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A Related Work

A.1 Video Editing using Diffusion Models

Creating videos from textual descriptions necessitates ensuring realistic and tem-
porally consistent motion, posing a unique set of challenges compared to text-
driven image generative scenarios. Before the advent of publicly accessible text-
to-video diffusion models, Tune-A-Video [30] was at the forefront of one-shot-
based video editing. They proposed to inflate the image diffusion model to the
pseudo video diffusion model by appending temporal modules to the image diffu-
sion model [22] and reformulating spatial self-attention into spatio-temporal self-
attention, facilitating inter-frame interactions. However, the inflation often falls
short of achieving consistent and complete motion, as motion preservation relies
implicitly on the attention mechanism during inference. Thus, the attention pro-
jection matrices within U-Net are often fine-tuned on the input videos [13,30,36].
Utilizing explicit visual signals to steer the video denoising process is another
common technique. Pix2Video [1] and FateZero [21], for instance, inject inter-
mediate attention maps during the editing phase, which are derived during the
input video inversion. Others leverage pre-trained image adapter networks for
structurally consistent video generation. A notable example is ControlNet [33],
which has been modified to accommodate a series of explicit structural indicators
such as depth and edge maps. Ground-A-Video [10] takes this a step further by
adapting both ControlNet and GLIGEN [11] for video editing, utilizing spatially-
continuous depth maps and spatially-discrete bounding boxes.

Despite the availability of open-source text-to-video (T2V) diffusion models
[2, 24, 26, 27, 32], recent endeavors frequently adopt a self-supervised strategy of
fine-tuning pre-trained video generative models on an input video, to accurately
capture intricate, real-world motion. More specifically, several studies attempt
to disentangle the appearance and motion elements of videos during the self-
supervised fine-tuning. For example, [29, 35, 37] split the fine-tuning phase into
two distinct pathways: one dedicated to integrating the subject’s appearance
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into spatial modules, and the other aimed at embedding motion dynamics of a
video into temporal modules within the T2V model. Additionally, other studies
[9,14,18] attempt to extract and learn motion information from a single or a few
reference videos. VMC [9], for instance, proposes to distill the motion within a
video by calculating the residual vectors between consecutive frames, and refine
temporal attention layers in cascaded video diffusion models.

Distinct from aforementioned approaches, DreamMotion circumvents the con-
ventional ancestral sampling and employs Score Distillation Sampling [20] for
editing appearance elements within a video.

A.2 Visual Generation using Score Distillation Sampling

Score Distillation Sampling (SDS) [20], also known as Score Jacobian Chaining,
has become the go-to method for text-to-3D generation in recent years [3, 8, 12,
15, 19, 23, 25, 28]. DreamFusion [20] first proposed to distill the generative prior
of pre trained text-to-image models and optimize a parametric image synthesis
model, such as NeRF [16]. Despite its success, SDS often produces images that
are overly saturated, blurry, and lack detail, largely due to the use of high CFG
values [28]. To address these challenges, a range of derivative methods have
been proposed [7, 8, 12, 15, 17, 28]. Specifically, in the context of accurate image
editing, DDS [7] incorporates an additional reference branch with corresponding
text to refine the noisy gradient of SDS. Hifa [38], instead, utilizes an estimated
clean image rather than the predicted noise to compute denoising scores. In our
work, we employ a straightforward yet effective mask condition to refine DDS-
generated gradients, allowing us to inject particular appearance into the video.
We further ensures the preservation of the video’s original structure and motion
through the novel regularization of space-time self-similarity alignment.

B Technical Details

For the sampling of timestep t to derive x1:N
t and x̂1:N

t , we restrict t to the
range t ∼ U(0.05, 0.95), in line with DDS’s official implementation3. For the
extraction of attention key features from video diffusion U-Net, we specifically
select the self-attention layers within its decoder part. In the non-cascaded video
diffusion experiments, we utilize Zeroscope4 [24], a diffusion model that operates
in latent-space rather than pixel-space. Practically, this means the video frames
are initially encoded into latent representations by VAEs, and then our proposed
optimizations take place within this latent space. Conversely, in experiments
involving the cascaded video diffusion framework, we select Show-15 [32], where
the keyframe generation UNet of Show-1 uses a pixel-space diffusion. As a result,
the video frames stay in pixel space, with optimizations carried out directly
within this domain.
3 https://github.com/google/prompt-to-prompt/blob/main/DDS_zeroshot.ipynb
4 https://huggingface.co/cerspense/zeroscope_v2_576w
5 https://huggingface.co/showlab/show-1-base
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Fig. 1: Interface of human evaluation.

To produce output videos using Tune-A-Video [30], ControlVideo [34], Control-
A-Video [4], and TokenFlow [6], we utilized the official github repositories along
with their default hyperparameters. The results from Gen-1 [5] were generated
using their web-based product. Given that Gen-1 generates videos with tem-
porally extended sequences, including duplicated frames, we removed these re-
peated frames when calculating CLIP-based frame consistency to ensure a fair
evaluation. However, for the human evaluation, the outputs from Gen-1 were
used as is, without any modifications.

C User Study Interface

We carried out human evaluations to assess various methods based on three
key aspects: Edit Accuracy, Frame Consistency, and Sturcture & Motion Preser-
vation. Initially, we present the input video alongside its text description, as
shown in Figure 1. Subsequently, we display target text with anonymized videos
generated by each method and ask participants to evaluate them across the
aforementioned three criteria. The human evaluation results, detailed in Table
1 of the manuscript, unequivocally highlight the superiority of DreamMotion in
both video diffusion frameworks.

D Additional Comparison

Video-P2P DMT Ours (Zeroscope)
Motion-Fidelity 0.7384 0.8697 0.9259
Frame-LPIPS 0.3395 0.3078 0.3042

Table 1: Additional quantitative compari-
son with DMT and Video-P2P.

We additionally compared our method
with two video editing techniques
specifically designed for localized edit-
ing: Video-P2P [13] and Diffusion-
Motion-Transfer (DMT) [31]. For
qualitative comparison, see Fig. 2. For
quantitative comparison in Tab. 1, we
employed tracking-based motion fi-
delity score [31] and framewise LPIPS
[13] to evaluate spatial consistency.
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Fig. 2: Additional qualitative comparison with DMT and Video-P2P.

E Additional Results

This section is dedicated to presenting additional outcomes of DreamMotion.
Figure 3 offers a comprehensive view of the results from Figure 6 in the main
paper, demonstrating the effect of masking DDS-driven gradients. Annotations
within the input video frames indicate the masks used. In Figure 4, we present
the progress of DreamMotion optimization by visualizing intermediate output
videos. Figures 5, 6, and 7 showcase input and corresponding edited videos gen-
erated with DreamMotion on Zeroscope, using various target prompts. To ac-
commodate space constraints, only odd or even frames from 16-frame videos are
selected for display. Figures 8, 9, and 10 feature videos edited by DreamMotion
on the Show-1 Cascade model [32], with the left columns displaying 8-frame
input videos and the adjacent columns showing 29-frame output videos. Our
qualitative results are uploaded on our project page.

https://hyeonho99.github.io/dreammotion/
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Fig. 3: Video optimization with and without masking gradients.
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Fig. 4: Visualization of optimization progress.
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Fig. 5: Additional results of DreamMotion with Zeroscope T2V.
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Fig. 6: Additional results of DreamMotion with Zeroscope T2V.
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Fig. 7: Additional results of DreamMotion with Zeroscope T2V.
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Fig. 8: Additional results of DreamMotion with Show-1 Cascade.



DreamMotion 11

Fig. 9: Additional results of DreamMotion with Show-1 Cascade.
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Fig. 10: Additional results of DreamMotion with Show-1 Cascade.
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