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Abstract. Procedural activity videos often exhibit a long-tailed action
distribution due to varying action frequencies and durations. However,
state-of-the-art temporal action segmentation methods overlook the long
tail and fail to recognize tail actions. Existing long-tail methods make
class-independent assumptions and struggle to identify tail classes when
applied to temporal segmentation frameworks. This work proposes a
novel group-wise temporal logit adjustment (G-TLA) framework that
combines a group-wise softmax formulation while leveraging activity in-
formation and action ordering for logit adjustment. The proposed frame-
work significantly improves in segmenting tail actions without any per-
formance loss on head actions. Source code is available4.

Keywords: Temporal action segmentation · Procedural video under-
standing · Long-tail recognition · Logit adjustment

1 Introduction

Temporal action segmentation [25,30,43] partitions procedural activity sequences
into multiple segments, each corresponding to a specific action class as de-
picted in Fig. 1. There are two sources of tail in temporal action segmentation
datasets. First, procedural videos often exhibit a long-tail distribution of action
segments [12], with infrequent actions forming the tail. For instance, in Fig. 1,
when "making tea", ‘add teabag’ is indispensable, while ‘spoon sugar’ and ‘stir
tea’ are optional. The temporal action segmentation problem is mainly framed
as a frame-wise classification task [14, 42, 50], which leads to a second source of
long-tail due to the varying durations of actions in procedural videos. For exam-
ple, ‘pour water’ in Fig. 1 is longer and has more frames than ‘spoon sugar’. The
segment- & frame-wise imbalances can be quite extreme, as depicted in Fig. 2.

The imbalance problem has been overlooked in temporal action segmenta-
tion literature [12,14,17,42,50], leading to poor performance on tail classes5. Our

4 https://github.com/pangzhan27/GTLA
5 ASFormer [50], DiffAct [33] have zero accuracy on 5 and 4 of 48 classes, respectively.

https://orcid.org/0009-0008-8320-1727
https://orcid.org/0000-0001-5004-6005
https://orcid.org/0009-0002-0825-6775
https://orcid.org/0000−0001−7418−6141
https://github.com/pangzhan27/GTLA


2 Z. Pang, F. Sener, S. Ramasubramanian and A. Yao

Fig. 1: "Making tea", with temporal segments indicated by colored bars. The tail
action ‘stir tea’ is recognized by Logit adjustment (LA) and our G-TLA but not by
the MSTCN backbone. However, LA overlooks the action order and activity, resulting
in activity-irrelevant false positives such as ‘take bowl’ & ‘stir coffee’ , and temporally
illogical false positives like ‘add teabag’ occurring after ‘stir tea’ .

paper fills a significant gap by addressing the long-tail problem in temporal seg-
mentation for the first time. Long-tail learning has mainly been investigated in
image [11,22,35] and video classification [37,52]. Temporal segmentation differs,
however, because actions are temporally correlated. Yet conventional long-tail
learning solutions such as re-sampling [18, 20], loss re-weighting [11, 32], and
logit adjustment (LA) [35,46] make class independence assumptions. This com-
promises the learned temporal dependencies within the base models [30,50]; for
example, LA incorrectly predicts ‘add teabag’ after ‘stir tea’ in Fig. 1. Moreover,
for action segmentation, both frame- and segment-level performance is mea-
sured [14]. Balancing head and tail classes, as well as frame- and segment-wise
performance are two challenging trade-offs. Conventional methods are ineffec-
tive in addressing the frame and segment trade-offs. For example, LA in Fig. 1
introduces irrelevant classes of ‘stir coffee’ and ‘take bowl’ from other activities,
increasing false positives and over-segmentation.

In procedural activities, some actions like ‘spoon sugar’ are shared across
activities of "making tea" and "making coffee" ; others are activity-specific, e.g .
action ‘stir tea’ occurs only in the activity of "making tea". Additionally, actions
follow certain ordering: ‘stir tea’ always follows ‘pour water’, even if other actions
like ‘spoon sugar’ occur in between. Based on these observations, we propose a
novel Group-wise Temporal Logit Adjustment (G-TLA) framework that encodes
action order and activity information to address the long tail problem. Our
framework consists of group-wise classification based on the activity label and
temporal logit adjustment based on action ordering priors. Our method enhances
tail recognition and mitigates over-segmentation by reducing false positives as
shown in Fig. 8, including those from irrelevant activities and violating temporal
dependencies. Our contributions can be summarized as:

– the first method to address long-tail temporal action segmentation, along
with our novel group-wise temporal logit adjustment (G-TLA) approach.

– leveraging class interdependencies to reduce false positives from long-tail
learning, reducing over-segmentation.
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Fig. 2: Temporal action segmentation datasets exhibit a long-tail distribution of ac-
tions due to varying frequencies of actions and action durations.

– proposing new evaluation metrics to better reflect tail class performance,
otherwise obscured by standard metrics.

– extensive evaluations on five datasets [1, 16, 26, 39, 44], outperforming state-
of-the-art backbones and standard long-tail learning approaches.

2 Related works

Temporal Action Segmentation. Early approaches [2,9,15] employed hand-
crafted features to model frame-wise dependencies while using HMMs [27] or
RNNs [36,41] to capture long-term dependencies. Subsequent methods leveraged
pre-computed video features, such as I3D [8] and employed TCNs [14, 28–30,
42], transformers [50] and diffusion models [33] to learn frame- and action-wise
relationships. For a comprehensive overview of temporal action segmentation,
we refer to a recent survey [12]. To our knowledge, we are the first to address
the long-tail problem in video sequences for temporal action segmentation [12].
Long-Tail Learning. Long-tail methods can be broadly split into data and
algorithm-level methods. Data-level methods either oversample the tail [4,5,40]
or undersample the head [13, 19]. However, both approaches have drawbacks:
oversampling can lead to tail overfitting, while undersampling is suboptimal
for video datasets, as they often have limited samples. Additionally, applying
existing data-level methods naively at the frame level is unsuitable for temporal
action segmentation, as it requires preserving the sequence entirely as input.

Algorithm-level methods include cost-sensitive learning, post-hoc adjustment,
and ensembling techniques. Cost-sensitive learning balances loss functions by re-
weighting different classes or samples [11,21,32,38,48], or by adjusting the logits
to enlarge margins for tail classes [7,35,45,46,53]. Post-hoc adjustment improves
predictions for rare classes after training, e.g . by normalizing the classification
weights [22,23,51] or modifying the classification threshold [10,24]. Ensembling
combines multiple modules or experts, each specializing in different class distri-
butions [47, 54] or subsets [6, 31]. A key assumption in these methods is class
independence. However, in action segmentation, videos can be assumed to be
i.i.d., while the actions within each video exhibit dependencies. Our work is the
first to consider these dependencies in designing a long-tailed solution.
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3 Preliminaries

3.1 Temporal Action Segmentation

Temporal action segmentation maps frame-wise representations, X , to action
labels, Y = [L] = {1, 2, . . . , L}. Consider a video sample, {X,Y }: X = {xt} ∈
RD×T , Y = {yt} ∈ [L]T , where D is the feature dimension, T is the number of
frames in a video, t is the frame index, L is the number of classes. In line with
previous works [14,42,50], we use pre-computed video representations [8] as X.

Consider a classifier, denoted as f , which takes the entire sequence, X, as in-
put to learn temporal correlations among frames and outputs a sequence of action
labels, Y . Classifier f is a neural network such as MSTCN [14] or AsFormer [50].
Classifier f : X → Y is trained by minimizing a frame-wise cross-entropy loss:

Lcls =
1

T

∑
t

− log p̂(yt), (1)

where p̂(yt) is the estimated probability for the ground truth label yt of frame
xt. A smoothing loss is commonly applied with threshold δ to encourage smooth
transitions between frames. Following prior works [14], we set δ to 4.

Lsm =
1

TL

∑
t,c

△̂2
t,c, △̂t,c =

{
△t,c, △t,c ≤ δ

δ , otherwise

△t,c = | log p̂(ct)− log p̂(ct−1)|, c ∈ [1, · · · , L], (2)

where p̂(ct) is the estimated probability of class c at time t.

3.2 Logit Adjustment

Given a classification problem with data-label pairs {x, y}, the standard training
objective is to learn a model f that minimizes the expected error Ex,y Err(f(x), y).
When the label distribution is highly skewed, the learning process minimizes a
skewed error, prioritizing classes with more samples. In such scenarios, a balanced
error Ex|y Err(f(x), y) that averages the per-class loss [3, 34] is more suitable.
Given the prior p(c) and the posterior p(c |x) of class c, the optimal classifier for
minimizing the balanced error [10] takes the form

argmax
c

p(c | x)
p(c)

≈ argmax
c

sc(x)− log p(c) (3)

where a neural network typically estimates p(c |x) as a logit sc(x). For simplicity,
we omit the logit’s dependency on the neural network’s parameters.

Eq. (3) is the vanilla logit adjustment [35], which incorporating the prior
during inference. Logit adjustment can be further incorporated into training by
enforcing a class prior offset while learning the logits [35].

s̃c(x) = sc(x) + τ log p(c), p̃(c|x) = softmax(s̃c(x)) (4)



Long-Tail TAS with Group-wise Temporal Logit Adjustment 5

where sc(x) is the output logit, s̃c(x) is the adjusted logit, p̃(c|x) is the predicted
probability of class c after adjusting logit and used in the cross-entropy loss(we
use p to represent the prior, p̂ for predicted probability, and p̃ for probabil-
ity after adjusting logit). τ controls the trade-off between minimizing balanced
and skewed errors. Introducing the adjustment adds a per-class margin into the
softmax, shifting the decision boundary away from tail classes as in Eq. (5).

L(y, f(x)) = − log
esy(x)+τ log p(y)∑
c e

sc(x)+τ log p(c)
= log

1 +∑
c̸=y

esc(x)−sy(x)+τ
log p(c)
log p(y)

 (5)

4 Methodology

Our method leverages action order and activity information to address the long-
tail problem in action segmentation. We begin by introducing the action inter-
dependencies in Sec. 4.1 and describe how to solve such dependencies through
group-wise classification in Sec. 4.2 and temporal logic adjustment in Sec. 4.3.
Details of training and inference are presented in Sec. 4.4 and Sec. 4.5.

4.1 Action Inter-Dependencies

The independent assumption of prior p(c) in Eq. (4) does not hold for actions in
videos. In procedural activities, actions within a sequence interact. Accurately
estimating the prior of action c conditioned on sequence Y , p(c|Y ) is challenging
due to varying action orders and limited training samples. Notably, the class
distribution p(c) is activity, a, dependent; naively using p(c) leads to activity-
irrelevant false positives as in Fig. 1. Therefore, we propose a relaxed solution
for the temporal prior as p(c|a) to condition on activity label a. As the video
sequences have a loose ordering of actions, we assume that action classes are
conditionally independent given the activity label. We further exploit useful
action ordering in Sec. 4.3.

Given an input sequence, X, and its activity label, a, frame predictions are
independent while frame representations interact [14,50], i.e. frame prediction ŷt
is based on the sequence representation X instead of a single frame representation
xt. Then, the logit adjustment for frame t, according to Eq. (4), is:

sc,t(X) + τ log p(c | a), (6)

where sc,t(X) is the logit of class c at time t.

4.2 Group-wise Classification

To leverage the conditional prior p(c|a), we propose a hierarchical classifier by
categorizing sequences into disjoint groups and assigning actions within each se-
quence to the corresponding group. This grouping strategy enables group-wise
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Fig. 3: Our group-wise temporal logit adjustment framework consists of group-wise
classification and temporal logit adjustment within the respective group. The temporal
logit adjustment is only applied to the target group(G1 in this illustration).

action classification and logit adjustment based on the group’s prior. Addition-
ally, grouping ensures no incompatible actions in each activity group. For ex-
ample, the action ‘stir coffee’ does not occur in activities like "making tea".
The incompatibility causes zero conditional probability p(c|a) = 0, posing a nu-
merical problem for logit adjustment. Adding a small value to p(c|a) does not
solve the numerical problem. Instead, it converts activity-incompatible classes
to tail classes. These classes are subsequently overemphasized and result in more
activity-irrelevant false positives.

We denote the group set as G. Each group may contain activities with shared
actions. While a straightforward approach is to group based on the activity la-
bel, we also explore sequence clustering without activity labels based on the
KL-divergence of action frequency distributions(see Supplementary for details).
For each group, we introduce an auxiliary class, ‘others’, corresponding to ac-
tions that do not belong to the current group. Classes shared across different
groups are treated as separate classes. For example, ‘spoon sugar’ occurs in both
"making coffee" and "making tea" which are different groups G1 and G2, then
‘spoon sugar’ is treated as different classes y(1) and y(2). Non-shared classes, like
‘stir tea’, are labeled as ‘stir tea’ in G2, and ‘others’ in the remaining groups.

Our group-wise classification strategy is illustrated in Fig. 3. The final feature
layer zt at time t is fed into n classifiers, where n is the number of groups in
G. These classifiers generate predictions concurrently based on the last feature
layer. For the i-th group, the predicted logit of class c at time t is computed as

s
(i)
c,t(X) =

∑
j

zt[j] ·W (i)
j,c + b(i) (7)

where W (i) and b(i) are the classifier weights and bias for group i.
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The overall loss is the sum of two cross-entropies: one for the actions in the
target group and one for the auxiliary class for non-target groups:

LG = αk
1

T

∑
t

− log p̂(y
(k)
t ) + η

n∑
i ̸=k

1

T

∑
t

− log p̂(o
(i)
t ) (8)

where k is the current sequence’s group, p̂(y(k)t ) represents the predicted prob-
ability of the truth label yt in the target group k, p̂(o(i)t ) is the predicted prob-
ability of class ‘others’ in the non-targeted group. η is a hyperparameter that
balances the losses between target and non-target groups and αk represents
a pre-computed reweighting factor designed to balance the bias arising from
group size, i.e. the number of sequences in each group. From a gradient analysis
perspective [46], a small η helps reduce the suppression of tail classes by down-
weighting the gradients from negative samples of the class others. However, if η
is too small, it may hinder group identification during inference.

Group-wise classification offers several advantages. Separating semantically
similar actions into different groups mitigates confusion, e.g . distinguishing be-
tween ‘take plate’ and ‘take cup’ becomes easier, despite sharing a verb. Ad-
ditionally, it reduces false positives from irrelevant classes, ensuring that only
group-compatible actions are predicted, preventing implausible predictions.

4.3 Temporal Logit Adjustment

Our group-wise framework simplifies frame-wise classification. With group in-
formation we can substitutes p(c|a) in Eq. (6) with p(c|Gk). However, there
is still valuable sequential ordering information. For example, the action ‘stir
tea’ always follows ‘pour water’, even if other actions e.g . ‘spoon sugar’ occur
in between. This ordering information can also be incorporated into the logit
adjustment. Therefore, we adopt a fine-grained approach by tailoring the ad-
justment to each class c and frame t within the target group Gk, as follows:

s
(k)
c,t (X) + τT (k)

c,t (X) log p(c | Gk), (9)

where the temporal factor T (k)
c,t (X) refines the logit adjustment based on the

temporal bounds for class c in the target group Gk.
Temporal Factor. For an action c, we define Sbf [c] as the set of actions that

must precede c, and Saf [c] that must follow c. These two sets are exclusive and
can be derived from the training data. Given a sequence X from group Gk, we can
utilize the two sets to determine the temporal bounds [t1(c,X), t2(c,X)] within
which action c can occur, where t1(c,X) and t2(c,X) are determined by the
latest and earliest occurrence time of classes in Sbf [C] and Saf [C], respectively.

t1(c,X) =

{
maxt yt ∈ Sbf [c], if Sbf [c] ̸= ∅
0, otherwise

, t2(c,X) =

{
mint yt ∈ Saf [c], if Saf [c] ̸= ∅
T, otherwise,

(10)
where yt is the ground truth label of X at time t.



8 Z. Pang, F. Sener, S. Ramasubramanian and A. Yao

Fig. 4: Illustration of temporal logit adjustment for class c = ‘add teabag’. The adjust-
ment only occurs within the temporal bounds.

Temporal factor adjusts the logit for class c in the target group Gk based
on these temporal bounds. Logits within the temporal bounds are adjusted nor-
mally, while those outside the bounds are left unadjusted to prevent false pos-
itives that violate the temporal prior as in Fig. 4. This can be formalized as:

T (k)
c,t (X) =

{
1, if t ∈ [t1(c,X), t2(c,X)]
log p(yt|Gk)
log p(c|Gk)

, otherwise,
(11)

where otherwise, we use the ratio of the prior for label yt and class c to ensure
consistent adjustment with the target label, p(yt | Gk). This prevents misclassi-
fication due to adjustment between yt and c, avoiding violating temporal prior.

4.4 Overall loss

With group-wise classification and temporal logit adjustment, we can reframe
the classification loss Eq. (8) as

LGTLA = αk
1

T

∑
t

− log p̃(y
(k)
t ) + η

n∑
i ̸=k

1

T

∑
t

− log p̂(o
(i)
t ), (12)

where predicted probabilities p̃ for the target group k is based on adjusted logits
in Eq. (9). For non-target groups i, logit adjustment is not performed; instead,
the naive logit s

(i)
o,t(X) of class ‘others’ is used to calculate the probability.

The training loss L combines group-wise logit adjustment loss LGTLA and
smooth loss Lsm, L = LGTLA + λLsm, with λ as the trade-off hyper-parameter.

4.5 Inference

The group label of a sequence is unknown during inference. We use the prediction
for ‘others’ to identify the group. Specifically, the group with the lowest proba-
bility for ‘others’ across all frames is selected as the predicted group k̂(Eq. (13)).
The final result is the prediction (excluding class ‘others’ ) from the classifier cor-
responding to the identified group. During inference, temporal logit adjustment
is not used, i.e. inference applies argmax on predicted probabilities p̂ instead of
adjusted probability p̃ through temporal logit adjustment.

k̂ = argmin
i

1

T

∑
t

p̂(o
(i)
t ), ŷt = arg max

c
(k̂)
t ̸=others

p̂(c
(k̂)
t ), (13)

where c
(k̂)
t represent class c in group k̂ at time t.
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5 Experiments

5.1 Dataset, Implementation, and Evaluation

Dataset. We evaluate our method on five datasets: Breakfast Actions [26]
YouTube Instructional Videos [1], Assembly101 [39], GTEA [16] and 50Sal-
ads [44]. We follow the same settings and splits in [14, 39]. We split classes in
these datasets into Head and Tail according to their frequency, with distributions
for Breakfast and YouTube shown in Fig. 2 and others in the Supplementary.

Table 1: Class split and imbalance of used datasets. The imbalance ratio is the number
of samples in the most frequent class divided by the number in the least frequent class.

Dataset Head group Tail group Imbalance ratio
#actions #frames #actions #frames

Breakfast 20 ≥ 5×104 28 ≤ 5×104 639
YouTube 14 ≥ 500 32 ≤ 500 558

Assembly101 31 ≥ 1.8 ×105 171 ≤ 1.8 ×105 2604
50salads 6 ≥ 4×104 13 ≤ 4×104 6
GTEA 5 ≥ 2000 6 ≤ 2000 24

Implementation Details. We use a temporal convolution model, MSTCN [14],
and a transformer model, ASFormer [50] as backbones. We retrain these models
using the same protocols, settings, and pre-extracted I3D features as the original
papers; see the Supplementary for details and hyper-parameters. During train-
ing, activity labels or clustering results serve as group labels. During testing, the
group label is inferred from predictions of the class ‘others’ in that group.
Evaluation metrics. Temporal segmentation is traditionally evaluated [14,42,
49,50] using Mean over Frames accuracy for frames, Edit distance and F1-score
at various IoU thresholds (0.10, 0.25, 0.50) for segments. However, these metrics
aggregate globally across all samples, masking tail class performance. To assess
each class effectively, we use balanced per-class recall for frame-wise and per-
class F1@0.25 score for segment-wise evaluations, following long-tailed works [22,
45, 46]. The balanced metrics ensure that performance is not largely driven by
the head classes. We compute the average performance within the head and
tail groups and their harmonic mean to reflect the balance in our predictions
accurately. See Suppl. for the F1 score at other thresholds and global metrics.

5.2 Benchmark Comparisons

We compare our work against seven long-tail methods across different datasets
and backbones in Tab. 2 on YouTube & Tab. 3 on Breakfast. We report per-class
accuracy and F1 scores at IoU threshold 25% for Head and Tail groups, respec-
tively, and their harmonic mean (Hmean) to ensure that the models perform well
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Table 2: Comparison on YouTube with harmonic mean on head and tail classes over
three runs. (Global metrics in grey are for reference. See Suppl. for standard deviation).

Model Type Frame acc Segment F1@25 Global
Head Tail Hmean Head Tail Hmean Acc F1@25

AsFormer - 53.1 17.2 26.0 47.6 20.2 28.4 69.8 45.6
+ CB [11] reweight -2.2 +2.9 +2.8 -0.9 +1.0 +0.8 -0.2 -0.2
+ Focal [32] reweight -2.4 +0.8 +0.1 -2.2 +2.0 +1.4 -0.1 +1.0
+ BAGS [31] ensemble -1.2 +3.2 +3.3 -0.8 +1.8 +1.6 -0.5 -0.5
+ τ -norm [22] post-hoc +1.2 +1.3 +1.6 -1.0 +0.3 +0.1 -0.8 -1.3
+ LA [35] logit adj. +0.8 +4.9 +5.3 -0.7 +2.3 +2.1 -1.9 -0.5
+ LDAM [7] logit adj. +1.2 +3.6 +3.4 -1.7 +1.4 +0.9 -0.8 -0.8
+ Seesaw [46] logit adj. -0.6 +1.9 +2.0 -1.9 +1.3 +0.8 -0.6 +0.1
+ G-TLA(ours) logit adj. +2.3 +6.8 +7.5 -0.3 +5.1 +4.6 +0.1 +0.6
MSTCN - 46.0 15.5 23.2 39.0 16.8 23.5 68.0 39.1
+ CB [11] reweight -0.2 +2.5 +2.7 +1.2 -0.4 -0.2 -1.7 -0.4
+ Focal [32] reweight +1.7 +1.5 +1.8 +1.9 +1.2 +1.9 -0.5 +0.9
+ BAGS [31] ensemble -0.4 +2.1 +2.1 +2.5 +0.5 +0.9 -0.8 +1.0
+ τ -norm [22] post-hoc +0.5 +1.1 +1.3 0.0 -0.6 -0.6 -0.7 -1.1
+ LA [35] logit adj. 0.0 +2.1 +2.3 +0.4 -0.8 -0.7 -1.0 -0.3
+ LDAM [7] logit adj. -2.3 +0.3 0.0 -2.1 +0.6 +0.2 -0.4 +0.1
+ Seesaw [46] logit adj. +1.8 +1.4 +1.8 +1.8 +0.3 +0.6 -0.1 +0.6
+ G-TLA(ours) logit adj. +2.7 +6.3 +6.8 +2.7 +3.3 +3.6 -0.4 +1.1

across all classes, not just the head or tail. Some methods, like CB [11], enhance
tail group classes at the expense of head group classes (see Tab. 2), while others,
like Focal [32], primarily enhance head classes with little improvement for tail
classes (see Tab. 3). Furthermore, some methods result in drops in segment-wise
metric, F1@25, despite improved frame accuracy, indicating over-segmentation.
For example, LA [35] and Seesaw [46] in Tab. 2 sacrifice head class F1 scores de-
spite achieving promising frame accuracy gains. We also observe that ensemble
methods generally perform best across the long-tail method types, followed by
LA, reweighting, and post-hoc methods.

Our method, G-TLA, demonstrates strong performance across different class
groups, metrics, datasets, and backbones, effectively addressing the long-tail
problem while minimizing over-segmentation. Using the Asformer backbone,
our method outperforms the next best model by 2.2% on YouTube and 1.5%
on Breakfast on frame accuracy, and by 2.5% and 1.0% on F1@25, respectively.
When using the MSTCN backbone, we outperform the next best model by 4.1%
on YouTube and 2.6% on Breakfast on frame accuracy, and by 1.7% and 4.1%
on F1@25, respectively. Our method not only enhances frame accuracy but also
consistently improves F1@25. Our method is further tested with the SOTA Dif-
fAct [33] backbone on Breakfast(Tab. 4) to verify its effectiveness, improving
per-class performance without compromising overall performance. In summary,
we find that directly applying standard long-tail models to temporal segmen-
tation yields subpar performance, underscoring the significance of our method
specifically designed to address the challenges posed by procedural activities.

In Tab. 5, we present our model’s performance on a recent long-tailed dataset
Assembly101 [39], along with two commonly used datasets, GTEA [16] and
50Salads [44], which have smaller vocabulary sizes and are less imbalanced. For
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Table 3: Comparison on Breakfast with harmonic mean on head and tail classes over
three runs. (Global metrics in grey are for reference. See Suppl. for standard deviation).

Model Type Frame acc Segment F1@25 Global
Head Tail Hmean Head Tail Hmean Acc F1@25

AsFormer - 69.7 39.8 50.7 69.9 43.9 53.9 72.4 69.9
+ CB [11] reweight +0.5 +1.0 +0.9 +1.3 +0.8 +1.0 -0.5 -0.2
+ Focal [32] reweight +0.2 -0.7 -0.5 +1.4 -0.2 +1.2 -0.1 +0.5
+ BAGS [31] ensemble -0.2 +0.8 +0.5 +1.6 +0.5 +1.0 -0.6 -1.0
+ τ -norm [22] post-hoc -0.1 +1.3 +0.8 0.0 +0.4 +0.3 -0.2 -0.8
+ LA [35] logit adj. +0.4 +0.6 +0.6 +0.3 +0.8 +1.0 +0.1 -0.2
+ LDAM [7] logit adj. +0.4 +1.2 +1.0 +0.3 +1.1 +1.2 +0.2 +0.7
+ Seesaw [46] logit adj. +0.4 +1.3 +1.1 +0.5 +1.5 +1.6 +0.1 +0.2
+ G-TLA(ours) logit adj. +0.6 +3.4 +2.6 +1.8 +2.6 +2.6 -0.2 +1.0
MSTCN - 65.1 37.7 47.7 53.3 38.7 44.8 67.7 57.9
+ CB [11] reweight -1.0 +1.6 +1.1 +0.8 +0.7 +0.8 -0.3 0.0
+ Focal [32] reweight +1.0 -1.6 -1.0 +0.3 -0.7 -0.4 +0.8 -0.4
+ BAGS [31] ensemble +0.9 +1.8 +1.7 +4.4 +1.5 +2.6 +0.8 +1.9
+ τ -norm [22] post-hoc +0.2 -1.5 -1.1 -0.6 -1.3 -1.0 +0.2 -0.9
+ LA [35] logit adj. -0.7 +2.4 +2.1 +2.7 0.0 +0.9 -0.1 0.0
+ LDAM [7] logit adj. +0.7 +0.1 +0.3 +0.7 +0.8 +0.8 -0.2 +0.2
+ Seesaw [46] logit adj. +1.2 +2.5 +2.4 +0.7 +0.3 +0.5 +0.9 -0.1
+ G-TLA(ours) logit adj. +2.5 +5.3 +5.0 +6.8 +6.5 +6.7 +2.6 +5.0

Table 4: Additional results with DiffAct on Breakfast.

Model Frame acc Segment F1@25 Global
Head Tail Hmean Head Tail Hmean Acc F1@25

DiffAct 74.8 42.6 54.3 77.5 49.2 60.2 76.5 75.3
+ CB [11] 74.1 43.3 54.7 77.5 49.1 60.2 75.7 75.8
+ LA [35] 75.3 44.5 55.9 78.1 49.0 60.2 76.3 75.6
+ Seesaw [46] 73.2 38.9 50.8 76.0 44.0 55.8 73.6 72.0
+ G-TLA(ours) 75.6 45.5 56.8 78.4 50.4 61.4 76.6 76.1

GTEA and Assembly101, we apply clustering to determine the group for each
sequence (3 groups for GTEA and 2 groups for Assembly101), with each group
containing several activities. For 50Salads, which contains a single activity, we
forgo the group-wise framework and exclusively implement temporal logit ad-
justment. Our method demonstrates competitive results over the baseline by a
large margin, further validating its effectiveness. Notably, the tail performance
is even higher than the head for GTEA, emphasizing the lack of imbalance.

5.3 Ablation Studies

We present ablations on Breakfast; please see the Suppl. for other datasets.
G-TLA Components. We assess the contributions of group-wise classification
(GP), naive logit adjustment (LA), and temporal factors (TF) in Tab. 6. GP
significantly reduces over-segmentation by 5.5% with MSTCN and 1.1% for AS-
Former. Naive LA improves tail accuracy by 2.4% but decreases head accuracy
by 0.7% for MSTCN. Temporal priors help reduce false positives that violate
the ordering prior, further improving LA. Combining all our components within
G-TLA achieves a balanced result in both frame and segment metrics.
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Table 5: Additional results on 50salads, GTEA, and Assembly101.

Dataset Model Frame acc Segment F1@25 Global
Head Tail Hmean Head Tail Hmean Acc F1@25

50salads

AsFormer 90.6 77.4 83.5 87.5 80.3 83.8 85.2 82.3
+ G-TLA(ours) 90.8 79.7 84.9 89.4 83.1 86.1 86.3 84.6
MSTCN 87.7 70.0 77.9 85.7 72.1 78.3 81.1 75.9
+ G-TLA(ours) 89.0 71.7 79.4 86.8 73.8 79.8 81.9 77.3

GTEA

AsFormer 80.6 81.7 81.2 72.5 85.4 78.4 81.1 89.4
+ G-TLA(ours) 80.2 84.5 82.3 72.0 90.4 80.2 81.2 89.6
MSTCN 77.6 80.3 78.9 69.4 86.6 77.0 78.0 87.2
+ G-TLA(ours) 77.5 83.7 80.5 69.5 90.3 78.5 78.6 87.9

Assembly101

AsFormer 35.2 5.7 9.8 29.0 4.8 8.2 41.1 30.4
+ G-TLA(ours) 36.8 9.2 14.7 30.7 8.3 13.1 41.0 29.8
MSTCN 33.9 4.7 8.2 26.3 3.9 6.8 39.8 27.2
+ G-TLA(ours) 34.9 8.0 13.0 30.2 5.8 9.7 39.2 28.5

Table 6: Ablate group classification(GP), logit adjustment(LA), temporal factor(TF).

GP LA TF
MSTCN ASFormer

Frame acc Seg. F1 Frame acc Seg. F1
Head Tail Hmean Head Tail Hmean Head Tail Hmean Head Tail Hmean

✗ ✗ ✗ 65.1 37.7 47.7 53.3 38.7 44.8 69.7 39.8 50.7 69.9 43.9 53.9
✗ ✓ ✗ 64.4 40.1 49.8 56.0 38.7 45.7 70.1 40.4 51.3 71.2 44.7 54.9
✗ ✓ ✓ 65.7 41.3 50.7 56.3 38.9 46.0 69.4 41.7 52.2 70.7 44.8 54.9
✓ ✗ ✗ 67.5 40.8 50.9 60.3 44.8 51.3 69.7 40.8 51.5 71.1 44.9 55.0
✓ ✓ ✗ 66.5 41.8 51.3 59.9 44.7 51.2 70.2 41.4 52.1 71.4 44.7 55.0
✓ ✓ ✓ 67.6 43.0 52.7 60.1 45.2 51.5 70.3 43.2 53.3 71.7 46.5 56.5

η for group-wise classification. Tab. 7 shows the impact of hyperparameter
η in Eq. (12). A small η reduces suppression of tail classes by down-weighting
negative gradients from the ‘others’ class, but if too small, it harms group iden-
tification during inference. Conversely, a large η over-emphasizes the ‘others’
class, harming tail performance. The results suggest an optimal value of η is 0.5.
τ for temporal logit adjustment. A small τ in Eq. (9) represents minimal
adjustment, resulting in less improvement for tail classes in Tab. 8. Conversely, a
large τ biases towards tail classes and introduces more false positives, negatively
impacting head and segment-wise performance. Our experiments show that τ =
0.5 achieves optimal performance.

5.4 Analyzing the effects of G-TLA

Individual metrics. Fig. 5 visualizes various methods’ global and per-class re-
sults with radar charts, including global accuracy, F1 score, and Edit score, as
well as the harmonic mean of balanced accuracy and F1@25 score. Our method
is significantly more balanced, as indicated by the largest enclosed area. In par-
ticular, our method excels in segment-wise performance, including Edit score
and global & balanced F1 score, demonstrating our approach’s effectiveness in
reducing over-segmentation while enhancing balanced accuracy.
Trade-off trends. Long-tail temporal action segmentation exhibits two distinct
trade-offs. First is a head-tail trade-off, where the head is impacted negatively
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Table 7: Varying η for group-wise clas-
sification, with fixed number of groups
n = 10 and τ = 0.5 on MSTCN

η
Frame acc Seg. F1

Head Tail Hmean Head Tail Hmean
0.1 67.3 41.0 51.0 60.4 44.0 50.9
0.3 67.2 42.1 51.8 60.5 44.8 51.5
0.5 67.6 43.0 52.7 60.1 45.2 51.5
0.7 67.5 42.3 52.1 61.1 45.7 52.2

Table 8: Varying τ for temporal logit
adjustment, with fixed number of groups
n = 10 and η = 0.5 on MSTCN

τ
Frame acc Seg. F1

Head Tail Hmean Head Tail Hmean
0.1 67.4 40.8 50.9 60.9 43.3 50.6
0.3 67.5 41.8 51.6 61.0 43.2 50.6
0.5 67.6 43.0 52.7 60.1 45.2 51.5
0.7 67.6 42.4 52.1 60.6 43.9 50.9

Edit

Glb Acc

Glb F1 Bal Acc

Bal F1
66.5
67.8
69.1
70.4

MSTCN
+ LA
+ LDAM
+ Seesaw
+ G-TLA

67.168.068.969.8

58.0
59.3

60.6
61.9

48.0
49.2

50.5
51.7

45.547.048.650.2

(a) MSTCN.

Edit

Glb Acc

Glb F1 Bal Acc

Bal F1
73.6
74.2
74.7
75.3

ASFormer
+ LA
+ LDAM
+ Seesaw
+ G-TLA

71.471.872.272.6

68.9
69.5

70.1
70.7

50.5
51.2

52.0
52.8

53.654.455.256.0

(b) AsFormer.

Fig. 5: Radar charts of different logit adjustment methods, measuring the performance
along balanced and global metrics on Breakfast with MSTCN and AsFormer.

when the tail is improved. Second is a frame-segment trade-off, where enhancing
the tail improves frame metrics but hurts segment metrics. The extent of these
trade-offs is directly influenced by the hyperparameters of respective long-tail
methods, as shown in Fig. 6. Head performance involves head group metrics of
per-class accuracy and F1 score, and tail performance involves tail group metrics.
Frame performance measures the average of global and per-class accuracy, while
segment performance involves Edit score, global F1@25, and per-class F1@25.
As the plot indicates, our method achieves a much better balance than others.
The curve of our method consistently remains above others, emphasizing the
boost of tail classes. This contributes to improved balanced metrics while main-
taining competitive head and segment performance. See the Supplementary for
hyperparameters and trends on other datasets and backbones.
Qualitative & quantitative results. We qualitatively compare the pre-
dictions of logit adjustment methods. Fig. 7 shows the output of MSTCN on
Breakfast and YouTube, revealing the common issue of introducing activity-
irrelevant classes when enhancing tail classes. For instance, emphasizing the
tail class ’stir milk’ on Breakfast introduces false positives in unrelated activ-
ity "making cereal". Additionally, existing methods ignore action ordering, re-
sulting in false positives that violate temporal priors, e.g . on Youtube, action
‘UNSCREW WHEEL’ is wrongly predicted before ‘START LOOSE’ for ac-
tivity "changing tire". Our proposed method effectively addresses both types
of false positives, enhancing the overall prediction logic. We also report the
quantitative results on Breakfast with MSTCN in Fig. 8. Our method reduces
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Fig. 6: Head-Tail & Frame-Segment trade-offs on Breakfast with MSTCN.
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SIL take bowl pour cereals pour milk stir cereals SIL

SIL pour cereals pour milk SIL

SIL spoon powder pour milk stir cereals stir milk stir tea SIL

SIL pour cereals pour milk stir cereals SIL

(a) "making cereals" activity on Breakfast using MSTCN.

GT
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bg BRAKE ON bg START LOOSE bg JACK UP

bg BRAKE ON bg GET THINGS OUT bg START LOOSE bg bg JACK UP

bg BRAKE ON PUT SOIL bg UNSCREW WHEEL START LOOSE bg JACK UP

bg BRAKE ON bg START LOOSE bg JACK UP

(b) "changing tire" activity on Youtube using MSTCN.

Fig. 7: G-TLA effectively reduces activity-irrelevant
predictions, e.g . actions ‘spoon powder’ and ‘stir
milk’ on Breakfast, and ‘PUT SOIL’ on Youtube.
G-TLA also mitigates predictions that violate tem-
poral priors, e.g . ‘UNSCREEW WHEEL’ occurring
before ‘START LOOSE’ on Youtube.
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Fig. 8: Distribution of True
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(FP), categorized into: FP1
(activity-irrelevant), FP2
(activity-relevant with or-
dering violations), and FP3
(activity-relevant and follow-
ing action ordering derived
from temporal bounds).

the number of segments for activity-irrelevant(FP1) and ordering-violated(FP2)
false positives, mitigating over-segmentation. Meanwhile, it also helps to increase
true positives(TP) and reduce false positives that are both activity-relevant and
ordering-valid(FP3), mainly due to the group-wise classification.
Group identification accuracy. Group identification is crucial and impacts
the final performance. Our group-wise classification improves activity identifica-
tion. For instance, we achieve 90.1% accuracy compared to 87.2% of the MSTCN
baseline on Breakfast. More details and results are in the Supplementary.

6 Conclusion

This paper targets long-tail temporal action segmentation, addressing challenges
from temporal class correlations and performance trade-offs of head & tail classes
at frame- & segment-level. Our proposed Group-wise Temporal Logit Adjust-
ment (G-TLA) scheme integrates video activity labels and action order priors to
capture class inter-dependencies, enhancing balanced performance while main-
taining global performance. Future efforts would prioritize highly imbalanced
datasets, considering both long-tail and few-shot learning scenarios.
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