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Abstract. Continuous-Time Simultaneous Localization And Mapping
(CTSLAM) has become a promising approach for fusing asynchronous and
multi-modal sensor suites. Unlike discrete-time SLAM, which estimates
poses discretely, CTSLAM uses continuous-time motion parametrizations,
facilitating the integration of a variety of sensors such as rolling-shutter
cameras, event cameras and Inertial Measurement Units (IMUs). How-
ever, CTSLAM approaches remain computationally demanding and are
conventionally posed as centralized Non-Linear Least Squares (NLLS)
optimizations. Targeting these limitations, we not only present the fastest
SymForce-based [22] B- and Z-Spline implementations achieving speedups
between 2.43x and 110.31x over Sommer et al . [40] but also implement
a novel continuous-time Gaussian Belief Propagation (GBP) framework,
coined Hyperion, which targets decentralized probabilistic inference across
agents. We demonstrate the efficacy of our method in motion tracking
and localization settings, complemented by empirical ablation studies.
Code: https://github.com/VIS4ROB-lab/hyperion

Keywords: Gaussian Belief Propagation · Continuous-Time SLAM ·
Distributed Non-Linear Least Squares Optimization · B- and Z-Splines

1 Introduction

Estimating a sensor-suite’s ego-motion and workspace employing Simultaneous
Localization And Mapping (SLAM) techniques, has long been studied using a wide
variety of sensing modalities, such as vision sensors [35,39,43,46], IMUs [7,18,36],
Global Positioning System (GPS) feeds [21, 23], and laser ranging [9] sensors.
Unlike traditional, discrete-time approaches, which require careful synchronization
of sensory measurements due to the discretization of motion-parametrizing states,
Continuous-Time Simultaneous Localization And Mapping (CTSLAM) [9, 12, 13,
15, 33] offers native support for the fusion of asynchronous measurements due to
its continuous-time parametrization that yields pose, velocity and acceleration
estimates at arbitrary instances in time.

Despite their advantages, CTSLAM approaches often entail higher computa-
tional complexity than conventional approaches, which somewhat hinders their
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(a) At initialization (b) After the 1st iteration
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(c) Absolute Error

Fig. 1: Both the proposed continuous-time GBP solver (in magenta) and the conven-
tional NLLS solver [1] (in white) converge to identical solutions close to the ground
truth (in green) even under poor initialization (±1.00 m/rad) and substantial pose
measurement noise (±0.05 m/rad).

deployment in real-world scenarios. In addition, most (discrete- and continuous-
time) SLAM systems pose the underlying optimization as a centralized Non-Linear
Least Squares (NLLS) problem, which, without further modifications, strictly
limits their applicability to single-agent setups.

Thus, novel, decentralized algorithms along with more effective continuous-
time motion parametrizations are paramount in the quest to overcome existing
challenges in traditional, centralized CTSLAM techniques. Distributed methods
such as GBP are especially promising given that they, in contrast to conventional
NLLS paradigms, achieve iterative, probabilistic inference through message-
passing between individual nodes and factors in a factor graph and that they
operate in a distributed and asynchronous manner by nature rendering them
inherently scalable, even across multiple agents. In addition, GBP also explicitly
models the uncertainties of optimizable quantities, which can be leveraged to
selectively direct computational resources to non-converged nodes in the graph.
This circumstance is especially promising in the context of CTSLAM where
effective allocation of computational resources towards the least certain estimates
promises to further reduce their computational complexity.

This work, in particular, pushes the performance envelope of B- and Z-Splines
and devises an innovative, distributed optimization strategy for CTSLAM using
GBP. Whilst the need for faster continuous-time parametrizations is self-evident,
we also specifically target the absence of a distributed, continuous-time state
estimation framework. Such a framework, not only promises flexible resource
allocation and decentralized state estimation but also allows fusing asynchronous
measurements. Here, we showcase the practicality of the proposed continuous-time
GBP framework and provide it as an open-source implementation to encourage
benchmarking. In addition to these contributions, this work also

• offers the fastest, fully analytic B- and Z-Spline implementations to date,
• presents a novel, symbolic GBP-based framework for continuous-time SLAM,
• demonstrates the suitability of the proposed method in practical setups, and
• provides detailed ablation studies on the algorithm itself.
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2 Related Work

The SLAM problem has long been researched as it comprises the core of robotic
perception, with seminal works focusing on discrete-time, monocular [26, 36]
and stereo setups [35, 37], as well as works which propose fusion of additional
sensing information, such as inertial [5–7,19], and laser ranging [9]. In addition
to these feature-based approaches to SLAM, alternative powerful paradigms
have been proposed, such as direct methods [10, 11] and machine-learning based
techniques [24,44] have been demonstrated to be beneficial in some scenarios.

In contrast to traditional, discrete-time SLAM methods that have been
widely adopted, CTSLAM techniques have early on been demonstrated to exhibit
great potential for high-fidelity and continuous estimates of motion [2, 12, 13,15,
20, 25, 42, 45], albeit posing fundamental scientific and algorithmic challenges.
The key advantage of these methods lies in their inherent capability to fuse
unsynchronized and asynchronous measurements (e.g . from a rolling shutter
camera or an event-based vision sensor) in the estimation processes, in contrast
to conventional approaches. However, the wider adoption of CTSLAM techniques
remains impeded by challenges in finding more efficient motion representations,
addressing convergence issues as well as overcoming computational limitations,
missing out on the promise for high-fidelity motion and scene estimation.

Following promising leads in fundamental SLAM research for single agents, a
novel challenge and desire to deploy the same techniques in collaborative, multi-
agent setups arose. Works such as [38] proposed means to address centralized
multi-agent SLAM, while [18] investigated the advantages of variable-stereo
baseline setups, which leverage the views from two agents to boost the accuracy of
high-altitude depth estimates. A common approach to solve NLLS optimizations
in a distributed fashion is based on Alternating Direction Method of Multipliers
(ADMM) approaches similar to the work in [34] and [3], which leverage the use
of dual residuals to ensure consistent estimates across distributed multi-agent
NLLS optimizations. Orthogonally, GBP approaches [8,28,30,32] can perform
distributed and asynchronous inference of states via an equivalent message-passing
scheme, making them ideal candidates to address multi-agent SLAM.

In this work, we build upon these ideas, consolidate a distributed GBP opti-
mization with a continuous-time parametrization, and demonstrate the suitability
of the novel, combined method in practical setups.

3 Methodology

3.1 Preliminaries

All Simultaneous Localization And Mapping (SLAM) algorithms, in essence,
aim to estimate an optimal, cost-minimizing set of optimizable parameters Θ
which are set to describe a collection of noisy sensory measurements m with
the highest possible accuracy. Specifically, in its NLLS formulation, this optimal
solution is found by minimization of the cumulative cost over a set of weighted
residuals r̄ associated with measurements m stemming from a connected sensor
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Fig. 2: For every (valid) instance in time t, a collection of adjacent bases (in orange)
gives rise to an individual segment (in green) of a cubic B-Spline. An interpolated pose
at query time t is then obtained from the (cumulative) blending of these bases.

s. A weighted residuals r̄ at measurement time t is computed by comparing a
predicted measurement m̂(t,θs) with sensor-associated parameters θs ⊆ Θ to a
measured one m(t) through the application of a metric µ (i.e. x̂ ⊟µ x) and a
subsequent weighting via the square-root information Ωm according to

r(t,θs) = m̂(t,θs)⊟µ m(t) and (1)

∥r̄∥2 = r̄⊤r̄ = r⊤Ω⊤
mΩmr = r⊤Λmr = r⊤Σ−1

m r, (2)

where Σm and Λm are the covariance and precision matrix, respectively. Ulti-
mately, we aim to minimize the sum over residuals stemming from all connected
sensors S and their associated measurements Ms with measurement times Ts. To
this end, established NLLS solvers [1] are commonly deployed in practice, which
aim to obtain the optimal, cost-minimizing parameters Θ∗ as defined below.

Θ∗ = argmin
Θ

∑
s∈S

∑
t∈Ts

1

2
∥r̄(t,θs)∥2

 . (3)

3.2 Continuous-Time Motion

In recent times, continuous-time formulations of conventional SLAM algorithms
have been studied by multiple authors [12, 13, 15, 16, 20, 40], where the most
common motion parametrization is based on the concept of cubic B-Splines.
This practice is rooted in several favorable properties of B-Splines, such as their
compact representation, finite support, analytic Jacobians, and their C2-continuity
for predicting instantaneous velocities and accelerations. In this work, we utilize
split interpolations for world-to-body transformations Twb(t) ∈ SE(3), illustrated
in Fig. 2, that separately parametrize rotations Rwb(t) ∈ SO(3) and translations
twb(t) ∈ R3. In particular, we compute transformations Twb(t) using

Twb (t) =

[
Rwb (qwb (t)) twb (t)

0 1

]
∈ SE(3) with (4)
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qwb (t) = qwi ∗
k∏

j=1

(
q−1
w(i+j−1) ∗ qw(i+j)

)λj(t)

(5)

twb (t) = twi +

k∑
j=1

[
λj(t)

(
tw(i+j) − tw(i+j−1)

)]
, (6)

where individual evaluations of Twb (t) depend on a collection of bases {Bi, . . . ,Bi+k}
(see Fig. 2) and each basis Bi comprises a time ti, a quaternion qwi and a transla-
tion twi. Above, k is the Degree of Freedom (DoF) of the B-/Z-Spline, rotations
Rwb(t) are parametrized by quaternions qwb(t) and the expression λj(t) serves
as a placeholder for concrete interpolation coefficients found in [4, 15,17,20].

3.3 Continuous-Time Optimization

In its probabilistic formulation [30,32], the non-linear minimization problem from
Eq. (3) is equivalent to finding an optimal probability distribution that accounts
for all acquired measurements. Without loss of generality, one can also represent
the problem as a product of factors fi ∝ e−Ei(θi) with induced energies Ei(θi),
arriving at the modified expression to obtain the optimal parameters Θ∗.

Θ∗ = argmax
Θ

log (p (Θ)) = argmin
Θ

∑
i

Ei(ti,θi) with (7)

p (Θ) =
∏
i

fi (ti,θi) ∝
∏
i

e−Ei(ti,θi). (8)

In this work, we use multi-variant Gaussians N (µi,Σi) to model the factors fi
in Eq. (8), linking the energies in Eq. (7) to the residuals in Eq. (2) according to

Ei(ti,θi) = ∥r̄i∥2 = r⊤i (ti,θi)Ω
⊤
i Ωiri(ti,θi). (9)

The generic residuals r̄i themselves are non-linear with a corresponding Taylor
expansions in θi around some linearization point θ0

i such that

r̄i(θi)− r̄i(θ
0
i ) ≈ Dr̄i(θ

0
i ) (θi − θ0

i ) = J̄
0
i (θi − θ0

i ) = J̄
0
i τ

0
i . (10)

Furthermore, all factors fi, their energies Ei(ti,θi) respectively, can also be
converted to an equivalent, incremental information form N−1(η0

i ,Λ
0
i ), yielding

Ei(ti, τ
0
i ) ≈

1

2
τ 0,⊤
i Λ0

i τ
0
i − τ 0,⊤

i η0
i where (11)

η0
i = −J̄

0,⊤
i r̄0i and Λ0

i = J̄
0,⊤
i J̄

0
i . (12)

This dual representation of factors fi and the existence of the Gaussian N and its
inverse N−1 is vital for efficient conditioning and marginalization of individual
terms in the GBP algorithm presented in the next section.
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Fig. 3: (a) Qualitative illustration of the factor graphs resulting from a continuous-time
motion parametrization. Notably, even one of the simplest factor archetypes, which
purely relies on the motion-parameterizing nodes as well as some landmarks, introduces a
considerable amount of loops in the continuous-time realm. This can be attributed to the
fact that poses Twb(t) depend on multiple bases for any given time t. (b) Visualization
of the message passing algorithm between nodes and factors in a graph G.

Gaussian Belief Propagation (GBP) As illustrated in Fig. 3a, Eqs. (3)
and (7) expose equivalent visual representations as factor graphs, giving rise
to compact and intuitive descriptions of complex probabilistic dependencies
which are encoded into bipartite graphs G containing factors fi ∼ N−1(ηfi ,Λfi)
and nodes nj ∼ N (µnj

,Σnj ) = N−1(ηnj
,Λnj ). Intuitively, the GBP algorithm,

thus, comprises two steps to iteratively solve for the optimal solution to Eq. (7),
namely node and factor updates with intermediate factor-to-node mfi→nj

and
node-to-factor mnj→fi message passing detailed in the following.

Node Updates: The Gaussian nodes nj ∈ G with neighborhood N(nj) of connected
factors fi ∈ N(nj) are updated by taking the product over incoming factor-to-
node messages mfi→nj , which reduces to a simple summation of Gaussians for
(linear) vector spaces, resulting in node beliefs B(nj) = N−1(ηnj

,Λnj
), where

ηnj
= ηp

nj
+

∑
fi∈N(nj)

ηfi→nj
and Λnj

= Λp
nj

+
∑

fi∈N(nj)

Λfi→nj
. (13)

Above, P (nj) = N−1(ηp
nj
,Λp

nj
) denotes a known prior on the node belief B(nj)

which can be leveraged to better constrain the problem in practice. However,
despite its simplicity and elegance, this straightforward approach can not be
applied to Lie groups G with associated tangent space g and their operators
⊟ : G × G 7→ g and ⊞ : G × g 7→ G extensively used in robotics. Hence, a
more sophisticated approach is required to obtain the product of factor-to-node
messages and to handle frame conversions between elements in the Lie group.

To this end, we follow a similar strategy as Murai et al . [28] and propose
the use of a Mixed Gaussian Representation (MGR) to parameterize Lie-group-
valued nodes as nj ∼ N(µnj

,Λnj ), where µnj
∈ G and Λnj ∈ Rdim(g)×dim(g),

also assuming that incoming message mfi→nj
∼ N(µfi→nj

,Λfi→nj
) take the

same form. In contrast to conventional vector spaces, the precision matrices are
expressed relative to their associated elements in the Lie group, implying that
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one must warp them to a privileged frame of reference. An intuitive choice for
such a frame is the latest estimate of the node’s state, denoted as µ0

nj
and Λ0

nj
,

resulting in the following transformation rules to warp the messages.

τ 0
fi→nj

= µfi→nj
⊟ µ0

nj
∈ Rdim(g) (14)

Λ0
fi→nj

=

[
∂τ 0

fi→nj

∂µfi→nj

]⊤
Λfi→nj

[
∂τ 0

fi→nj

∂µfi→nj

]
∈ Rdim(g)×dim(g) (15)

After this conversion, both τ 0
fi→nj

and Λ0
fi→nj

are elements in the tangent
(matrix) space relative to the privileged frame and must then be summed in
analogy to Eq. (13) to yield the intermediate, incremental values

τ+
nj

= αnj

∑
fi∈N(nj)

Λ0
fi→nj

τ 0
fi→nj

and Λ+
nj

=
∑

fi∈N(nj)

Λ0
fi→nj

, (16)

where αnj
denotes an optional step size. The above increments must then again

be warped to the updated frame of reference by evaluating

µnj
= µ0

nj
⊞ τ+

nj
and Λnj

=

[
∂µnj

∂τ+
nj

]⊤
Λ+

nj

[
∂µnj

∂τ+
nj

]
. (17)

Note, however, that priors can not be injected as simplistically as in Eq. (13)
and need to be treated as proper factors in the context of Lie groups instead.

Node-to-factor Messages: The generation of node-to-factor messages mirrors the
expressions from Eq. (16), differing only in excluding information stemming from
the target factor in the sums. Hence, they encompass

τ+
nj→fk

=
∑

fi∈N(nj)\fk

Λ0
fi→nj

τ 0
fi→nj

and Λ+
nj→fk

=
∑

fi∈N(nj)\fk

Λ0
fi→nj

(18)

alongside their respective linearization point µ0
nj

to form the outgoing message
triplet (µ0

nj
, τ+

nj→fk
,Λ+

nj→fk
) destined for the factor fk. Note, however, that

another reevaluation of Eqs. (14) and (15) is required to generate outgoing
messages that leverage the latest state estimate from Eq. (17).

Factor Updates: In analogy to previous paragraphs, factors fi ∈ G depend on a
collection of connected, neighboring nodes N(fi) which collectively determine
the linearization point θ0

fi for the residual evaluation r̄fi from Eq. (2). The
computation of the factor-to-node messages mfi→N(fi) depends on the factor
beliefs B(fi) = N−1(η0

fi
,Λ0

fi) obtained from Eq. (12) as well as the auxiliary,
intermediate quantities η′

fi
and Λ′

fi (used in the next paragraph) defined as

η′
fi = η0

fi + η+
N(fi)→fi

and Λ′
fi = Λ0

fi +Λ+
N(fi)→fi

(19)

Above, η+
N(fi)→fi

and Λ+
N(fi)→fi

denote stacked vector and block diagonal matrix
versions of the neighborhood-to-factor messages (see Eqs. (20) and (21)).



8 D. Hug et al.

Factor-to-Node Messages: We illustrate the computation of the factor-to-node
messages (see Fig. 3b) assuming a factor fi which depends on two nodes, namely
na and nb. Thus, Eq. (19) takes the following form

η′
fi =

[
η′
a

η′
b

]
= η0

fi +

[
η+
na→fi

η+
nb→fi

]
(20)

Λ′
fi =

[
Λ′

aa Λ′⊤
ba

Λ′
ba Λ′

bb

]
= Λ0

fi +

[
Λ+

na→fi
0

0 Λ+
nb→fi

]
. (21)

To retrieve the message mfi→na
= N(µfi→na

,Λfi→na
), the remaining nodes

(i.e. nb in this example) must initially be marginalized by computing the Schur
complement defined as

η′
fi→na

= η0
a −Λ′⊤

baΛ
′−1
bb η′

b and Λ′
fi→na

= Λ0
aa −Λ′⊤

baΛ
′−1
bb Λ′

ba. (22)

In a similar vein, one obtains mfi→nb
by permuting η′

fi
and Λ′

fi such that na is
marginalized instead of nb. In particular,[

η′
b

η′
a

]
= Pη′

fi and
[
Λ′

bb Λ′⊤
ab

Λ′
ab Λ

′
aa

]
= PΛ′

fiP
⊤, (23)

which also naturally extends to factors touching more than two nodes. Readers
might notice that our formulation differs from others found in the literature;
this has the advantage that the formulations from Eqs. (20) and (21) allow for
extremely efficient in-place permutations of η′

fi
and Λ′

fi to marginalize many-
node factors, limiting reallocations and recomputations. Mirroring the process in
Eq. (17), it is necessary to convert the incremental values η′

fi→na
and Λ′

fi→na

into the updated, outgoing frame of reference, to obtain the message mfi→na ,
relying on an optional step size αfi . That is

τ ′
fi→na

= αfiΛ
′−1
fi→na

η′
fi→na

∈ Rdim(g), µfi→na
= µ0

na
⊞ τ ′

fi→na
∈ G (24)

and Λfi→na =

[
∂µfi→na

∂τ ′
fi→na

]⊤
Λ′

fi→na

[
∂µfi→na

∂τ ′
fi→na

]
∈ Rdim(g)×dim(g). (25)

Robust Residuals and Energies: It is well understood that the presence of outliers
in the optimization problem from Eq. (3) causes substantial issues in terms of
converging to a globally optimal solution Θ∗ due to the quadratic nature of the
occurring cost terms. The same holds in the context of GBP, where outliers are
bound to heavily influence the found solution as well. To address this issue we
take inspiration from established NLLS approaches [1] and apply robust loss
functions ρ to Eqs. (3) and (9), resulting in modified expressions for the robust
energies Ĕ and the robust optimal solution Θ̆∗, provided for completeness only.

Ĕ(t,θs) =
1

2
ρ
(
r̄⊤r̄

)
(26)
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Θ̆
∗
= argmin

Θ

∑
s∈S

∑
t∈Ts

Ĕ(t,θs)

 (27)

In particular, based on the methodology from Triggs et al . [41], the robust residual
and Jacobian then take the following forms.

α2 − 2α− 2ρ′′

ρ′
r̄⊤i r̄i

!
= 0 (28)

r̆i =

√
ρ′

1− α
r̄i J̆ i =

√
ρ′

(
1− α

r̄ir̄
⊤
i

∥r̄i∥2

)
J̄ i (29)

Non-Gaussian Nodes: Another extension to conventional GBP lies in classifying
Gaussian nodes as either pure constants or as stochastic variables. This distinction
streamlines computation given that the message marginalization mnj→fi across
nodes via Cholesky decomposition exposes complexity O(n3) which quickly be-
comes prohibitive. In particular, allowing non-variable parameters (e.g . extrinsic,
intrinsic, offset etc.) to be treated as pure constants considerably reduces the
dimensionality of the marginalization procedure without any drawbacks.

3.4 Sensor Models

In the following, we detail the employed absolute and visual sensor models, where
expressions marked with ·̂ indicate optimizable parameters. Conversely, unless
explicitly mentioned, all other variables are considered known and constant.

Absolute Sensor Model The predictions of absolute sensor measurements
m̂s(tm, Θs) (e.g . absolute pose estimates extracted from AprilTags [29] or mea-
surements obtained from a Motion Capture (MoCap) system) are evaluated
using Eq. (30) and subsequently compared against their corresponding true
measurements by applying the metric ⊟µ in Eq. (31) where we make use of the
logarithmic map for elements in SO(3), and SU(2) respectively.

m̂s(tm, Θs) = T̂ws(tm) = T̂wb(tm) T bs (30)

T̂ws ⊟µ Tws =

[
log
(
q̂ws q

−1
ws

)
t̂ws − tws

]
∈ R6 (31)

Visual Sensor Model Abstracting from the specific camera parameters, such as
its intrinsics and its distortion model, we introduce the mapping π(·) in Eq. (32)
to infer individual projections of landmarks lw onto the image plane at time tm.
For visual, pixel-based measurements, the metric ⊟µ is chosen to be equivalent
to trivial Euclidean subtraction.

m̂s(tm, Θs) = p̂s(tm) = π(T sbT̂ bw(tm), lw) (32)

p̂s ⊟µ ps = p̂s − ps ∈ R2 (33)
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3.5 System

Overview Our system is designed to efficiently support both batch and windowed
optimizations, crucial for applications such as Bundle Adjustment (BA) and
SLAM. Inspired by Ceres [1], it allows dynamic modification of nodes and factors
between solver calls, features multiple solving strategies, namely synchronous and
dropout, determining the order of node and factor updates and leverages multi-
threading to exploit the inherent parallelism of GBP methods, further boosting
the overall performance. Optimizable parameters are added and removed in
analogy to Ceres [1], with the notable distinction that GBP-based methods
necessitate both an initial mean and covariance estimate for each parameter,
unlike standard NLLS methods. This requirement, however, poses no practical
hindrance as conservative guesses on the covariance suffice to bootstrap the
algorithm.

Symbolic Factors Targeting the long-standing challenge of obtaining efficient,
analytical expressions and derivatives of spline-based motion parameterizations
and their associated cost factors, here, we leverage SymForce [22], a symbolic code
generation framework, to completely automate this cumbersome, time-intensive
and error-prone process. Taking inspiration from Sommer et al . [40], who exploited
Lie-group-specific properties to simplify spline-related mathematical expressions,
we supercharge their recursive spline formulation by combining it with SymForce
[22] to obtain ultra-efficient C++ cost factor implementations. Furthermore,
recognizing the broader relevance of automated factor generation for (continuous-
time) robotics applications, our framework offers a comprehensive library featuring
spline-based and standard factors designed to seamlessly interoperate with both
our framework and Ceres [1], facilitating widespread adoption.

Update Strategies Amongst many possible update strategies, we focus our
attention on synchronous and dropout updates. Synchronous updates closely
follow traditional NLLS algorithms, where residuals are completely re-evaluated in
every solver iteration and where (non-constant) nodes and factors are sequentially
updated in an alternating fashion to ensure optimal convergence. In contrast
to traditional approaches, GBP, however, also accommodates selective updates
based on a dropout strategy. That is, one assigns probabilities, dn for nodes
and df for factors, dictating their likelihood of being updated in each iteration.
Although this may slow convergence, it intentionally compensates for stability
challenges in loopy graphs while mimicking real-world scenarios with imperfect
communication channels and delayed messages.

4 Experiments

We evaluate the proposed system, coined Hyperion, empirically through simula-
tions in MoCap (absolute) and localization settings, using a temporal interval
of 0.1 seconds between adjacent spline bases along with the empirical step sizes

https://github.com/VIS4ROB-lab/hyperion
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αnj
= αfi = 0.7 across all cases. The simulated trajectories span 10 seconds

and mimic real-world conditions with appropriate initial perturbations, sensor
acquisition rates, and measurement noise levels. Our analysis focuses on bench-
marking Hyperion against Ceres [1], an established, centralized NLLS solver, and
providing in-depth ablation studies on different aspects of the framework itself.

4.1 Absolute Setup

We commence our analysis with the absolute sensor configuration, capturing
measurements akin to the ones stemming from a MoCap system, where individual
factors model direct observations of the underlying motion without auxiliary
parameters/nodes. As such, they embody the most fundamental category of
constraints, suggesting that derived factors, such as landmark projections or
relative measurements, merely extend these elements, rendering them ideal
candidates to analyze key properties of the proposed approach. In the following,
we assume an acquisition rate of 40 Hz matching the real-world specifications.

Our initial examination centers on comparing the convergence behavior of
Hyperion against Ceres [1] across varying levels of initial perturbations and
measurement noise. To this end, both solvers are identically initialized to a
modified ground truth motion, encompassing perturbations in rotations and
translations. Furthermore, we make use of the synchronized vertex updates if not
stated otherwise, aiming for a fair comparison against Ceres.

The qualitative outcomes of this setup are illustrated in Fig. 1, demonstrating
that both Hyperion and Ceres converge to identical solutions even under substan-
tial initial perturbation and considerable measurement noise. These observations
are quantified in Tabs. 1a and 1b, indicating that motion estimates obtained
from Hyperion and Ceres closely align across all levels of perturbation and noise.

Message dropouts, mimicking imperfect communication, have also been shown
to enhance convergence [27,31] in loopy graphs. Hence, we study their effect on
the proposed GBP framework, summarizing key insights in Fig. 4a, revealing that
Hyperion consistently converges toward identical solutions across various dropout
ratios. Despite this, they also influence the required iteration count (i.e., updates
of all vertices), with every 10% increase in dropouts entailing an additional 2-4
iterations until convergence is reached.

Furthermore, we find that different motion parameterizations, specifically
cubic Z- and B-Splines [4, 17], also influence the convergence of the proposed
approach, which we summarize in Fig. 7b. A notable difference between the
traditional and our proposed solver lies in how motion parameterizations affect
the convergence speed of the latter. Our findings suggest that Z-Splines, which are
interpolating rather than approximating splines, typically yield better-conditioned
solutions since their bases must lie on the motion estimate itself, implicitly
constraining the space of possible solutions. Naturally, the centralized NLLS
solver sets a baseline for the required iteration count to resolve an optimization
problem, serving as a comparative standard for our method. Thus, while GBP-
based approaches are inherently distributed, Fig. 7b indicates that they impose
between 2 to 4 additional iterations to achieve convergence.

https://github.com/VIS4ROB-lab/hyperion
https://github.com/VIS4ROB-lab/hyperion
https://github.com/VIS4ROB-lab/hyperion
https://github.com/VIS4ROB-lab/hyperion
https://github.com/VIS4ROB-lab/hyperion
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Perturbation [m/rad]
1e-5 1e-4 1e-3 1e-2 1e-1 1e-0

Ours
R [rad] 5.2e-6 5.2e-6 5.2e-6 5.2e-6 5.9e-6 5.3e-6
t [m] 5.8e-6 5.8e-6 5.9e-6 5.9e-6 6.0e-6 1.3e-5

Ceres
R [rad] 5.2e-6 5.2e-6 5.2e-6 5.2e-6 5.2e-6 5.2e-6
t [m] 5.9e-6 5.9e-6 5.9e-6 5.9e-6 5.9e-6 5.9e-6

(a) Perturbation Tolerance

Noise [m/rad]
1e-5 1e-4 1e-3 1e-2 1e-1 1e-0

Ours
R [rad] 5.2e-6 5.2e-5 5.2e-4 5.2e-3 5.3e-2 5.6e-1
t [m] 5.8e-6 5.9e-5 5.9e-4 5.9e-3 5.9e-2 5.9e-1

Ceres
R [rad] 5.2e-6 5.2e-5 5.2e-4 5.2e-3 5.2e-2 5.5e-1
t [m] 5.9e-6 5.9e-5 5.9e-4 5.9e-3 5.9e-2 5.9e-1

(b) Noise Tolerance

Table 1: Root Mean Square Errors (RMSEs) in rotation (R) and translation (t) resulting
from Ceres [1] and Hyperion under different perturbation levels (a), different noise levels
(b) respectively. The solvers run to convergence or terminate after 50 iterations. The
perturbation/noise setup assumes the lowest noise/perturbation, respectively.
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Setup Pose [s] Velocity [s] Acceleration [s] Avg.
L k ∂/∂B Ours Basalt Ours Basalt Ours Basalt Speedup

SO(3) 4 ✗ 1.64e-7 3.16e-7 9.49e-8 2.90e-7 1.12e-7 3.28e-7 2.64x
SO(3) 4 ✓ 5.03e-7 6.70e-6 4.05e-7 7.82e-6 5.11e-7 9.46e-6 17.05x
SO(3) 5 ✗ 1.96e-7 4.14e-7 1.32e-7 3.67e-7 1.39e-7 3.96e-7 2.58x
SO(3) 5 ✓ 6.89e-7 1.08e-5 5.82e-7 1.27e-5 7.87e-7 1.58e-5 19.19x
SO(3) 6 ✗ 2.17e-7 4.78e-7 1.82e-7 4.42e-7 1.81e-7 4.83e-7 2.43x
SO(3) 6 ✓ 8.19e-7 1.57e-5 7.51e-7 1.87e-5 1.01e-6 2.43e-5 22.71x
SE(3) 4 ✗ 1.62e-7 7.03e-7 1.38e-7 7.46e-7 1.34e-7 6.88e-7 4.96x
SE(3) 4 ✓ 5.71e-7 4.69e-5 9.11e-7 5.35e-5 1.12e-6 6.25e-5 65.56x
SE(3) 5 ✗ 1.96e-7 7.38e-7 1.91e-7 8.73e-7 1.70e-7 9.15e-7 4.57x
SE(3) 5 ✓ 7.32e-7 9.64e-5 1.27e-6 9.44e-5 1.47e-6 1.14e-4 94.53x
SE(3) 6 ✗ 2.53e-7 9.11e-7 2.34e-7 1.12e-6 2.23e-7 1.12e-6 4.47x
SE(3) 6 ✓ 9.29e-7 1.25e-4 1.54e-6 1.67e-4 1.99e-6 1.75e-4 110.31x

(b) B-Spline Evaluation Timings

Fig. 4: (a) Graph energy vs. number of iterations conditioned on the dropout probability
in the absolute setup (batch). (b) Performance comparison between our symbolically,
auto-generated and optimized B-Spline implementation and the recursively-defined,
hand-crafted implementation used by Sommer et al . [40] on an M3 Max @4.05GHz.

Lastly, we benchmark Hyperion’s real-world performance using a handheld
camera to track a ChArUco [14] board, capturing a 60-second trajectory at
30 Hz with an iPhone 13 Pro. The analysis, detailed in Fig. 5, closely mirrors
our previous analysis. However, we find that real-world motions, which innately
expose a greater level of volatility than simulated ones, expose slower convergence.

4.2 Localization Setup

In this section, we analyze our approach in a localization setup, where we model
an image acquisition rate of 20 Hz and 50 randomized, observable landmarks at
a range of 2 to 6 m across the modeled motion, mimicking real-world conditions.

Overall, the results from the localization setup are consistent with our earlier
observations, as detailed in Figs. 6, 7a and 7c. However, Fig. 7a indicates that
this setup is more agnostic to lower dropout ratios compared to the absolute
case. Furthermore, the disparity between different motion parameterizations
becomes more pronounced over the previous setup as may be observed from

https://github.com/VIS4ROB-lab/hyperion
https://github.com/VIS4ROB-lab/hyperion
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(c) Relative Error

Fig. 5: ChArUco [14] setup with overlapping motion estimates (a) from Hyperion
and Ceres [1] in magenta and white, respectively. Illustration of the corresponding
convergence (b) and the relative errors between the two converged estimates (c).
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(c) Absolute Error

Fig. 6: The motion estimates for Hyperion and a conventional NLLS solver [1] in
magenta and white, respectively, converge to similar solutions close to ground truth
(in green) in the localization setup, demonstrating robust convergence under poor pose
(±0.20 m/rad) and landmark initialization (±0.20 m) with ±1 px measurement noise.

Fig. 7c. In general, visual setups also display higher volatility over absolute ones,
with notable differences in estimates, especially towards the head and tails of the
optimized splines. In a similar vein, we found that these numerical instabilities
tend to have a destabilizing effect in loop graphs, posing considerable challenges
to deploying the proposed system as a comprehensive SLAM system at present.

4.3 Performance Analysis

As highlighted in Sec. 3.5, our framework leverages SymForce [22] to automate
the generation of analytic cost factors, aiming to outperform hand-crafted imple-
mentations while mitigating development effort and programmatic errors. Thus,
we test our auto-generated B-Spline implementation against Sommer et al .’s
optimized, hand-crafted version [40]. The comparison, detailed in Fig. 4b, assesses
the timings of pose, velocity, and acceleration evaluations for B-Splines of order
k, within a Lie group L, potentially including the Jacobians ∂/∂B with respect
to the bases Bi. Figure 4b shows that our automated spline implementations
significantly outperform the manual ones from [40], with speedups ranging from
2.43x to 110.31x. The performance gains are particularly notable in derivative

https://github.com/VIS4ROB-lab/hyperion
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(c) Convergence: Localization

Fig. 7: (a) Graph energy vs. number of iterations conditioned on the dropout probability
in the localization setup. Convergence comparison of different splines and solver variants
in the absolute setups (b) and the localization setup (c), respectively.

evaluations, where [40] employs automatic differentiation to compute the Ja-
cobians. Considering the long-standing computational challenges of CTSLAM
methods, our automated approach not only reduces complexity but also narrows
the performance divide with discrete-time SLAM.

We further analyze the single-core performance of the proposed GBP solver
with Ceres [1], a conventional NLLS solver, within the previously discussed
scenarios. For the absolute setup (400 pose measurements), Ceres averages 0.70
ms per iteration, whereas our method averages 4.18 ms to update all graph
vertices (i.e. about 6x slower). In the localization scenario (10,000 landmark
reprojections), Ceres requires 15 ms per iteration, compared to our solver’s 112 ms
per iteration (i.e. 7.5x slower). This performance gap is, however, largely mitigated
by considering that Ceres excludes the (implicit) estimation of covariances,
significantly reducing computational load, and that it has been extensively refined
by numerous contributors over the years. Moreover, the intrinsic distributedness
and parallelizability of GBP along with potential enhancements from adaptive
vertex updates, leveraging covariance estimates to trigger selective updates, are
promising avenues for further performance improvements. The above analysis
suggests that, even in its present state, the proposed framework is capable of
real-time execution for moderately sized problems.

5 Conclusions

In this work, we present a fast, versatile GBP framework that targets distributed,
continuous-time SLAM applications and leverages message-passing algorithms to
achieve probabilistic inference. We demonstrate the efficacy and competitiveness
of our method against a conventional NLLS solver [1] achieving similar conver-
gence and performance properties in practical settings. We further provide a
comprehensive library of high-performance implementations for continuous-time
SLAM, comprising motion parameterizations as well as common factors. Based
on our experiments, the proposed framework shows great promise in paving the
way towards resilient, distributed, continuous-time SLAM solutions.
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