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Abstract. Multi-object multi-part scene segmentation is a challenging
task whose complexity scales exponentially with part granularity and
number of scene objects. To address the task, we propose a plug-and-
play approach termed OLAF. First, we augment the input (RGB) with
channels containing object-based structural cues (fg/bg mask, boundary
edge mask). We propose a weight adaptation technique which enables
regular (RGB) pre-trained models to process the augmented (5-channel)
input in a stable manner during optimization. In addition, we introduce
an encoder module termed LDF to provide low-level dense feature guid-
ance. This assists segmentation, particularly for smaller parts. OLAF en-
ables significant mIoU gains of 3.3 (Pascal-Parts-58), 3.5 (Pascal-Parts-
108) over the SOTA model. On the most challenging variant (Pascal-
Parts-201), the gain is 4.0. Experimentally, we show that OLAF’s broad
applicability enables gains across multiple architectures (CNN, U-Net,
Transformer) and datasets. The code is available at olafseg.github.io

1 Introduction

Multi-object multi-part segmentation is a challenging task that involves simul-
taneously segmenting multiple objects in an image while also segmenting their
individual parts. The task goes beyond conventional object segmentation [3,4,10,
33,58,71–73] and aims to enable multi-granular scene understanding. The avail-
ability of granular semantic detail is crucial for applications in robotics [47, 65],
visual question answering [27], object interaction and modeling [1,16] and other
domains [2, 11, 15, 32] where understanding the scene in terms of objects and
their constituent parts is crucial.

Related approaches primarily address simpler variants such as single-object
part parsing [22, 36–38, 48, 61] or part parsing for objects with fewer or visibly
larger parts [24]. Some recent methods [45, 55, 57, 74] have been developed to
specifically tackle the more complex task of multi-object multi-part parsing.
However, these suffer from three significant limitations:

https://olafseg.github.io/
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Fig. 1: The recipe for OLAF, our plug-and-play framework for enhanced multi-object
multi-part scene parsing: 1 Augment RGB input with object-based channels (fg/bg,
boundary edges) obtained from frozen pre-trained models (MO,ME) 2 Use Low-level
Dense Feature guidance from segmentation encoder (LDF, shaded green) 3 Employ
targeted weight adaptation for stable optimization with augmented input. We show
that following this recipe leads to significant gains (up to 4.0 mIoU) across multiple
architectures and across multiple challenging datasets.

Limitation 1: Foreground (union of object regions) is often incorrectly seg-
mented, impacting the constituent part segmentation (Figure 2, first row). Lim-
itation 2: Crucial boundary details between objects and parts are not captured
accurately (Figure 2, second row). Limitation 3 : Small and thin parts especially
fail to be segmented (Figure 4, Figure 5).

To address Limitation 1 & 2 , we first obtain a plausible boundary edge
mask using a pre-trained network. We use another pre-trained network to obtain
preliminary object segmentation and combine the object label channels to obtain
a binary foreground mask. These masks are included as additional channels to
constitute the 5-channel (3 RGB + 2 masks) input to the reference segmentation
network (see 1 in Figure 1). The masks provide an inductive bias and guide the
model to focus on relevant parts from the onset of training. We also propose a
weight adaptation technique that enables the pre-trained segmentation encoder
to process the new 5-channel input without destabilizing optimization ( 3 in
Figure 1).

To address Limitation 3 (i.e. small and thin parts), we introduce an encoder
module termed Low-level Dense Feature (LDF) - see 2 in Figure 1. This module,
in conjunction with augmented input representation, provides low-level dense
feature guidance enabling better segmentation, especially for small/thin parts.

To summarize our contributions:

– Input Augmentation: We introduce an augmented 5-channel input repre-
sentation with auxiliary channels containing object and boundary cues.
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Input Image FLOAT FLOAT + OLAF Groundtruth 

Fig. 2: The segmentation results for state-of-the-art approach FLOAT [55] and its
limitations can be seen in the second column. In the first row, FLOAT completely fails
to identify TV Frame and TV Screen. In the second row, FLOAT fails to capture the
edge partition between Car-Body, Car-Tire and also between Car-Body, Car-Window.
The third column shows results by incorporating our plug-and-play approach OLAF
into FLOAT, leading to significantly improved object and part segmentation results.

– Weight Adaptation Technique: We introduce a targeted weight-adaptation
training procedure that ensures stable optimization of pre-trained backbones
on the augmented (5-channel) input.

– Low-Level Dense Feature Guidance (LDF): We propose a generic en-
coder module called LDF which provides valuable low-level dense feature guid-
ance, especially for small part segmentation.

– Performance Boost: OLAF achieves significant mIoU improvements, sur-
passing state-of-the-art by 3.3 on Pascal-Parts-58, 3.5 on Pascal-Parts-108,
and 4.0 on Pascal-Parts-201.

– Generalizability: We show that OLAF enhances performance across mul-
tiple representative segmentation families (CNN, U-Net, Transformer) and
multiple datasets (Pascal-Parts 58/108/201 and PartImageNet), suggesting
broad applicability as a plug-and-play framework.

2 Related Work

Single-Object Multi-Part Segmentation considers a single object and its
constituent parts. Most works explore segmentation of non-rigid object categories
such as person [13,19,21,35,36,38,42,49,68], some animals [22,59,61] and rigid
object categories (e.g. vehicles [37, 41, 48, 56]). Some works have also examined
open-world part segmentation [50, 64]. However, the single object condition is
restrictive and not representative of general scenes which contain multiple objects
from distinct categories and associated occlusions.
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Multi-Object Multi-Part Segmentation has recently got increased at-
tention due to its complexity and importance in downstream applications. There
have been multiple different approaches to tackle this hard problem [45,55,57,74].
The initial work of Zhao et al. [74] and the works of Micheli et al. [45,46] lever-
age object and boundary awareness through auxiliary tasks and model design
changes. The current state of the art approach (FLOAT [55]) employs label-
space factorization to reduce the number of output heads. Typically, existing
approaches do not attempt segmentation of very small/thin parts although an-
notations are available [55]. Beyond the popular datasets (Pascal-Parts-58), our
approach enables improved performance for the harder variants (Pascal-Parts-
108, Pascal-Parts-201).

Object level guidance and Boundary/edge awareness is typically present
as an auxiliary task or in terms of guidance from an object network’s fea-
tures [5, 44–46, 50, 54, 74, 75]. For multi-object multi-part segmentation, Zhao
et al. [74] add an auxiliary task of predicting object segments from the learned
part segmentation representation. Michieli et al. [45] use the features from the
last layer of an object segmentation network as guidance to the part segmenta-
tion decoder. In contrast, our work OLAF adds object segmentation and edge
information directly as additional channels to the input which is observed to be
more beneficial.

Low-level Feature Guidance has been used in previous works [8,23,51,70]
to enhance the performance of segmentation by leveraging low-level visual (spa-
tial) cues. While some works incorporate skip-connections [7, 29], others utilize
downsampling strategies along with skip-connections to obtain sufficient recep-
tive field for context capturing [51,70]. While this strategy generally works well, it
may not be suitable for tasks such as part segmentation because the information
in low-level features is too coarse. In particular, downsampling compromises de-
tails of small or thin parts. By contrast, our approach strives to efficiently exploit
low-level cues in the most beneficial manner while also capturing the semantics
of small or thin parts.

3 Methodology of OLAF

OLAF introduces structural modifications at two key aspects of the standard
segmentation pipeline (see Fig. 3). The first change occurs at input stage, where
we enrich RGB input with auxiliary channels containing object-based structural
cues, including foreground/background masks and boundary edge masks. The
second structural adjustment takes place within the encoder. We introduce a
dedicated module termed LDF which provides low-level dense feature guidance
to benefit the segmentation of smaller parts. In addition to these structural en-
hancements, we introduce a weight adaptation technique which ensures that pre-
trained RGB (3-channel) backbones seamlessly adapt to augmented (5-channel)
input during optimization. In this section, we provide a detailed explanation of
these crucial components.
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Fig. 3: Illustration of OLAF’s architectural integration with FLOAT [55](Sec. 3).
FLOAT’s components are tagged with ⋆. The object masks from output So of object
segmentation network Mo are merged to obtain the foreground map fg. The output of
edge generation network Me is thresholded and filtered using fg to obtain edge map
edge. The obtained maps are stacked with input image I to obtain the 5-channel input
I
′
for the part segmentation network F . The interface for LDF (Sec. 3.2) with encoder

Epart and its architecture (top right) are also shown. A similar integration of OLAF
also exists for U-Net style and Transformer style architectures.

3.1 Foreground and Edge masks as boundary cues

The inclusion of foreground (union of object regions) guides the part predictions
to lie within object boundaries. To obtain the corresponding channel mask, we
use a state-of-the-art object segmentation network [7] to obtain object predic-
tions. These are transformed into a binary foreground/background mask.

fb(x, y) =

{
1, if P (x, y) ∈ C and P (x, y) ̸= 0

0, otherwise

where C denotes the predicted object class and pixel location is (x, y).
Edges play a crucial role in delineating boundaries between different objects,

parts and recognizing intricate details within the scene. To obtain a collection
of such edges, we use the Holistically-Nested Edge Detection (HED) [67] model.
The raw output edgeinitial from HED lies in the range [0, 1] and contains edges
from background as well. To filter out these background edges, we employ the
fg/bg mask as follows:

edge = I[edgeinitial > 0]⊙ fb
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Input Image FLOAT† FLOAT† + LDF Groundtruth 

Fig. 4: LDF (Section 3.2) consistently improves the performance of small/thin parts.
As shown in Row I, FLOAT [55] with LDF successfully predicts Aeroplane-Body while
FLOAT fails to do so adequately. Similar results can be seen in Row II, where LDF
successfully predicts Car-Light which FLOAT completely misses.

where edge represents foreground edges and ⊙ denotes element-wise multiplica-
tion and I is the indicator function. Note that edge mask is binary, i.e. pixel
location where there is an edge has pixel value 1 otherwise 0.

To prepare the input, we append the foreground and edge masks as separate
channels to the input image I. More precisely, the original input image I with
dimensions H ×W × 3 is transformed into a modified input I ′ with dimensions
H ×W × 5 (see 1 in Figure 1).

Conventional segmentation approaches typically include auxiliary tasks to
learn foreground/background [44] and edges during training [74]. However, di-
rectly including foreground/background and edges as part of the input can be
thought of as a structural inductive bias for the task. These masks provide strong
boundary cues throughout the optimization process. In addition, they eliminate
the issue of irregular gradient flow arising from ad-hoc scaling of task-related
losses [14] in existing (RGB input only) approaches.

3.2 Low-level Dense Feature Extractor (LDF)

Typically, encoders in segmentation architectures [3, 7, 63, 70, 73] process image
representations in a downsampled feature space (often 1/8th or 1/16th size of
input image). However, aggressive downsampling and intermediate pooling op-
erations lead to the loss of fine details and small entity instances in an image.
This effect is more pronounced for parts since they cover relatively smaller pixel
areas compared to scene objects.

To address this issue, some architectures either employ skip-connections [7]
or directly concatenate output from early backbone blocks with the decoder [28].
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However, despite these methods allowing flow of low level features to the decoder,
they still fail to segment small/thin parts. This is because information from early
stages of the encoder is too coarse and lacks contextual information for accurate
segmentation of such parts.

To overcome these challenges, we introduce the Low-level Dense Feature Ex-
tractor (LDF) module. LDF leverages early blocks of the backbone network,
where low-level information associated with small/thin parts are more promi-
nent. To capture dense features of these small/thin parts, LDF includes (a)
convolutional layers to enhance the features extracted from the initial stages of
the backbone (b) an upsampling layer to maintain consistent feature map size
(c) Atrous Spatial Pyramid Pooling (ASPP) [7] to capture contextual informa-
tion at multiple scales (see Figure 3). This enables the model to extract dense
low-level features at various spatial resolutions and consider context at different
scales, including context relevant to small/thin parts. LDF can be formalized as:

feat(x1, x2) = Conv3×3(x1) c UP (Conv3×3(x2))

LDF (x1, x2) = Conv1×1(ASPP (feat(x1, x2)))

where x1 and x2 are the features from the first and second block of the back-
bone, Conv3×3 represents a 3× 3 convolution with stride = 1 and padding = 1
to avoid dimension reduction, Conv1×1 represents 1 × 1 convolution. ASPP (.)
represents Atrous Spatial Pyramid Pooling [7] and c represents the concatena-
tion operation. UP (.) represents applying an Upsample Convolution layer which
applies an upsampling step with a scale factor, followed by a Conv1×1, batch
normalization, and a ReLU activation.

Similar to input channel augmentation (Section 3.1), LDF can also be viewed
as imposing a structural inductive bias for smaller and thin parts. LDF enables
noticeable improvements in performance for such parts (see Figure 4,Table 4).

3.3 Weight Adaptation

Standard pre-trained segmentation models support 3-channel RGB images as
input. To efficiently adapt existing models for our modified 5 channel input, we
employ a simple but effective technique. As the initial step, for filters in the
first layer, we average their weights across the channel dimension. The result
is used to initialize the weights of the filters corresponding to the two newly
included input channels (i.e. fg/bg and edges). To ensure stable training, the
optimization contains a warm-up phase consisting of nwarm epochs. Compared
to alternative schemes (Section 5.3), this approach prevents weight updates that
lead to instability or divergence during the initial stages of training

4 Experiments

4.1 Datasets

Pascal-Part Dataset Variants: The Pascal-Parts dataset contains 4,998 train-
ing samples and 5,105 samples for testing [18]. The dataset contains part level
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annotation for the 20 Pascal VOC2010 semantic object classes (including the
background class). We follow Singh et al. [55] and evaluate OLAF on three vari-
ants of Pascal-Part, which are Pascal-Part-58, Pascal-Part-108 and Pascal-Part-
201 in increasing order of complexity. Pascal-Part-58 contains 58 part classes,
mostly focusing on larger parts of objects such as heads, torsos, legs for animals,
and components such as body, wheels for non-living objects. Pascal-Part-108
is more challenging, featuring 108 part classes. It includes smaller parts such as
eyes, necks, feet for animals, and roofs, doors for non-living objects. Pascal-Part-
201 [55] is the most challenging version among the Pascal-Part dataset variants.
It includes 201 part classes and introduces additional part attributes ‘left’, ‘right’,
‘front’, ‘back’, ‘upper’, ‘lower’, along with minor parts (e.g. ‘eyebrows’), which
are not present in the other variants (58/108).
PartImageNet [25]: This is a large-scale dataset containing 24,095 images.
We follow the official training/validation split and evaluate performance on the
publicly available validation set.

4.2 Evaluation Metrics

We use the standard mean Intersection over Union (mIoU) score as a perfor-
mance measure. mIoU tends to be influenced more by the contributions of
“larger” part instances. Therefore, we also report sqIoU [55], designed specifically
for fairer balance between small and larger parts. For comparison with existing
works [24], we report average pixel accuracy as a metric for PartImageNet [25].

4.3 Training Details

To show the effectiveness of our approach for multi-object multi-part scene pars-
ing, we apply the recipe for OLAF (see Figure 1) on BSANet [74], GMNet [45],
Deeplabv3 [7] and the current state-of-the-art FLOAT [55]. For training these
models, we consider all the Pascal-Part dataset variants. We also apply OLAF to
DeepLabV3+ [7], Segformer [66] trained on PartImageNet [25] dataset. We also
experiment with different backbones - ResNet-50 [26], Swin Transformer [43] and
MiT-B2 [66]. We apply the same hyperparameters, training strategy, augmen-
tations and pretrained backbones used in the respective methods4. For weight
adaptation (Section 3.3), nwarm is set to 5. All the experiments are conducted
on clusters with NVIDIA A100 GPUs.

5 Experimental Results

5.1 Pascal-Part-58, 108 and 201

Table 1 presents performance metrics for the most challenging variant of the
Pascal-Part dataset, Pascal-Part-201. When applying OLAF to state-of-the-art
model FLOAT [55], we observe significant improvements: a 4.0 increase in mIoU

4 The training details can be accessed from the respective papers.
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Table 1: Pascal-Part-201 results (mIoU/mAvg - top table and sqIoU/sqAvg - bottom
table). “+ O”: augmented with OLAF, “†”: with ViT-H backbone.
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DeepLabv3 [7] 91.0 31.6 47.7 24.3 56.7 46.4 31.0 36.7 24.2 35.6 17.5 38.6 27.3 20.7 38.0 26.9 50.8 13.3 42.1 14.7 57.6 26.3 36.8
Deeplabv3 + O 93.6 35.3 42.9 27.2 65.5 51.0 33.3 38.4 25.8 42.1 20.5 46.9 29.4 22.6 39.3 28.9 56.1 15.5 46.8 17.2 65.2 28.6 40.2

GMNet [45] 90.8 26.6 33.1 21.2 55.0 43.5 24.6 27.5 21.7 35.5 15.1 40.3 25.0 17.5 31.9 21.9 44.2 11.9 43.3 14.0 53.2 22.5 33.2
GMNet + O 93.1 28.5 35.9 23.5 64.5 47.0 26.7 29.5 26.4 41.9 19.0 47.9 29.1 20.3 34.0 26.3 49.8 16.9 54.8 15.9 60.5 26.0 37.7

BSANet [74] 91.2 34.6 41.7 27.9 61.2 51.7 34.1 38.1 26.1 35.4 24.0 43.6 28.4 23.0 37.4 27.7 54.7 14.3 40.4 17.8 59.4 28.5 38.7
BSANet + O 92.9 35.9 43.1 29.9 69.8 53.3 35.8 39.8 28.9 39.8 26.6 49.2 31.2 24.9 38.9 31.1 59.5 18.7 49.9 19.0 65.8 31.1 42.1

FLOAT [55] 92.5 36.7 42.6 34.4 75.3 51.4 35.8 42.0 37.8 59.6 35.5 58.2 41.0 34.0 40.2 40.8 52.2 28.5 69.0 15.1 56.1 36.9 46.6
FLOAT + O 93.3 38.7 45.1 37.4 76.7 54.1 38.7 46.2 41.4 59.7 38.9 58.3 43.1 35.2 42.3 44.6 61.0 31.5 69.1 16.4 69.3 39.8 49.6

FLOAT† 93.2 36.9 44.5 36.8 76.4 32.1 36.3 44.2 39.3 59.3 36.8 58.1 42.7 34.1 41.2 43.2 56.7 30.2 68.9 15.2 59.4 37.7 46.9

FLOAT† + O 93.7 39.9 45.6 38.3 77.1 55.3 39.3 47.9 42.2 60.7 39.4 59.6 44.2 37.3 44.2 47.1 63.5 32.2 69.6 16.9 70.9 40.9 50.7
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Deeplabv3 [7] 89.6 28.9 39.3 17.1 57.4 32.3 27.1 26.0 20.5 39.8 14.8 34.7 22.7 17.2 31.5 19.2 34.9 10.8 52.6 14.4 53.8 21.5 32.6
Deeplabv3 + O 93.2 33.4 36.5 21.0 67.2 38.0 30.0 28.8 23.2 47.3 18.8 44.1 25.8 19.9 33.5 22.1 41.2 13.7 58.3 17.9 62.4 24.8 37.0

GMNet [45] 89.4 20.7 23.5 12.6 53.1 25.8 19.3 17.2 18.1 38.2 11.2 35.2 15.9 14.2 25.4 13.8 26.9 8.5 52.0 13.8 46.9 16.9 27.7
GMNet + O 91.4 23.8 27.3 16.5 63.6 30.2 23.7 20.9 22.7 45.7 15.8 43.6 23.0 17.4 28.5 19.1 33.5 14.9 64.5 17.3 56.0 21.4 33.3

BSANet [74] 89.9 30.7 33.5 18.6 60.2 31.2 29.2 26.4 21.2 37.8 17.5 38.0 22.3 17.8 31.2 18.2 33.6 10.8 47.2 17.5 55.4 22.1 32.8
BSANet + O 91.4 32.9 35.7 21.6 69.8 34.2 31.8 29.1 25.0 43.2 21.0 44.6 26.1 20.7 33.3 22.5 39.3 16.2 57.7 19.6 62.8 25.7 37.1

FLOAT [55] 90.8 32.5 35.8 24.5 63.9 36.1 30.4 29.9 33.0 50.8 28.1 47.6 35.6 26.1 33.6 29.9 34.5 20.6 69.0 13.6 56.8 29.5 39.2
FLOAT + O 91.5 34.9 39.0 27.2 65.1 39.1 34.6 34.0 36.3 50.9 32.5 47.7 37.7 30.0 35.9 33.1 38.7 22.9 69.2 13.8 65.2 32.5 41.9

FLOAT† 91.4 32.6 37.5 26.4 65.2 16.9 40.2 32.4 34.2 50.6 29.6 47.5 37.3 26.4 34.5 32.6 39.3 22.6 68.8 13.9 60.5 30.8 40.0

FLOAT† + O 92.3 36.4 39.7 28.5 65.6 40.6 35.5 35.7 37.4 52.2 33.4 49.3 38.9 32.3 37.9 35.8 41.6 23.7 69.7 14.4 66.9 34.3 43.2

Table 2: Pascal-Part-58&108 segmenta-
tion results. ‘+ O’:augmented with our ap-
proach OLAF, ‘†’: with ViT-H backbone.

Method 58 108
mIOU mAvg sqIOU sqAvg mIOU mAvg sqIOU sqAvg

Deeplabv3 [7] 54.3 55.4 46.0 48.4 41.3 43.6 32.2 36.1
Deeplabv3 + O 59.0 61.6 52.1 55.6 46.4 51.5 39.2 45.2

BSANet [74] 58.2 58.9 49.3 51.5 45.9 48.4 36.6 41.0
BSANet + O 59.8 61.7 51.9 55.3 47.1 50.3 38.7 43.5

GMNet [45] 59.0 61.8 49.4 54.3 45.8 50.5 35.8 41.9
GMNet + O 60.2 63.4 51.6 55.5 47.2 52.1 38.5 44.8

HIPIE [62] 63.8 67.1 57.2 60.7 - - - -

FLOAT [55] 61.0 64.2 54.2 57.1 48.0 53.0 40.5 45.6
FLOAT + O 62.7 66.1 55.4 58.5 50.3 55.3 43.4 48.4

FLOAT† 62.1 65.5 55.8 58.9 48.9 54.2 41.6 46.7
FLOAT† + O 64.3 68 57.7 60.8 51.5 56.9 45.0 49.9

Table 3: Results on validation set
of the PartImageNet [25] dataset.
The backbone for each approach
is specified separately. “+ O”: aug-
mented with our proposed method
OLAF.

Method Backbone mIOU mAcc

Deeplabv3+ [9] ResNet-50 [26] 57.53 71.07
Compositor [24] ResNet-50 [26] 61.44 73.41
Deeplabv3+ + O ResNet-50 [26] 61.71 74.26

Segformer [66] MiT-B2 [66] 60.52 71.62
Compositor [24] Swin-T [43] 64.64 78.31
Segformer + O MiT-B2 [66] 65.46 79.10

and a 4.8 increase in sqIoU compared to FLOAT. This improvement is partic-
ularly noteworthy given that (a) Pascal-Part-201 is characterized by numerous
small parts (b) object categories in this dataset have subtle intra and inter-
category part label variations (e.g. ‘left front leg’/‘right front leg’ in horse, cow
etc. and ‘right leg’ in person).

In both Pascal-Part-58 and Pascal-Part-108 (see Table 2), our approach con-
sistently outperforms the baselines. Specifically, FLOAT with OLAF exhibits
improvements of 3.3 in mIoU and 3.5 in sqIoU. Similarly, in Pascal-Part-108,
FLOAT achieves substantial improvements: 3.5 in mIoU and 4.5 in sqIoU.



10 P. Gupta et al.

Table 4: Ablation experiments on PASCAL-Part-201 (Section 5.3). We use FLOAT†

as the base model.

LDF Edge-Map Fg/Bg-Map mIoU mAvg sqIoU sqAvg mIoUsmall

Input Channel Presence and
Architectural Changes

− − − 37.7 46.9 30.8 40.0 24.0
✓ 38.8 48.1 31.8 41.0 25.7

✓ 38.9 48.2 32.2 41.3 24.5
✓ 39.1 48.3 32.0 41.2 24.6

✓ ✓ 39.2 48.3 32.2 41.4 24.8

OLAF ✓ ✓ ✓ 40.9 50.5 34.3 43.2 26.9

fg map baseline Segment Anything (SAM) [31] 40.5 50.2 34.0 42.8 26.4

Edge Map baselines EDTER [52] 39.5 49.1 33.1 41.9 24.9
Canny [6] 39.0 48.8 32.6 41.6 24.3

Added depth map baselines Marigold [30] 40.7 50.2 34.2 43.1 25.1
Depth Anything [69] 40.8 50.4 34.2 43.2 25.2

Optimization
(Input Layer Weight Adaptation)

Random-5 35.2 44.2 28.4 37.4 19.7
Average-RGB-5 [60] 36.3 45.5 29.2 38.9 20.5
Adapt-n-Freeze [17] 38.2 47.1 31.3 39.5 21.7

Random-2 40.2 49.6 33.0 41.6 24.3

5.2 PartImageNet

For PartImageNet [25] (Table 3), OLAF augmented DeepLabV3+ [9] outper-
forms both DeepLabV3+ and state-of-the-art Compositor [24] with large im-
provements in mean accuracy. The results suggest that performance improve-
ment is prominent for more recent, modern backbones (Swin-T [43], MiT-B2 [66]).
The results also suggest that OLAF’s methodology generalizes well to enable
gains across datasets and architectural frameworks.

5.3 Ablation Studies

We conduct extensive ablation experiments with current state-of-the-art model
FLOAT [55] trained on Pascal-Part-201 (Table 4).
Input channel presence and architectural changes: Considering the LDF
module alone, there is an initial improvement in mIoU from 37.7 to 38.8. The
introduction of edge and foreground/background cues improves the mIoU to
39.2. However, the most substantial gains are observed when all components are
combined, achieving an mIoU of 40.9.

Similar to the convention from COCO [39] for objects, we define ‘small’
parts as those smaller than 25× 25 pixels by area. We report the corresponding
measure (mIoUsmall) in Table 4 (last column). Clearly, the inclusion of LDF
enables noticeable gains for small parts compared to input channels’ inclusion.

Input channel baselines: As a baseline for foreground map input channel,
we used the foreground map obtained by combining object mask outputs from
Segment Anything (SAM) [31] but this led to a slightly lower performance.
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Image Ground-truthBSANet BSANet + OLAF FLOAT† FLOAT† + OLAF

Fig. 5: Qualitative comparison on Pascal-Part-201. OLAF consistently improves the
performance of previous methods (BSANet [74], FLOAT [55]). This is especially seen
for small parts as shown in Row 1 (eyes, ears, nose and right-front-leg), Row 2 (eye, ears,
nose, mouth and tail) and occluded parts as shown in Row 3 (parts of the motorbike).

Empirically, we observed that SAM does not accurately segment certain object
categories such as potted plant, and tends to omit tiny parts of certain classes
(e.g. tail of airplane, bird, cat, cow, dog, horse, sheep).

For edge map, we explored Canny [6] and EDTER [53] as alternatives. Com-
pared to our default choice (HED [67]), these choices fail to strike the right
balance in terms of boundary edge density – Canny maps contain too few se-
mantically crucial edges while EDTER maps tend to be too dense. See Supple-
mentary for examples illustrating these observations.

Intrigued by the performance enhancement capabilities of additional input
channels, we considered adding depth maps obtained from monocular depth es-
timation approaches (Marigold [30], Depth Anything [69]) as additional input
channels. In effect, this increased the number of channels to 6. The weight adap-
tation procedure was applied as described earlier (Sec. 3.3). But the inclusion
of depth map did not lead to performance gains. A likely reason could be that
depth cues are likely more useful for differentiating objects, particularly when
the scene has a large depth of field. But for intra-object parts, depth might not
vary much. Consequently, depth map might not be as effective for aiding part
segmentation.

Weight Adaptation: To examine the effect of our weight adaptation procedure
at input layer (Section 3.3), we conducted experiments with alternate schemes
as described below.
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Image Ground-truthBSANet BSANet + OLAF FLOAT† FLOAT† + OLAF

Fig. 6: Qualitative comparison on Pascal-Part-108. OLAF consistently improves the
performance of previous methods (BSANet [74], FLOAT [55]). This is especially seen
for small parts as shown in Row 1 (eyes and tail), Row 2 (eyes, ears, front-paw and
tail) and Row 3 (wheel, headlight and very tiny parts of humans).

– Random-5 : Retain weights of the entire backbone except for the input layer.
The input layer dimension is reconfigured from 3 channel input to 5 channel
input and weights for this layer’s filters are initialized randomly.

– Random-2 : Retain weights of the entire backbone, including those for the 3
channels in the original (RGB) input layer. The weights for two newly added
channels in the input layer are initialized randomly.

– Average-RGB-5 [60]: Average the channel-wise weights of the original (RGB)
network’s input layer. Initialize all 5 channels with this average.

– Adapt-n-Freeze [17]: First, include a convolution layer to match augmented
input (5 filters) and then include 1 × 1 filter so that output (3 channels)
is compatible with base (RGB) network. Freeze the base network and train
the adapter layers (Conv2D, 1× 1). Then unfreeze and train the entire layer
augmented base network together.

To ensure fair and consistent comparison, all methods used a warm-up phase
consisting of nwarm = 5 epochs. As shown in Table 4, our proposed approach
provides the best performance. In practice, we found that Random-5 method re-
sulted in unstable learning. This instability arises from initializing the input layer
with random weights, causing erratic gradient flow and impacting the pretrained
weights of subsequent layers in the backbone. While Random-2 had stable opti-
mization, the performance suffers from erratic gradients due to random initializa-
tion. The other adaptation schemes (Average-RGB-5 [60], Adapt-n-Freeze [17])
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Image Ground-truthDeeplab v3+ Deeplab v3+ + OLAF Segformer Segformer + OLAF

Fig. 7: Qualitative comparison for images from PartImageNet [25]. OLAF consistently
improves the segmentation quality, especially for the harder small parts of objects.

also had similar instability issues. In contrast, our weight adaptation approach
ensures stable optimization and distinctly improved performance.

Overall, the ablation experiments suggest that all the ingredients of our recipe
— object-based channels, LDF, targeted weight adaptation — are crucial and
contribute to the enhanced performance of OLAF.

5.4 Qualitative Results

As seen in Figure 5, OLAF consistently improves performance for BSANet [74]
and FLOAT [55]. It particularly improves the segmentation of small objects
(cat in Row 2), small parts as shown in Row 1 (‘right front leg’, ‘right eye’ and
‘left/right ear’ of dog) and Row 2 (parts in face region of cat) and occluded
parts as shown in Row 3 (parts of motorbike especially the body). A similar
trend can also be seen for Pascal-Part-108 (Figure 6) and PartImageNet dataset
in Figure 7. A limitation of OLAF stems from its dependence on the additional
input channels (Section 3.1). Poor-quality channel masks can affect segmentation
results – see Supplementary for examples.

5.5 Computational Metrics

As Table 5 shows, inclusion of OLAF leads to a modest rise in trainable pa-
rameters for BSANet (20%), GMNet (8%), FLOAT (14%) and FLOAT† (1.5%).
The training time per epoch shows a slight uptick (5% - 10%) while inference
time increases by 0.26s for state of the art network. Overall, there is a prag-
matic balance between OLAF’s performance gain and increase in computational
demand.
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Table 5: Compute metrics for various
methods with inclusion of OLAF (’+ O’)
and without (baseline) on Pascal-Parts-58.
The batch size is 16.

Method Trainable Train Time Test Time
Param(M) (mins/epoch) (secs/image)

BSANet [74] 63.9 31.3 0.46
BSANet + O 76.8 32.9 0.81

GMNet [45] 123.4 16.6 0.49
GMNet + O 133.9 17.4 0.77

FLOAT [55] 76.2 18.3 0.98
FLOAT + O 86.7 20.1 1.36

FLOAT† 674.7 100.8 8.33

FLOAT† + O 685.2 101.1 8.59

Table 6: FLOAT [55] with differ-
ent train and inference time resolu-
tions for Pascal-Parts-58. The under-
lined value is the default setup for
FLOAT. OLAF’s results are included
for reference.

Method Train Inference mIoU

FLOAT [55] 513 x 513
513 x 513 60.8
770 x 770 61.0

1024 x 1024 57.4

FLOAT [55] 770 x 770 770 x 770 60.5
1024 x 1024 57.6

FLOAT+O 513× 513 770× 770 62.7

5.6 Effect of input resolution

During inference, all baselines conventionally operate on a higher resolution input
(770 × 770) compared to the resolution during training (513 × 513). We exam-
ined the effect of higher resolution during training and inference on FLOAT [55]
(the SOTA baseline). The results (Table 6) show that (i) for inference, there is
a limit to the gain achieved by increasing resolution (ii) training with higher
(than default) resolution does not necessarily provide a stronger baseline model.
Moreover, a higher resolution significantly increases run time and memory re-
quirements. The findings reemphasize the effectiveness of OLAF’s plug-and-play
design for enhancing performance without requiring an increase in default input
resolution.

6 Conclusion

OLAF is a broadly applicable plug-and-play approach for enhancing multi-object
multi-part scene parsing. OLAF’s recipe consists of (i) augmenting RGB input
with object-based channels (fg/bg, boundary edges). This acts as a structural
inductive bias and guides the model to focus on relevant parts throughout op-
timization (ii) using lightweight yet efficient low-level dense feature guidance
(LDF). This acts as an inductive bias for small and thin parts. (iii) targeted
weight-adaptation for stable optimization with augmented input.

Our approach shows the benefit of efficiently infusing targeted inductive bi-
ases into existing models. OLAF also addresses multiple limitations of existing
methods. OLAF consistently improves segmentation performance, especially for
small and thin parts, across a broad spectrum of challenging datasets and archi-
tectures. We expect OLAF’s lightweight and modular enhancements to also ben-
efit other computer vision tasks such as panoptic part segmentation [12,20,34,40].
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