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Abstract. Accurate segmentation of long and thin tubular structures
is required in a wide variety of areas such as biology, medicine, and re-
mote sensing. The complex topology and geometry of such structures
often pose significant technical challenges. A fundamental property of
such structures is their topological self-similarity, which can be quanti-
fied by fractal features such as fractal dimension (FD). In this study,
we incorporate fractal features into a deep learning model by extending
FD to the pixel-level using a sliding window technique. The resulting
fractal feature maps (FFMs) are then incorporated as additional input
to the model and additional weight in the loss function to enhance seg-
mentation performance by utilizing the topological self-similarity. More-
over, we extend the U-Net architecture by incorporating an edge de-
coder and a skeleton decoder to improve boundary accuracy and skeletal
continuity of segmentation, respectively. Extensive experiments on five
tubular structure datasets validate the effectiveness and robustness of
our approach. Furthermore, the integration of FFMs with other popular
segmentation models such as HR-Net also yields performance enhance-
ment, suggesting FFM can be incorporated as a plug-in module with
different model architectures. Code and data are openly accessible at
https://github.com/cbmi-group/FFM-Multi-Decoder-Network.

Keywords: Tubular structures · Topological self-similarity · Fractal fea-
ture map · Deep learning · Plug-in module

1 Introduction

Accurate segmentation of tubular structures is of significant importance across
a wide variety of areas. In the area of biological research, for example, the accu-
rate segmentation of tubular structures such as the endoplasmic reticulum (ER,
Fig. 1) is critical to the study of related human disease mechanisms [16, 28]. In
the area of clinical research, the accurate segmentation of blood vessels (Fig. 1) is
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Fig. 1: Topological self-similarity in tubular structures. If we consider “one junction
with multiple edges” as a basic component, complex tubular structures have similar
components at different scales. The images on the right are magnified views of the
rectangular regions on the left.

essential to the early diagnosis of diseases such as retinopathy and stroke [39,58].
Similarly, in the area of remote sensing, the accurate extraction of roads from
aerial imagery is essential for navigation and route planning [27]. However, ac-
curate segmentation of tubular structures from images remains challenging due
to factors such as their complex morphology and geometry, low image signal-to-
noise ratio, and poor image contrast.

A wide variety of techniques have been developed for the segmentation of
tubular structures. Classical methods rely on manually crafted features such as
intensity, texture, and shape. For example, previous studies [2,7,40,56] have uti-
lized deformable shape models to fit tubular structures, leveraging their geomet-
ric properties. However, these techniques often cannot handle challenges posed
by factors such as poor contrast, high noise and complex background. Deep
learning methods [13,25,34,44,59] have revolutionized image segmentation and
achieved substantial improvements in segmentation performance. Recent studies
on using deep learning models for segmentation of tubular structures have fo-
cused on optimization of loss functions [3,26,46,49,51] and refinement of model
structures [10,12,18,37,42]. However, these studies primarily aim to achieve high
segmentation performance utilizing a limited input of images without providing
additional information to their segmentation models. Tubular structures exhibit
distinct topology and geometry that are vital for segmentation. In this study,
we explore using characteristics of their structure to assist deep learning models
in segmentation.

One notable characteristic of tubular structures is their topological self-
similarity, namely large and complex tubular structures exhibit similar topo-
logical patterns at different scales. For example, Fig. 1 shows that if “one junc-
tion with multiple edges” is considered a primary structural component, tubular
structure entities such as the ER network and the retinal blood vessel network
exhibit similar topology at both global and local scales. To quantify the topo-
logical self-similarity of tubular structures, we utilize the fractal theory, which
characterizes self-similarity of intricate structures at different scales [35,61]. Cen-



Fractal Feature Maps for Segmentation of Tubular Structures 3

tral to this theory is the fractal dimension (FD), a key parameter used previously
to describe the textural attributes of images.

In addition to topology and geometry, edges and skeletons are important
characteristics in defining tubular structures. In the segmentation of these struc-
tures, boundary accuracy and skeletal continuity are crucial for downstream
tasks. For example, a commonly encountered problem in the segmentation of in-
terconnected tubular structures (Fig. 1) is the breakages in segmentation results
due to factors such as low-contrast or blurring.

To enhance the segmentation quality of tubular structures, we exploit the
topological self-similarity as well as edge and skeletal characteristics of tubular
structures. The main research contributions of this study are as follows:

1) We have developed a strategy to incorporate fractal features into deep
learning networks. Specifically, we extend the fractal dimension from the image-
level to the pixel-level and generate the fractal feature map (FFM), which char-
acterizes topological self-similarity and textural complexity of each region within
an image or its associated label. The FFM computed from the image is denoted
as FFMimage, while the FFM derived from the label is indicated as FFMlabel.
Utilization of FFMimage as an additional model input and FFMlabel as an ad-
ditional loss function weight substantially enhances segmentation performance.

2) We develop the multi-decoder network (MD-Net) by extending the U-Net
[44] architecture with an edge decoder and a skeleton decoder. These decoders
enable the model to simultaneously predict the boundaries and skeletons of image
objects, in addition to the primary segmentation masks. By incorporating related
constraints within the loss function, our model focuses not only on achieving
accurate target segmentation but also allocates increased attention to boundary
delineation and skeleton preservation, thereby enhancing the overall prediction
quality.

3) We have demonstrated the versatility and robustness of FFMs. Incor-
poration of FFMimage into the vanilla U-Net [44] and HR-Net [50] enhances
segmentation performance, indicating that FFM can be used as a plug-in for
different models.

2 Related Work

2.1 Tubular Structure Segmentation

Classical methods have been proposed to improve the performance of seg-
menting tubular structures by taking into account their geometric character-
istics. Firstly, various methods utilize active contours and compute geodesics
or minimal distance curves to approximate the contours of tubular structures,
thereby effectively delineating their boundaries [1, 6]. Secondly, tree structure-
based methods utilize intrinsic shape priors to assist segmentation of different
tubular structures. These methods employ a bottom-up method to identify tubu-
lar objects and a top-down grouping strategy to recognize tree structures, gen-
erating corresponding shape priors [4]. Lastly, various centerline-based methods
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such as the one developed in [47] use multiscale detection strategies to accurately
identify centerlines so that distance transform can be used to provide valuable
information for segmentation of tubular structures.

Deep learning methods have also been proposed to integrate topologi-
cal and geometrical prior knowledge of tubular structures to enhance the per-
formance of their segmentation. The integration is primarily achieved in three
ways.

1) Convolutional kernel design. The popular deformable convolution [9] and
dilated convolution [57] aim to overcome the limitations of geometric transfor-
mations in CNNs and have demonstrated exceptional performance in complex
segmentation tasks. Additionally, DSC-Net utilizes dynamic snake convolution to
accurately capture the distinct features of tubular structures [42]. By adaptively
focusing on slender and winding local structures, DSC-Net achieves improved
performance in capturing the intricacy of tubular structures.

2) Model architecture design. Various architecture designs have been pro-
posed to learn the topological and geometrical features of tubular structures.
In [31], a global transformer and dual local attention network are employed to
simultaneously capture global and local features to effectively learn the complex
geometric properties of tubular structures. Dong et al. [10] propose an enhanced
Deformable U-Net that exploits flexible deformable convolutional layers to better
generate clear boundaries for 3D cardiac cine MRI. High-frequency components
that have strong capabilities to perceive thin structures are fused in [14] to en-
hance the performance of segmenting thin structures.

3) Loss function design. Various loss functions have been explored for the
segmentation of tubular structures. In [46], a similarity measure centerlineDice
(clDice) based on the intersection of segmentation masks and their respective
skeletons is introduced. A loss function based on clDice is proposed to enable the
networks to generate segmentations with more accurate connectivity information
and topology preservation. Araujo et al. [3] design a loss function based on the
morphological closing operator that allows models to produce more topologically
coherent masks and consistent vascular trees. Wong et al. [52] apply a novel
Persistence Diagram Loss that quantifies topological correctness of segmentation
over fine-grained structures.

In this study, instead of relying on intricate designs of model architectures or
loss functions, we incorporate FFMs as a model input and a loss function weight
to enhance the perception of topological self-similarity and textures of images.

2.2 Fractal Theory and Applications

Despite their topological and geometrical complexity, tubular structures often
exhibit topological similarities across different spatial scales. This observation
suggests that their complex spatial patterns can be effectively described us-
ing simple texture features. Fractal geometry provides a means to describe the
irregular or fragmented shapes of natural features and other intricate objects
that traditional Euclidean geometry struggles to analyze [29]. Specifically, frac-
tal features offer the capacity to describe and characterize the topological and
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geometrical complexity as well as textural composition of tubular image objects.
Thus, fractal geometry has been applied to image classification and segmentation
tasks.

For classification, Roberto et al. [43] and Lin et al. [32] utilize the fractional
Brownian motion (FBM) model [23] to extract fractal features of images. These
features are then fed into a support vector machine or a convolutional neural
network (CNN) classifier to differentiate between different objects. For segmen-
tation, the FBM model is utilized in [33, 61] to extract fractal features from
images. Such features are combined with classical methods such as thresholding
and region growth techniques for image object segmentation.

Although existing methods have demonstrated good performance by lever-
aging fractal features, there is still a gap in exploring the integration of fractal
features with deep learning for segmentation tasks. The inherent self-similarity
observed in tubular structures aligns well with the fractal theory. In this study,
we address this gap by incorporating FFMs into the segmentation model, aim-
ing to provide a new and reliable source of information to enhance segmentation
performance.

3 Method

3.1 Fractal Feature Map

In fractal geometry, the fractal dimension (FD) provides a quantitative measure
of an image’s degree of self-similarity and roughness. FD can be estimated via the
property of self-similarity [41]. Given an image A, it is self-similar if A comprises
Nr distinct copies of itself scaled down by a factor of r. Consequently, for an
image, the FD is defined as:

FD = lim
r→0

logNr

log (1/r)
(1)

Although the definition of FD based on self-similarity is simple and concise,
its direct estimation becomes impractical when dealing with irregular images.
To overcome this challenge and estimate the FDs of images, the box-counting
method [24,30] is employed.

Box-counting Method: Consider a grayscale image I with dimensions
M × M , where L denotes the maximum gray level (typically L = 255). We
can model the image I as a three-dimensional space with (x, y) indicating the
two-dimensional position and a third coordinate (z) denoting the gray value.
Then the 3-D space is subdivided into smaller cubic regions, or “boxes”, each
with dimensions k × k × h. Here, k is a given scale used be a multiple of the
sidelength of a pixel in (x, y) and h can be a multiple of the gray level unit in
z-direction. Given L and k, the value of h calculated using the following formula:

h = (L− 1)× k/M (2)
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Given a k× k grid located at position (i, j), suppose that the minimum gray
value is contained within the mth box (m = ⌈minGi,j/h⌉), and the maximum
gray value within the lth box (l = ⌈maxGi,j/h⌉). The minimum number of boxes
required to encompass all gray levels within the grid at (i, j) is computed as:

nr(i, j) = l −m+ 1 (3)

Considering all grids, the number of boxes that can cover all the patches is
expressed as:

Nr =
∑
i,j

nr(i, j) (4)

where r = k/M . We can obtain a series of Nr using differing values of k. Finally,
the fractal dimension can be estimated from the least-squares linear fitting of
logNr versus log (1/r), as illustrated in Equation (1). The flow of box-counting
method is summarized in the supplementary material.

Fractal Feature Map: Although fractal dimension and fractal features have
been previously applied to classification tasks [32, 43], the inherent differences
between classification and segmentation tasks preclude the direct application of
image-level fractal dimension to segmentation endeavors. We extend the calcu-
lation of FD from the image-level to the pixel-level to generate the FFM of an
image. As depicted in Fig. 2, the process begins with the utilization of a sliding
window technique. Within a 5× 5 window, for example, the FD of this region is
computed using the box-counting method. Subsequently, the window is shifted
along both the horizontal and vertical directions with a step size of 1, resulting
in the calculation of the FFM for the entire image. The algorithm for generating
the FFM is summarized in Algorithm 1.

Algorithm 1 Generation of FFM.
Input: Image I with size M × N , window
size w × w.
Output: Fractal feature map (FFM) of I.
Assign FFM ← Float array of size (M,N)
Assign padding size p← ⌊w/2⌋
PadI ← Linear Padding(I, p)
For i← 0 to M − 1 do

For j ← 0 to N − 1 do
Selected region Ri,j

Ri,j ← PadI [i : i+ w, j : j + w]
FD ← Box-counting(Ri,j)
FFM [i, j]← FD

FFM ← Normalization(FFM)

The FFMs of the images (de-
noted as FFMimage) are incorpo-
rated into the segmentation model
as additional input channels (Im-
age, FFMimage), enhancing the fo-
cus on fractal structure and self-
similarity after the normalization
process. To mitigate the impact
of image noise on the calculation
of FD, we adopt the box-counting
method proposed in [29] as they
substitute the gray value with the
standard deviation to make the
method more robust.

3.2 Multi-Decoder Network

In segmenting tubular structures, accurate boundary detection and preservation
of global topological connectivity are crucial requirements. To meet these re-
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Fig. 2: Workflow of computing FFM of an image.
quirements, we propose a new model that we refer to as Multi-Decoder Network
(MD-Net).

In addition to predicting the segmentation mask, we introduce an edge de-
coder and a skeleton decoder to generate the edge and skeleton of the tubular
structure, respectively, as depicted in Fig. 3. When (Image, FFMimage) are
fed into MD-Net, the Encoder employs convolution layers to extract a series of
low-level to high-level image features. These features are simultaneously trans-
mitted to the three Decoders by skip connections for prediction. Specifically,
in the Encoder, each convolution layer involves the repeated application of two
3x3 convolutions, followed by a rectified linear unit (ReLU), and a 2x2 max
pooling operation with a stride of 2 for down-sampling. As for the Decoders in
MD-Net, each convolution layer includes an up-sampling of the feature map,
followed by a 2x2 convolution that reduces the number of feature channels by
half. Subsequently, the feature is concatenated with the corresponding feature
copied from the Encoder. This concatenated feature is then processed using two
3x3 convolutions, each followed by a ReLU activation function.

During training, the ground truths for edges and skeletons are derived from
the annotated masks by employing the findContours function from the OpenCV
library and the skeletonization algorithms in the scikit-image library. We have
visualized the boundaries and skeletons in the supplementary material to cor-
roborate the accuracy of the extraction techniques. During the inference stage,
the final structural segmentation is the output of the object decoder. Edge and
skeleton predictions are only used in model training.

Loss Function: Given an image I with N pixels, the segmentation ground
truth is denoted as y, where foreground and background pixels are labeled as
1 and 0, respectively. The prediction of the model is represented as ŷ ϵ [0, 1],
indicating the probabilities of individual pixels being classified as foreground.
To compute the loss, we utilize the differentiable Soft IOU Loss [19], denoted as
Lobject in Equation (5), where η is a smoothing coefficient.

Lobject = Liou = 1−
∑N

i=1 yiŷi∑N
i=1 yi + ŷi − yiŷi + η

(5)

The BCE loss function is applied separately to the edge and skeleton seg-
mentation tasks, denoted as Ledge,Lskeleton.

Ledge,Lskeleton = Lbce = − 1

N

N∑
i=1

yi · log (ŷi) + (1− yi) · log (1− ŷi) (6)
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For MD-Net, which has three segmentation tasks, the loss function is composed
as in Equation (8). The weights α, β and γ are typically set to 1.0, 0.5 and 0.5,
respectively.

Lglobal = αLobject + βLedge + γLskeleton (7)

3.3 Fractal Feature Constrained Loss

The value of FD serves as an indicator of the texture complexity present in a
given image region. Hence, it is advantageous to incorporate pixel-level FFM as
weights of the loss function. This allows for a higher weight to be assigned to
regions that exhibit greater complexity, as accurately segmenting such regions
poses a greater challenge. Consequently, we calculate the FFM for each label
associated with the image, denoted as FFMlabel, and employ FFMlabel as pixel-
level weights within the loss function to guide the convergence of the model.
Considering the specificity of the edge decoder and skeleton decoder, we have
thus restricted the application of FFMlabel exclusively to the object decoder.
The Constrained Loss of MD-Net is as follows:

Lconstrained = αLobject · FFMlabel + βLedge + γLskeleton (8)

4 Experiments

4.1 Datasets

We evaluate the FFM and MD-Net using five publicly available tubular datasets
including the endoplasmic reticulum (ER) and mitochondrial (MITO) [11, 36]
organelle network datasets, the Retinal OCT-Angiography vessel Segmentation
(ROSE) and Structured Analysis of the Retina (STARE) [15, 37] retinal vessel

Encoder

Edge

Decoder

(Image, 𝑭𝑭𝑴𝒊𝒎𝒂𝒈𝒆)

Encoder Edge Decoder Skeleton Decoder Object Decoder Skip Connection

Edge/Skeleton/Object

Tensor Copying Up-samplingDown-samplingTwo Conv

Skeleton

Decoder

Object

Decoder

(Image, 𝑭𝑭𝑴𝒊𝒎𝒂𝒈𝒆)

Fig. 3: Overview and details of our proposed model MD-Net. The left part illustrates
the overall structure of MD-Net. (Image, FFMimage) is processed as input by the
Encoder, which extracts features of varying sizes from the input. These features are
transmitted simultaneously to three Decoders through Skip Connection. The right
part is a detailed description of the Encoder and Decoders. Each Decoder performs
upsampling and concatenation operations similar to U-Net to obtain the predictions,
comprising the edge, skeleton, and object.
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datasets, and the Massachusetts Roads (ROAD) [38] remote sensing dataset. By
selecting these datasets, our aim is to comprehensively evaluate the performance
of our methods across different types of structures and domains, providing a
robust assessment of their capabilities. To further examine the influence of FFM,
we included the non-tubular dataset NUCLEUS [5].

All images in ER, MITO, STARE, and NUCLEUS are randomly sampled
patches with size of 256 × 256 for training and sliding window with size of
256× 256 for validation and testing. A crop size of 256× 256 is used randomly
during training and regularly during testing for the ROAD dataset as in [42].
Horizontal and vertical flipping as well as 90◦/180◦/270◦ rotation are used for
data augmentation. In addition, data augmentation for ROSE is conducted by
rotation of an angle from −10◦ to 10◦ as described in [37]. Detailed partitions
of the six datasets and experimental setup are shown in the supplementary ma-
terial.

4.2 Performance Comparison

We select several segmentation networks for comparison, including the vanilla
U-Net [44], U-Net++ [60], nnU-Net [20], and HR-Net [50]. Additionally, we
compare our methods with SOTA models for diverse datasets. For the task of
retinal vessel segmentation, we choose three-stage [53], OCTA-Net [37], GT-DLA
[31], and AF-Net [45], as these networks are tailored for this task. Furthermore,
we compare the performance of MD-Net in the ROAD dataset with DCU-Net
[54], Dconn-Net [55], and the DSC-Net [42], a tubular structure segmentation
network with specially designed loss Ltc. To assess the generalization of FFM,
we apply FFMimage to both U-Net and HR-Net. All models are trained on the
same dataset with the same hyperparameter settings.

4.3 Evaluation Metrics

The models are assessed using three types of metrics: volumetric, topology, and
distance.

1. Volumetric scores, including intersection-over-union (IoU), accuracy (ACC),
centerlineDice (clDice) [46], and AUC. These metrics quantify the overlap and
agreement between the prediction and ground truth.

2. Topology scores. To evaluate the topological correctness of the segmenta-
tions, we calculate the Betti Error [17] β for the sum of Betti Numbers β0 and
β1. In the evaluation of ROSE and STARE, β Error represents the β1 only.

3. Distance score: Hausdorff Distance (HD) [48] quantifies the accuracy of
the boundary delineation and provides information about the spatial closeness
of the predicted and ground truth boundaries.

Since the nucleus is oval in shape and not tubular, no Betti Error and clDice
are used in segmentation performance evaluation and no skeletal decoder is used
in the MD-Net. In this study, the evaluation metrics IoU, ACC, AUC, and clDice,
are expressed as percentages (%). The Hausdorff Distance (HD) is measured in
pixels (px). All performance metrics are calculated for each image and averaged.
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Table 1: Bold numbers indicate the best performance and italicized numbers represent
the next best performance. The result marked with a star (*) represents the model input
replaced by (Image) with(Image, FFMimage). Ltc in (b) is Wasserstein-distance-based
TCLoss proposed in [42]. Lconstrained represents the integration of FFMlabel as a loss
function weight, which leads to further improvement.

Model Loss
IoU↑ clDice↑ ACC↑ AUC↑ β Error↓ HD↓ IoU↑ clDice↑ ACC↑ AUC↑ β Error↓ HD↓

ER MITO
U-Net++ [60] Liou 75.02 94.67 91.04 97.31 26.02 7.04 79.70 97.30 98.19 99.59 2.30 4.24
nnU-Net [20] Liou 73.41 94.51 91.29 87.95 25.15 6.96 79.24 97.16 98.07 94.62 3.40 4.39
DSC-Net [42] Liou 75.51 94.44 91.56 97.09 34.51 6.92 80.32 97.16 98.16 99.65 2.70 4.36

Dconn-Net [55] Liou 75.95 95.24 91.59 96.60 20.31 6.97 79.82 97.20 98.03 99.54 2.90 4.32
AF-Net [45] Liou 76.01 94.58 91.81 97.37 29.92 6.79 80.36 96.94 98.08 99.64 2.60 4.18
GT-DLA [31] Liou 75.89 94.92 91.82 97.31 20.26 6.84 80.25 97.16 98.19 99.60 2.70 4.21
U-Net [44] Liou 75.44 94.63 91.82 97.35 28.72 6.87 79.77 96.91 98.07 99.61 2.80 4.56

HR-Net [50] Liou 75.83 95.08 91.71 97.36 22.57 6.90 79.63 97.27 98.14 99.62 2.90 4.25
U-Net* Liou 76.59 95.43 92.02 97.56 20.78 6.81 80.71 97.42 98.21 99.63 2.70 4.27

HR-Net* Liou 76.43 95.47 91.95 97.55 20.52 6.83 80.62 97.29 98.17 99.62 3.30 4.18
MD-Net* Lglobal 77.01 95.78 92.06 97.59 19.10 6.77 81.11 97.72 98.25 99.66 2.20 4.16
MD-Net* Lconstrained 77.09 95.74 92.14 97.65 19.52 6.72 81.18 97.61 98.26 99.65 2.80 4.14

ROSE STARE
three-stage [53] Liou 62.11 67.07 91.79 93.41 9.13 7.28 66.83 76.71 94.86 96.43 3.45 6.57
OCTA-Net [37] Liou 63.27 66.32 92.34 94.53 10.22 7.11 65.37 76.74 94.62 95.44 3.22 6.47
DSC-Net [42] Liou 63.15 67.59 91.98 94.43 7.00 7.36 67.01 76.26 94.97 96.50 3.15 6.31

Dconn-Net [55] Liou 60.37 64.51 88.57 93.26 5.73 8.18 66.14 76.33 94.78 96.65 3.77 6.48
AF-Net [45] Liou 62.33 67.05 91.73 92.55 8.88 7.32 67.27 77.17 94.91 96.47 3.18 6.49
GT-DLA [31] Liou 63.57 66.31 92.27 94.18 9.89 7.16 67.12 76.32 94.72 95.79 3.12 6.63
U-Net [44] Liou 61.52 67.53 91.33 94.04 8.22 7.42 66.15 76.05 94.68 96.39 3.22 6.67

HR-Net [50] Liou 63.09 67.71 92.08 94.38 8.33 7.26 67.03 76.92 94.92 96.29 2.73 6.53
U-Net* Liou 64.07 67.95 92.25 94.47 7.88 7.10 68.07 77.39 95.15 96.63 2.77 6.33

HR-Net* Liou 64.68 69.42 92.14 94.77 6.01 7.21 68.22 77.49 95.13 96.52 3.21 6.32
MD-Net* Lglobal 65.07 69.78 92.36 94.88 4.22 7.10 68.49 77.79 95.20 96.91 2.57 6.29
MD-Net* Lconstrained 65.19 69.58 92.42 94.88 4.89 7.06 68.73 78.20 95.26 96.99 2.60 6.34

(a) Quantitative experimental results for the ER, MITO, ROSE, and STARE dataset.

Model Loss IoU↑ clDice↑ ACC↑ AUC↑ β Error↓ HD↓
DCU-Net [54] Lce 62.92 86.98 98.03 98.34 2.56 8.04
DSC-Net [42] Lce 63.99 87.74 98.05 98.39 2.56 7.96
DSC-Net [42] Ltc 64.22 87.64 98.05 98.46 2.45 7.34

Dconn-Net [55] Ltc 65.14 87.61 97.30 98.29 2.25 6.97
AF-Net [45] Ltc 65.03 87.27 97.41 98.38 2.21 7.29
GT-DLA [31] Ltc 64.76 86.80 97.43 97.94 2.38 6.94
U-Net [44] Lce 62.47 86.87 97.97 98.29 2.61 8.11

HR-Net [50] Lce 62.89 86.74 98.06 98.39 2.58 8.06
U-Net* Lce 65.74 87.74 98.38 98.72 2.48 6.98

HR-Net* Lce 65.60 87.61 98.32 98.79 2.31 6.98
MD-Net* Lglobal 66.07 88.08 98.43 98.80 2.19 6.92
MD-Net* Lconstrained 66.16 88.07 98.42 98.77 2.06 6.97

(b) Results for ROAD dataset.

Model Loss IoU↑ ACC↑ AUC↑ HD↓
CS-Net [39] Liou 77.96 98.12 98.58 4.13

Transunet [8] Liou 78.21 98.34 98.64 4.32
DU-Net [21] Liou 78.09 98.46 98.94 4.19

U-Net++ [60] Liou 78.33 98.59 99.69 4.09
nnU-Net [20] Liou 78.28 98.57 94.93 4.09

OCTA-Net [37] Liou 75.30 98.34 99.26 4.43
U-Net [44] Liou 78.02 98.54 99.65 4.23

HR-Net [50] Liou 77.70 98.50 99.65 4.15
U-Net* Liou 78.46 98.58 99.68 4.15

HR-Net* Liou 77.83 98.53 99.66 4.15
MD-Net* Lglobal 78.66 98.59 99.68 4.08
MD-Net* Lconstrained 78.77 98.59 99.66 4.06

(c) Results for NUCLEUS dataset.

4.4 Configurations

All models are implemented using PyTorch (version 1.12.0) and executed on 4
NVIDIA 3090 GPU cards. During the training phase, we employed the SGD
optimizer with an initial learning rate of 0.05. To dynamically adjust the learn-
ing rate as the training progressed, we incorporated warm-up and exponential
decay techniques. For all datasets, a fixed batch size of 32 is employed, ensuring
consistency in the training process. Additionally, to prevent overfitting, a reg-
ularization weight of 0.0005 is applied. The entire training process spanned 50
epochs, providing sufficient iterations for model convergence and learning.
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4.5 Quantitative Evaluation

Based on the results presented in Tab. 1, several conclusions can be drawn.
Performance of MD-Net: Our proposed model, MD-Net, demonstrates

superior performance in terms of segmentation accuracy and topological con-
tinuity compared to the other models. This superiority is observed across five
tubular datasets as well as one non-tubular dataset. We have also performed t-
test to check whether improvements of our methods over competing methods in
performance are statistically significant. Results are provided in supplementary.

In tubular datasets, MD-Net outperforms other methods in terms of seg-
mentation results. Specifically, in the ER, MITO, ROSE, STARE, and ROAD
datasets, MD-Net achieves improvements in IoU of 1.08%, 0.82%, 1.62%, 1.46%,
and 1.02%, respectively, compared to existing SOTA methods. Furthermore,
when considering topological continuity and boundary extraction, MD-Net demon-
strates the best performance with the minimum β error and Hausdorff Distance.
These results highlight the ability of MD-Net, equipped with an edge decoder
and a skeleton decoder, to effectively capture edge and skeleton features of thin
tubular structures, resulting in more accurate and continuous topology segmen-
tation outcomes.

Even in the non-tubular dataset NUCLEUS, MD-Net achieves the best seg-
mentation results with an IoU of 78.77%, ACC of 98.59%, and HD of 4.06. This
demonstrates the effectiveness of MD-Net and FFM in datasets with simpler
structures.

Generalization of FFM: FFMimage is incorporated into U-Net and HR-
Net as an additional input channel without modifying the training parameters.
The results in Tab. 1 indicate that the inclusion of FFMimage leads to improved
segmentation performance for both U-Net and HR-Net.

For U-Net, the segmentation performance (IoU) shows improvements of 1.14%,
0.94%, 2.55%, 1.92%, 3.27%, and 0.44% on the ER, MITO, ROSE, STARE,
ROAD, and NUCLEUS datasets with the assistance of FFMimage, respectively.
Similarly, for HR-Net, the IoU improves by 0.60%, 0.99%, 1.59%, 1.19%, 2.71%,
and 0.13% on the same datasets, respectively. On average, FFMimage brings an
improvement of 1.96% and 1.42% in IoU for U-Net and HR-Net, respectively, in
the segmentation task of tubular datasets.

In conclusion, FFM demonstrates notable generalization capabilities, leading
to enhanced performance across various models. Particularly in datasets with in-
tricate structures, FFM consistently outperforms the original models in segmen-
tation tasks. This improvement can be attributed to the inherent characteristics
of FD involved in FFM.

FFMlabel and Lglobal : Fractal Dimension is a significant metric used to
quantify the complexity of image textures. In the context of model training, we
leverage the FFMslabel as weights for the loss function. This method enables us
to guide the model’s focus towards regions with higher complexity, as indicated
by a higher FD. Through extensive experimentation, we have observed that
incorporating FFM-based weights into the loss function yields improvements in
both the training performance and efficiency of the model, as depicted in Tab. 1.
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(a) (b) (d)(c) (e) (f)

ER

MITO

ROSE

STARE

ROAD

Fig. 4: Comparison of segmentation results. (a) Image. (b) Label. (c) Results of U-Net.
(d) Results of existing SOTA approaches. From top to bottom, it’s AF-Net, AF-Net,
GT-DLA, AF-Net, and Dconn-Net. (e) Results of U-Net*. (f) Results of MD-Net*.
Red: true positive. Green: false negative. Blue: false positive. In the ER, MITO, ROSE,
STAR, and ROAD rows, columns (b) through (f) display the magnified results of the
regions demarcated by yellow squares in the corresponding images of column (a).

These findings highlight the tangible benefits of including FFMlabel as a weight
parameter in optimizing the training process.

4.6 Qualitative Evaluation

To facilitate a more comprehensive comparison of the experimental outcomes
across various models, we employed visualizations to present the segmentation
results, as depicted in Fig. 4. The visual analysis provides a clear and intuitive
representation of the model’s performance. The observed results validate that
the integration of FFM leads to enhanced segmentation outcomes in terms of
both edge accuracy and topological continuity. More visualization results can be
found in the supplementary material.

5 Ablation Study

5.1 Effectiveness of Fractal Feature Maps

To ascertain that the observed performance improvement of the model is at-
tributed to the FFM and not the increase of input channels, we replace the
FFMimage with the image, thereby transforming the input (image, FFMimage)
to (image, image). Additionally, we computed the image’s Hurst feature (HF,
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classical fractal analysis), mean feature (MF, directional analysis), and contrast
feature (CF, directional analysis) as introduced by [22]. These features replaced
the FFMimage as input and were trained and evaluated on U-Net and MD-Net.
Experimental results demonstrated the advantages of the FFMimage as shown
in Tab. 2. This finding indicates that the inclusion of the FFM plays an effective
role in achieving better performance in the segmentation task.

5.2 Robustness of Fractal Feature Maps

The computation of the FFM is influenced by the selection of window size
and step size. We used different window and step sizes to generate different
FFMsimage and tested their performance. The results in Tab. 3 demonstrate
the robustness of FFM. When used for training the U-Net and MD-Net, the
FFMsimage calculated using different window sizes consistently yield results
with a variation range of 0.3% on the ER and STARE datasets. Similarly, ap-
plying different steps during the calculation of FFMs does not lead to significant
changes in performance. It should be noted that the efficiency of computing can
be substantially improved by increasing the step size.

The numerical results in Tab. 2 and Tab. 3 are calculated by volumetric score
IoU. Results with more metrics can be found in the supplementary material.

5.3 Decoders of MD-Net

To evaluate the effectiveness of the edge decoder and the skeleton decoder, a
comparative ablation analysis was conducted between MD-Net and U-Net on
the ER and STARE datasets. Subsequently, we proceeded to remove either the
edge decoder or the skeleton decoder from MD-Net and trained the modified
models. The results shown in Tab. 4 confirm that both the edge decoder and
the skeleton decoder contribute to improving the segmentation performance. It
is noteworthy that the best performance is achieved when all components are
utilized simultaneously.

5.4 Limitations of Fractal Feature Map

The time complexity of FFMs’ computation is associated with the size of image
(M × N), window size w, and step size S. Its time complexity is represented

Table 2: Ablation study of FFM in U-Net and MD-Net. The values within the paren-
theses in the (image,FFMimage) column represent the percentage improvement of IoU
compared to the baseline results listed in the (image) column.

Model Dataset
Input

(image) (image,image) (image,HF) (image,MF) (image,CF) (image,FFMimage)

U-Net

ER 75.44 75.61 75.89 75.86 75.10 76.59(+1.14%)
MITO 79.77 80.28 80.51 80.23 80.38 80.71(+0.94%)
ROSE 61.52 62.57 62.61 62.58 62.37 64.07(+2.55%)
STARE 66.15 66.08 65.54 66.14 66.83 68.07(+1.92%)
ROAD 62.47 63.44 64.93 64.58 64.25 65.74(+3.27%)

MD-Net

ER 76.28 76.34 76.24 75.97 75.52 77.01(+0.73%)
MITO 80.28 80.31 79.97 80.41 80.32 81.11(+0.83%)
ROSE 63.31 63.30 62.77 62.89 62.90 65.07(+1.76%)
STARE 66.46 66.57 66.43 67.03 67.25 68.49(+2.03%)
ROAD 64.79 65.04 65.23 65.12 65.15 66.07(+1.28%)
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Table 3: Ablation of step size and window size in U-Net and MD-Net.

Model Step Size Window Size ER STARE Model Step Size Window Size ER STARE

U-Net*

1 11 76.75 67.87

MD-Net*

1 11 77.03 68.41
1 9 76.73 67.91 1 9 77.01 68.21
1 7 76.65 67.89 1 7 76.92 68.50
1 5 76.59 68.07 1 5 77.01 68.49
2 5 76.49 67.87 2 5 76.91 68.46
3 5 76.68 67.78 3 5 76.88 68.32
4 5 76.61 67.78 4 5 76.90 68.30

Table 4: Ablation study of MD-Net.

Dataset Model FFM Edge
Decoder

Skeleton
Decoder IoU↑ clDice↑ ACC↑ AUC↑ β Error↓ HD↓

ER

U-Net 75.44 94.63 91.82 97.35 28.72 6.87
MD-Net " " 76.28 95.27 92.00 97.39 22.55 6.78
U-Net " 76.59 95.43 92.02 97.56 20.78 6.81

MD-Net " " 76.97 95.60 92.09 97.59 22.42 6.71
MD-Net " " 76.85 95.55 92.13 97.51 20.63 6.74
MD-Net " " " 77.09 95.74 92.14 97.65 19.52 6.72

STARE

U-Net 66.15 76.05 94.68 96.39 3.22 6.67
MD-Net " " 66.46 76.54 94.76 96.42 3.27 6.47
U-Net " 68.07 77.39 95.15 96.63 2.77 6.33

MD-Net " " 68.26 77.80 95.20 96.77 2.65 6.29
MD-Net " " 68.39 77.76 95.20 96.89 3.22 6.31
MD-Net " " " 68.73 78.20 95.26 96.99 2.60 6.34

as: O
(
M ·N
S2 ·

(
w2 · log(w)

))
. Calculation of FFM indeed incurs computational

overhead but is optimized by using multithreading and larger S. Currently, the
generation of FFMs for a 256×256 image takes about 150 milliseconds on a Xeon
8336C CPU, given a step size of 1 and a window size of 5. Detailed information
on training and inference time can be found in the supplementary material.

6 Conclusions

In this study, we propose a method that uses fractal feature maps (FFMs)
along with a multi-decoder network (MD-Net) for the semantic segmentation
of tubular structures. FFMs are used to capture the texture and self-similarity
of image regions or label regions at the pixel-level through the fractal dimen-
sion. FFMsimage are used as an additional input to enhance the segmentation
model’s perception of tubular structures and FFMslabel are used as a weight
for the loss function to guide the model training. MD-Net improves the quality
of segmentation by simultaneously predicting edges and skeletons through the
incorporation of an edge decoder and a skeleton decoder. The proposed method
is evaluated on five datasets of tubular structures and one dataset of non-tubular
structures. The results demonstrate the superiority of MD-Net with FFM in the
segmentation of tubular structures and stable performance in the segmentation
of non-tubular structures. Furthermore, the performance improvement observed
when incorporating the FFM module into vanilla U-Net and HR-Net underscores
the broad applicability and potential of incorporating fractal information into
deep learning models.
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