.105 51.223 0.126 8.282 0.087
175 23.326 0.066 50.561 0.079 8.600 0.121
150 23.146 0.066 50.363 0.083 8.221 0.149
125 23.453 0.145 51.340 0.190 8.487 0.122
100 23.222 0.058 52.046 0.081 8.132 0.154

w/ truncated
diffusion

175 21.947 0.046 49.543 0.080 8.326 0.079
150 21.613 0.031 49.498 0.052 8.126 0.080
125 21.370 0.028 49.792 0.034 7.913 0.072
100 20.963 0.021 50.210 0.033 7.461 0.068

only a non-Markovian chain without truncated diffusion, there are no significant
relationship between the number of denoising steps and MAE, MSE, and FVD.
On the other hand, setting the reverse step to 200 and using deterministic re-
sults to truncate the reverse process to reduce the denoising step significantly
improves accuracy. In addition, there is a trend where reducing the denoising
steps results in a lower standard deviation (STD) of MAE, MSE and FVD. This
suggests that truncated diffusion effectively modulate the range of the possi-
ble future. In addition, truncated diffusion improves computational efficiency
without degrading performance.

5 Conclusion

In this paper, we present DGDM for high-accuracy probabilistic weather fore-
casting. DGDM bridges the gap between the accuracy of deterministic models
and the diversity of probabilistic models, addressing the limitation of existing
data-driven models. By using truncated diffusion, DGDM controls the range of
possible future weather events. Furthermore, through the video frame condition-
ing method, SVS, we improve video quality. We prove the effectiveness of pro-
posed methods on the synthetic dataset. DGDM demonstrates its effectiveness
not only in reginal extreme weather, but also in global weather forecasting. We
envision DGDM becoming a cornerstone in the domain of weather forecasting.

Limitations and Future work Our paper has not explored the use of multi-
ple modalities. By leveraging work on modalities in diffusion models, we believe
that DGDM can utilize multi-modality like other weather prediction methods.
Due to the use of deterministic guidance, DGDM generates samples that are
both closely aligned with future and diverse. However, a challenge persists for
DGDM, as it is fundamentally a probabilistic model. This necessitates the careful
selection of a sample from various possibilities to closely match future weather
conditions. We will study methods for selecting the best sample from a variety
of possibilities, rather than simply average ensembling.
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