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We organize the supplementary material as follows.

— In Section A, we analyze the privacy protection capabilities of our proposed
DDDR framework.

— In Section B, we discuss the time and transmission efficiency of DDDR.
— In Section C, we present additional generated samples.

— In Section D, we analyze the generalization capabilities of our proposed
Federated Class Inversion.

— In Section E, we present the experimental results of local testing on each
client.

A Privacy concerns

A.1 Integration of privacy protection methods
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Fig. 1: Variations in the average accuracy of DDDR across different noise intensities,
on the Cifar-100 dataset with 5 tasks and non-IID data distribution. o. and o4 denote
the standard deviations of Gaussian noise introduced to classifier parameters and class
embeddings, respectively. (a) With o4 set to 0, observing the effect of o. on average
accuracy. (b) With o, set to 0, examining the impact of o, on average accuracy. (c)
Introducing noise to both class embeddings and classifier parameters to assess their
collective influence on average accuracy.
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To assess the efficacy of privacy protection strategies within the DDDR
framework, we incorporate the widely used randomization privacy protection
strategy [6,12] into DDDR. Specifically, during each round of communication,
clients first augment their class embeddings and classifier parameters with Gaus-
sian noise before uploading to the server. This approach significantly lowers the
success rate of gradient inversion attacks [12], thus preventing the server or any
other federated participants from deducing private data.

Figure 1 illustrates the variation in the model’s average accuracy with the
introduction of noise intensity. As expected, an increase in the noise intensity
added to the classifier parameters leads to a reduction in classifier performance,
due to the trade-off between privacy protection and model performance [6]. Un-
expectedly, the intensity of noise added to the class embeddings has a minimal
impact on model performance.

To explore the reasons behind this, we generate images using class embed-
dings trained under different noise intensities, which are presented in Figure 2.
We observe that the generative quality of class embeddings trained under various
noise intensities remains similar. Even at a noise intensity with a standard devi-
ation of 0.1, it is still able to achieve desirable generative outcomes. This may be
attributed to the training objective of Federated Class Inversion, which involves
searching for an optimal embedding within the input space of a pre-trained con-
ditional diffusion model. Given that this model has been pre-trained on a vast
amount of data, its input embedding space is relatively smooth, meaning that
perturbations to the embedding do not significantly alter the generative results.

In summary, the randomization privacy protection strategy can be applied
to the DDDR framework to enhance privacy protection. Furthermore, our pro-
posed Federated Class Inversion method’s generative quality is insensitive to the
intensity of noise added, implying that this method can enhance privacy protec-
tion without noticeably compromising performance, thereby achieving a effective
balance between model performance and privacy protection.
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Fig. 2: Showcase of DDDR-generated samples under different noise intensities. o4 de-
notes the standard deviation of noise added to the class embeddings uploaded by clients.
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A.2 Gradient inversion attacks

Transmitting only class embeddings in Federated Class Inversion is secure. We
attempted to reconstruct training images from gradients of class embeddings
using gradient inversion attacks [12] but were unsuccessful, as shown in the
Figure 3.
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Fig. 3: Results of applying gradient inversion attacks on Federated Class Inversion.

A.3 The likelihood of generating the original data

It is unlikely to generate images that are identical to the original data. We
randomly selected 5 classes from CIFAR-100 and presented the most similar
real-generated image pairs with the highest PSNR or SSIM in the Figure 4. It
can be seen that there are noticeable differences between them.

PSNR 1869 1656 16.40 16.16 1362 |SSIM 0.82 0.77 070 0.67 0.54
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Fig. 4: The most similar real-generated image pairs.

B Time and transmission efficiency

To assess whether DDDR/’s performance improvement comes at the cost of train-
ing efficiency, we conduct an analysis of its training time. In learning a new
task, DDDR operates in two stages: the Federated Class Inversion phase, dur-
ing which a class embedding is optimized for each new category, followed by
the Replay-Augmented Training phase, which involves image generation before
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classifier training. Image generation allows for server-side execution without uti-
lizing client computational resources, and the generated images can be stored
for repeated use. Consequently, Federated Class Inversion and Classifier Train-
ing are the two primary factors affecting training time. As shown in Table 1,
for the learning of each new task, the time consumed by Federated Class Inver-
sion is significantly less than that required for classifier training, accounting for
only about 12% of their combined total. Comparatively, the training duration
for classifiers in DDDR and other baseline methods is similar, given the iden-
tical training steps among them, with the primary difference being in the loss
function used, which does not significantly impact training time. Thus, the ad-
ditional time incurred by our method compared to other baselines is attributed
to the Federated Class Inversion phase, which is significantly shorter than the
time for classifier training and does not substantially affect the overall runtime.

Table 1: Training Time Analysis of DDDR on the Cifar-100 Dataset with Five Tasks.
FCI denotes the Federated Class Inversion Phase, CT represents the Classifer Training,
and IG stands for Image Generation. The local training duration for one client is
reported in minutes for both the FCI and CT phases. For IG, the time required to
generate 200 images for a single class is reported. All experiments were conducted on
a single 3090 GPU.

FCI CT 1G

training time (min) ~48 ~342 =~3.63
communication rounds 10 100 -

Moreover, the Federated Class Inversion in DDDR is transmission-efficient,
as it only transmits low-dimensional class embeddings. For instance, the trans-
mitting parameter of FCI is at most 128K for the diffusion model (1.5B) on
CIFAR-100.

C Visualization of generated results

To more comprehensively demonstrate the generative capabilities of DDDR, we
conduct training for Federated Class Inversion on both the Cifar-100 [7] and
Tiny-ImageNet [8] datasets. Utilizing the resultant class embeddings, we gen-
erate images, with the outcomes presented in Figure 5 and 6. From the gener-
ated results, two observations can be made: 1) DDDR is capable of producing
high-quality images, closely matching the distribution of real images in both
diversity and fidelity. For instance, the generated images of categories such as
bowls, chairs, and tables in Figure 5 are highly realistic and exhibit a wide
variety of styles and poses. 2) Despite the high quality of generation, a slight
domain discrepancy between the generated and real data is observable [4,9]. For
example, in Figure 5, categories such as buses and houses are more frequently
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Real Data Generated Data Real Data

Fig. 5: Visualization of generated outcomes from DDDR and the real data from the
CIFAR-100 dataset.

Real Data Generated Data Real Data Generated Data

Fig. 6: Visualization of generated outcomes from DDDR and the real data from the
Tiny-ImageNet dataset.
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depicted in nighttime scenes in the real data, whereas the generated data tends
to favor daytime scenes. This underscores the importance of enhancing the classi-
fier’s generalization capability across both the generated and real domains. The
cause of this domain discrepancy may be attributed to the limited optimiza-
tion parameters. In DDDR, to enhance training efficiency, the optimization was
conducted solely on the class embeddings without fine-tuning the pre-trained
diffusion model.

D Generalizability

We demonstrate the generalization capability of DDDR in the following two
points: 1) We validated FCI’s generative ability on widely used medical image
datasets (LiTS [3] and MSD [1]) and fine-grained classification datasets (Stanford
Dogs [5]). The results in Figure 7 show that FCI can effectively generate data
even when there are significant differences from the pretraining data. 2) The
CIFAR-100 and TinylmageNet datasets we used were not used for pretraining
the diffusion model [10].

Fig. 7: The most similar real-generated image pairs.

E Local Test Result

Table 2: Results of the comparative experiments on the Cifar-100 dataset. ‘T’ indicates
the task number. ‘Acc’ denotes average accuracy, with higher values indicating better
performance, and ‘FM’ represents the forgetting measure, where lower values signify
lesser forgetting of historical tasks. The best results are highlighted in bold.

Data partition ‘ IID ‘ non-I11D
Tasks | T=5 \ T=10 \ T=5 \ T=10
Method | Acc(1) FM() | Acc(h) FM() | Acc(h) FM({) | Acc(h) FM(])

Finetune 17.33£0.18  0.8340.01 9.03+0.18  0.884+0.01 | 16.47£1.12  0.74+0.07 | 8.584+0.58  0.7740.05
FedEWC 21.35+0.49 0.69+0.01 | 11.76+0.50 0.73£0.01 | 20.94+1.20 0.61£0.05 | 11.56+1.14  0.67+0.07
Target 34.40+0.97 0.48£0.01 | 22.95+0.55 0.49£0.01 | 34.37+2.30 0.48+0.04 | 21.68+2.27 0.53+0.04
MFCL 42.67+0.82  0.37£0.01 | 31.35+0.52 0.46+£0.01 | 41.16+2.57 0.33+0.03 | 28.92+2.14 0.43+0.03
Ours 51.04+0.83 0.29+0.01 | 43.451+0.76 0.32+0.01 | 48.45+3.56 0.26+0.04 | 41.144+4.57 0.30+0.04
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Table 3: Results of the comparative experiments on the Tiny-ImageNet dataset.

Data partition ‘ IID non-I1D
Tasks | T=5 \ T=10 T=5 \ T=10
Method | Acc(1) FM() | Acce(t) FM({) Acc(1) FM({) | Ace(t) FM({)

FedEWC 13.27+0.45 0.49£0.01 | 8.224+0.30 0.56+0.01 | 12.554+0.70 0.43+£0.03 | 7.67£0.90 0.50£0.03
Target 17.56+£0.49 0.45+0.01 | 12.53+0.43 0.49+0.01 | 17.884+0.85 0.43+0.03 | 11.314+0.90 0.47+0.03
MFCL 15.11£0.47 0.5240.01 | 10.13£0.48 0.54+0.01 | 13.31+1.18 0.45%0.03 | 8.57£0.45 0.49+£0.02

Finetune 12.29+40.46 0.60£0.01 | 6.80£0.29 0.67£0.01 | 11.68+0.61 0.52+0.04 | 6.57£0.67 0.59+0.03
Ours 25.47+0.85 0.36+0.01(19.01+0.67 0.36+0.01|23.97+1.26 0.34+0.03|16.63+0.75 0.32+0.04

Our results presentation in the main text follows the mainstream work in
the FCCL field [2,9, 11], calculating metrics on a global test set. However, to
demonstrate performance variations across different clients, we also report the
mean and standard deviation of metrics from multiple clients’ independent tests.
From the results in Tables 2 and 3, we can draw the same conclusion as in the
main text, namely that our method significantly outperforms the others.
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