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Fig. 1: Zero-shot video editing results. The second row presents videos produced
with our method with a non-cascaded video diffusion model, while those in the bottom
row are from a cascaded model. For a full display of results, visit our project page.

Abstract. Text-driven diffusion-based video editing presents a unique
challenge not encountered in image editing literature: establishing real-
world motion. Unlike existing video editing approaches, here we focus
on score distillation sampling to circumvent the standard reverse diffu-
sion process and initiate optimization from videos that already exhibit
natural motion. Our analysis reveals that while video score distillation
can effectively introduce new content indicated by target text, it can also
cause significant structure and motion deviation. To counteract this, we
propose to match the space-time self-similarities of the original video
and the edited video during the score distillation. Thanks to the use of
score distillation, our approach is model-agnostic, which can be applied
for both cascaded and non-cascaded video diffusion frameworks. Through
extensive comparisons with leading methods, our approach demonstrates
its superiority in altering appearances while accurately preserving the
original structure and motion.
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1 Introduction

Building upon the progress in diffusion models [12, 41, 44], the advent of large-
scale text-image pairs [38] brought an unprecedented breakthrough in text-driven
image generative tasks. In particular, real-world image editing has undergone
significant evolution, supported by foundational Text-to-Image (T2I) diffusion
models [30,35–37]. However, extending the success of diffusion-based image edit-
ing to video editing introduces a significant challenge: modeling temporally con-
sistent, real-world motion throughout the reverse diffusion process.

Existing methods leveraging T2I diffusion models typically start by inflating
attention layers to attend to multiple frames simultaneously [5, 6, 18, 19, 33, 50,
54,55,59]. Yet, this technique falls short of achieving smooth and complete mo-
tion, as it depends on the implicit preservation of motion through the inflated
attention layers. As a result, a commonly adopted solution is to employ addi-
tional visual hints that explicitly guide the reverse diffusion process. One strat-
egy is to use attention map guidance, for example, by injecting self-attention
maps [4,33] or manipulating cross-attentions [26]. Other works attempt to inte-
grate the denoising process with spatially-aligned structural cues, like depth or
edge maps. For example, pre-trained adapter networks such as ControlNet [58]
or GLIGEN [24] have been transferred from image to video domain, achieving
structure-consistent outputs [5, 15,18,59].

Even with the presence of pre-trained Text-to-Video (T2V) diffusion models,
zero-shot video editing still poses a significant hurdle since publicly available
T2V models [45, 49] lack sufficiently rich temporal priors to accurately depict
real-world motion in the generated videos, as illustrated in Fig. 2. Thus, recent
endeavors often adopt a self-supervised strategy of finetuning pre-trained model
weights on the motion presented in an input video [17, 29, 53, 60, 61]. Whether
employing T2I or T2V models, the conventional reverse diffusion process —be-
ginning with standard Gaussian noise or, at most, inverted latent representa-
tions— struggles to reprogram complex, real-world motion, unless supplemented
by additional visual conditions or by overfitting the spatial-temporal priors to a
particular video.

To this end, we propose to diverge from the previous video editing litera-
ture. Our approach, DreamMotion, deliberately avoids the standard denoising
process (ancestral sampling), and instead leverages the Score Distillation Sam-
pling (SDS, [32]) grounded optimization to edit a video. Specifically, starting
from an input video with temporally consistent, natural motion, we attempt to
progressively modify the video’s appearance while maintaining the integrity of
the motion. In specific, our framework gradually injects target appearance to
the video using Delta Denoising Score (DDS, [9]) gradients within T2V diffusion
models. During this procedure, we filter the gradients with additional binary
mask conditions to avoid blurriness and over-saturation. While this optimiza-
tion effectively infuses the targeted appearance, it tends to accumulate struc-
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Fig. 2: Ancestral sampling-based zero-shot video editing fails to capture complex, real-
world motion in the generated videos.

tural errors, resulting in deviations in motion across the final output frames
(see Fig. 3). To address this, we present self-similarity-based space-time regu-
larization methods. More specifically, by aligning the spatial self-similarity of
diffusion features between the original and edited videos, we preserve structure
and motion integrity while seamlessly modifying the appearance. Furthermore,
ensuring temporal self-similarity between the two features facilitates effective
temporal smoothing, preventing potential distortions in areas subjected to opti-
mization. Our methodology is applied to both cascaded and non-cascaded video
diffusion models, showcasing its wide applicability across different video editing
frameworks.

In summary, DreamMotion offers the following key contributions:

– A pioneering zero-shot framework that distills video score from text-to-video
diffusion priors to inject target appearance.

– A novel space-time regularization that aligns spatial self-similarity to mini-
mize structural deviations and temporal self-similarity to prevent distortions.

– Comprehensive validation of our approach across two distinct setups: non-
cascaded and cascaded video diffusion frameworks.

2 Background

Diffusion Models Diffusion models [12, 41, 44] define the generative process
as the reverse of the forward noising process. For clean data represented by
x0 ∼ pdata(x), the forward process gradually introduces Gaussian noise through
Markov transition with conditional densities

p(xt | xt−1) = N (xt | βtxt−1, (1− βt)I),

p(xt | x0) = N (xt |
√
ᾱx0, (1− ᾱ)I),

(1)

where xt ∈ Rd is a noised latent representation at timestep t and the noise
schedule βt is a monotonically increasing sequence of t with αt := 1− βt, ᾱt :=∏t

i=1 αi. Then, the objective of diffusion model training is to obtain a multi-scale
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Fig. 3: Optimization progress visualization. The proposed self-similarity regular-
ization effectively preserves the structure and motion of the original video.

U-Net denoiser ϵϕ∗ that satisfies

ϕ∗ = argmin
ϕ

Ext∼pt(xt | x0),x0∼pdata(x0),ϵ∼N (0,I)

[
∥ϵϕ(xt, t)− ϵ∥22

]
, (2)

where ϵϕ∗(xt, t) ≃ ϵ = xt−
√
ᾱtx0√

1−ᾱ
. Notably, the Epsilon-Matching loss in (2) is

equivalent to the Denoising Score Matching (DSM, [16, 43, 48]) with alternative
parameterization:

min
ϕ

Ext,x0,ϵ

[ ∥∥stϕ(xt)−∇xt
log pt(xt | x0)

∥∥2
2

]
, (3)

where sϕ∗(xt, t) ≃ −xt−
√
ᾱtx0

1−ᾱ = − 1√
1−ᾱt

ϵϕ∗(xt, t). For the reverse process, with
the learned noise prediction network ϵ∗ϕ, the noisy sample of previous timestep
xt−1 can be estimated by:

xt−1 =
1

√
αt

(
xt −

1− αt√
1− ᾱt

ϵϕ∗(xt, t)
)
+ β̃tϵ, (4)

where β̃t :=
1−ᾱt−1

1−ᾱt
βt and ϵ ∼ N (0, I).

Conditional Generation In the context of conditional generation, data x
is paired with an additional conditioning signal y, which in our case is a text
caption. To train a text-driven diffusion model, the text conditional embedding
y is incorporated into the objective as:

min
ϕ

Ext,x0,ϵ,y

[
∥ϵϕ(xt, t, y)− ϵ∥

]
(5)

To augment the effect of text condition, classifier-free guidance [13] attempts to
benefit from both conditional and unconditional noise prediction, using a single
network. In specific, the epsilon prediction is defined as

ϵwϕ (xt, t, y) = (1 + w)ϵϕ(xt, t, y)− wϵϕ(xt, t,∅), (6)
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where ∅ denotes null text embedding and w is the guidance scale.

Video Diffusion Models Our framework leverages foundational video diffu-
sion models for obtaining video scores. Consider a video sequence of N frames
represented by x1:N ∈ RN×d. For any n-th frame within this sequence, denoted
by xn ∈ Rd, the noisy frame latent xn

t sampled from pt(x
n
t |xn) can be expressed

as xn
t =

√
ᾱtx

n +
√
1− ᾱtϵ

n
t , where ϵnt ∼ N (0, I). Then, we similarly define

x1:N
t and ϵ1:Nt . The objective of video diffusion model training is then to obtain

a denoiser network ϵϕ∗ that satisfies:
ϕ∗ = argmin

ϕ
Ex1:N

t ,x1:N ,ϵ1:N ,y

[ ∥∥ϵϕ(x1:N
t , t, y)− ϵ1:N

∥∥ ], (7)

where y is a text caption uniformly describing the video sequence x1:N .
Seeking to create videos that are both spatially and temporally enlarged

and of high quality, video diffusion models have been expanded to cascaded
pipelines [2,11,14,40,51,57]. These cascaded video pipelines commonly follow a
coarse-to-fine video generation approach, beginning with a module dedicated to
creating keyframes that are low in both spatial and temporal resolution. Sub-
sequent stages involve temporal interpolation and spatial super-resolution mod-
ules, which work to increase the temporal and spatial resolution of the frames,
respectively. In this work, we plug our method into both cascaded and non-
cascaded scenarios, proving its model-agnostic capability.

3 DreamMotion

3.1 Overview

Starting with a series of input video frames x̂1:N , a corresponding text prompt
ŷ, and a target text y, our goal is to get an edited video x1:N that preserves
the structural integrity and overall motion of x̂1:N , while faithfully reflecting y.
DreamMotion starts by initializing the target video variable x1:N

0 (θ) by the origi-
nal video x̂1:N . Our optimization strategy is then three-pronged: (1) LV-DDS that
paints x1:N

0 (θ) to match the appearance dictated by y, (2) LS-SSM which encour-
ages the structure of x1:N

0 (θ) to align with x̂1:N , (3) LT-SSM which smoothens
the gradients over the temporal dimension to eliminate any potential artifacts.

In Sec. 3.2, we briefly review SDS and DDS loss formulations and describe
how we directly modify the appearance of x1:N with DDS-based gradients. This
technique, while effective in appearance injection, tends to accumulate structural
inaccuracies, resulting in motion deviation in the end output. To address this,
Sec. 3.3 introduces a strategy for structural correction based on self-similarity,
and Sec. 3.4 details our approach for temporal smoothing, also leveraging self-
similarity. Finally, in Sec. 3.5, we elaborate on the extension of DreamMotion
to the cascaded video diffusion framework. For simplicity, we primarily describe
the diffusion model as operating in pixel space throughout this paper. However,
in practice, our implementation encompasses both a latent space-based (Sec.
4.1, [45]) and a pixel space-based video diffusion model (Sec. 4.2, [57]).
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Fig. 4: Overview. DreamMotion leverages gradients derived from score distillation to
inject target appearance, which is complemented by self-similarity alignments across
spatial and temporal dimensions. This strategy seamlessly fits into cascaded video
diffusion frameworks, confining the optimization on the keyframe generation phase.

3.2 Appearance Injection

Image Score Distillation Let x0(θ) denote the target image parameterized
by θ and ϵϕ represent a T2I diffusion model. SDS aims to align x0(θ) with the
target text y by optimizing the diffusion training loss gradient, expressed as:

LSDS(θ; y) =
∥∥ϵwϕ (xt(θ), t, y)− ϵ

∥∥2
2
, (8)

with ϵ ∼ N (0, I) and t ∼ U(0, 1). Although ∇θLSDS provides an efficient gradient
term for incrementally refining the image fidelity to the text y, SDS often results
in over-saturation, blurriness, and lack of details in the generated image [9, 20,
25,28,52].

Under the assumption that the SDS score should be zero for pairs of correctly
matched prompts and images, DDS [9] enhances the gradient direction obtained
from the SDS framework by incorporating an additional text-image pair, com-
prising a reference text ŷ and a reference image x̂0. Specifically, the noisy direc-
tion of the SDS score is calculated using the reference text-image branch, and
this noisy score is subtracted from the main SDS optimization branch:

LDDS(θ; y) =
∥∥ϵwϕ (xt(θ), t, y)− ϵwϕ (x̂t, t, ŷ)

∥∥2
2
. (9)

Video Score Distillation with Masked Gradients Leveraging a pre-trained
T2V diffusion model ϵϕ, we extend the DDS mechanism to distill video scores.
Let x1:N

0 (θ) represent the target video parameterized by θ, and x1:N
0 denote the

fixed, source video. We optimize the video variable x1:N
0 (θ) to reflect target text

y by minimizing:

LV-DDS(θ; y) =
∥∥∥ϵwϕ (x1:N

t (θ), t, y)− ϵwϕ (x̂
1:N
t , t, ŷ)

∥∥∥2
2
. (10)

While the video delta denoising score (V-DDS) offers a reliable gradient for
gradually injecting appearance described by target text y, it still suffers from
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Fig. 5: The proposed space-time self-similarity regularization: (a) Spatial Self-
Similarity Matching and (b) Temporal Self-Similarity Matching

blurriness and over-saturation. We mitigate this issue by additional mask con-
ditioning. Specifically, we filter the obtained gradients with a sequence of masks
m1:N that annotate the objects to be edited in each frame, by ∇θLV-DDS⊙m1:N .
The filtered gradients ensure that unintended regions in x1:N

0 (θ) remain unaf-
fected during V-DDS optimization (see Fig. 6).

A more significant issue arises when inaccurate gradients of LV-DDS accumu-
late structural errors throughout the optimization process. Unlike editing still
images, these errors are particularly problematic in video editing, as their accu-
mulation deters temporal consistency within frames and often results in motion
deflection, as illustrated in Fig. 3, 9. To tackle this, we propose to match self-
similarities between target and reference branches, as detailed in Section 3.3.

3.3 Structure Correction

Spatial Self-Similarity Matching To address structural integrity, we require
a representation that remains resilient against local texture patterns while re-
taining the global layout and overall shape of objects: self-similarity descriptors.
Self-similarity of visual features facilitates identifying objects by emphasizing
the relationship of an object’s appearance to its surroundings, rather than rely-
ing on its absolute appearance. This principle of relative appearance has been
effectively applied across various domains: in traditional methods for matching
visual patterns [39], in the realm of neural style transfer through deep convo-
lutional neural network features [21], and more recently, in the field of image
editing utilizing DINO ViT features [3, 22,47].

Our contribution lies in pioneering the application of self-similarity through
deep diffusion features [46] to ensure structural correspondence between the tar-
get video x1:N and the original video x̂1:N . To achieve this, we add identical noise
of timestep t to both videos (Eq. 1), resulting in x1:N

t and x̂1:N
t , which are then

feed-forwarded to the video diffusion U-Net ϵϕ to extract a pair of attention key
features K(x1:N

t ),K(x̂1:N
t ) ∈ RN×(H×W )×C . Subsequently, we calculate spatial
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Fig. 6: Filtering optimization gradients plays a crucial role in maintaining visual fi-
delity and preserving the structure of the input video. Bounding boxes detected by
off-the-shelf models [23, 27] are used to create binary masks indicating the target re-
gions for editing.

self-similarity map SSn(·) ∈ R(H×W )×(H×W ) of each n-th frame as follows:
SSn

i,j(x
1:N
t ) = cos(Kn

i (x
1:N
t ),Kn

j (x
1:N
t )), (11)

where cos(·, ·) denotes the normalized cosine similarity, i, j are all pairs of spatial
indexes (1 ≤ i, j ≤ (H×W )), and x1:N

t (θ) is simplified to x1:N
t for brevity. The

spatial self-similarity matching objective is formulated as:

LS-SSM(x1:N
t , x̂1:N

t ) =
1

N

N∑
n=1

∥∥∥SSn(x1:N
t )− SSn(x̂1:N

t )
∥∥∥2
2
, (12)

thereby quantifying and minimizing the discrepancy between the self-similarity
maps of the target and original videos.

3.4 Temporal Smoothing

Temporal Self-Similarity Matching Although the spatial self-similarity align-
ment, facilitated by LS-SSM, proficiently maintains structural consistency be-
tween the original and modified videos, it operates as a frame-independent opti-
mization method, without considering the temporal correlation between frames.
As observed in Fig. 9, such per-frame operations can lead to localized distortions
and notable flickering in the optimized frames. To address these artifacts, we in-
troduce a temporal regularization of LS-SSM that models temporal correlations
by leveraging self-similarity along the frame axis.

Calculating self-similarity over time necessitates a method to compress spa-
tial information while retaining essential spatial details. For this purpose, we
employ spatial marginal mean a first-order statistic, spatial marginal mean, as
our global descriptor. This choice is supported by prior works [21,56], which have
demonstrated their effectiveness in capturing crucial spatial details and serving
as a robust global descriptor. More concretely, we condense the spatial dimen-
sions of the extracted key features K(x1:N

t ) ∈ RN×(H×W )×C to M [K(x1:N
t )] ∈

RN×C through the process defined as:

M [K(x1:N
t )] =

1

H ·W

H·W∑
i=1

Ki(x
1:N
t ), (13)
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Fig. 7: Comparison. DreamMotion, applied to the Zeroscope model, is evaluated
against five baseline methods. For a detailed assessment, please visit our project page.

where H and W denote the height and width, respectively, and C represents
the channel dimension of the feature maps. We then establish the temporal self-
similarity TS(·) ∈ RN×N as follows:

TSi,j(x
1:N
t ) = cos(Mi[K(x1:N

t )],Mj [K(x1:N
t )]), (14)

where i, j are from frame indexes (1 ≤ i, j ≤ N). Subsequently, the temporal
self-similarity matching loss is formulated as:

LT-SSM(x1:N
t , x̂1:N

t ) =
∥∥∥TS(x1:N

t )− TS(x̂1:N
t )

∥∥∥2
2
. (15)

It’s noteworthy that the three losses LV-DDS, LS-SSM and LT-SSM share the same
noise ϵ and time t for their computations, achieving a computationally efficient
integration of optimizations through a single forward and reverse diffusion step.

3.5 Expansion to Cascade Video Diffusion

As outlined in Section 2, cascaded video diffusion models commonly utilize a
coarse-to-fine approach for video generation, comprising three specialized mod-
ules that function in sequence: Keyframe Generation, Temporal Interpolation,
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and Spatial Super Resolution. Rather than applying the optimization process
through this comprehensive pipeline—a process that would result in prohibitively
high computational costs—we focus our efforts exclusively on the initial Keyframe
Generation stage. Within this approach, we reinterpret x1:N and x̂1:N to repre-
sent, respectively, the target and original keyframes, both resized to accommo-
date the low-resolution requirements of the keyframe generation space. Further-
more, we designate ϵϕ to represent the keyframe generation U-Net, excluding the
temporal interpolation and super-resolution modules. Following this setup, we
apply our optimizations—LV-DDS, LS-SSM, and LT-SSM—directly to x1:N .
After completing the optimization, these refined keyframes undergo further pro-
cessing through the Temporal Interpolation and Spatial Super Resolution stages.
This comprehensive procedure is depicted in Fig. 4-(b), illustrating the stream-
lined approach to integrating our optimization methods within the cascaded
video diffusion model framework.

4 Experiments

4.1 Non-cascaded Video Diffusion Framework

Setup For evaluation, we chose 26 text-video pairs from the public DAVIS [31]
and WebVid [1] datasets. The videos vary in length from 8 frames to 16 frames.
In this experiment, we deploy our method on ZeroScope [45], a foundational
text-to-video latent diffusion model. The CFG scale w is configured as 9.0. We
perform optimization for 200 steps using stochastic gradient descent (SGD) with
a learning rate of 0.4. The optimization of an 8-frame video requires approxi-
mately 2 minutes, while optimizing a 16-frame video takes around 4 minutes,
utilizing a single A100 GPU.

Baselines Our method is evaluated alongside 1 one-shot and 4 zero-shot video
editing baselines. Tune-A-Video (TAV, [54]) selectively finetunes attention pro-
jection layers within an inflated T2I model on the given input video. Con-
trolVideo (CV, [59]) integrates temporally extended ControlNet [58] to T2I
diffusion and achieves motion-consistent video generation without any finetun-
ing. Both Control-A-Video (CAV, [5]) and Gen-1 [7] are video diffusion models
trained on large-scale text-image and text-video data. They explicitly guide the
ancestral denoising process with a series of structural conditions like depth maps.
Tokenflow [8] accomplishes time-consistent video editing by enforcing uniformity
on the internal diffusion features across frames, in a zero-shot manner.

Qualitative Results Fig. 7 offers a qualitative comparison between our method
and state-of-the-art baselines; for complete videos, refer to our project page. Our
method produces temporally consistent videos that closely adhere to the target
prompt while most accurately preserving the motion of the input video, a feat
that other baselines struggle to achieve simultaneously.

https://hyeonho99.github.io/dreammotion
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Quantitative Results We conducted a comprehensive quantitative evaluation,
which includes both automatic metrics and a user study. The summarized results
can be found in Tab. 1.

(a) Automatic metrics. We first employ CLIP [34] to measure the text align-
ment and frame consistency of the edited videos. For assessing textual align-
ment [10], we measure average cosine similarity between the target text prompt
and the edited frames. In terms of frame consistency, we calculate CLIP image
features for every frame in the output video and then compute the average co-
sine similarity across all neighboring pairs of frames. We additionally compute
tracking-based motion fidelity score [56] and framewise LPIPS [26] for measuring
spatial consistency. According to the results in Tab. 1, our approach surpasses
the baselines in achieving higher textual alignment and better spatial-temporal
consistency.

(b) User study. We surveyed 36 participants to assess the accuracy of edit-
ing, temporal consistency, and preservation of structure & motion, using a rat-
ing scale from 1 to 5. Participants were shown the input video followed by
anonymized output videos from each baseline. They were then asked the three
questions: (i) Edit Accuracy: Does the output video accurately reflect the tar-
get text by appropriately editing all relevant elements? (ii) Frame Consistency:
Are the frames in the output video temporally consistent? (iii) Structure and
Motion Preservation: Has the structure and motion of the input video been ac-
curately maintained in the output video? Tab. 1 illustrates that our method
outperforms the baselines in all measured aspects.

Automatic Metrics Human Evaluation

Method Text-Align Frame-Con Motion-Fidelity Frame-LPIPS Edit-Acc Frame-Con SM-Preserve

Tune-A-Video 0.8177 0.9218 0.6947 0.4172 3.52 2.82 2.89
ControlVideo 0.7850 0.9678 - 0.3763 2.74 2.68 2.03

Control-A-Video 0.7848 0.9297 0.8453 0.3829 2.17 2.16 2.18
Gen-1 0.8192 0.9704 - - 3.31 3.62 2.95

Tokenflow 0.7813 0.9576 0.9184 0.3427 3.63 3.54 3.92
Ours (Zeroscope) 0.8209 0.9726 0.9259 0.3042 4.14 4.21 4.33

Table 1: Quantitative evaluations. DreamMotion with Zeroscope outperforms var-
ious video editing methods in all seven features.

4.2 Cascaded Video Diffusion Framework

Setup In this experiment, we utilize the 8-frame videos from the previously
assembled text-video pairs. Additionally, we benefit from Show-1 [57], an open-
source, cascaded video diffusion model. As detailed in Sec. 3.5, we compose our
cascaded pipeline comprising Keyframe Generation, Temporal Interpolation, and
Spatial Super Resolution, with all modules operating in pixel space. Our method
is implemented during the initial keyframe generation stage. During keyframe
optimization, these input videos undergo resizing to a resolution of 80x128 pixels,
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Fig. 8: Comparison. DreamMotion with Show-1 cascaded model is evaluated against
two baselines.

Automatic Metrics Human Evaluation

Method Text-Align Frame-Con Edit-Acc Frame-Con SM-Preserve

Inversion + Word Swap 0.7586 0.9714 3.36 3.42 2.21
VMC 0.7563 0.9703 3.13 3.22 3.35

Ours (Show-1) 0.7747 0.9755 3.97 3.74 4.30
Table 2: Quantitative evaluations. DreamMotion utilizing Show-1 surpasses other
cascaded baselines across the five features. Other baselines were also implemented using
the same video model, ensuring a fair comparison.

with the optimization process taking approximately 3 minutes on a single A100
GPU. Following the optimization, the frame interpolation and super-resolution
modules expand the output keyframes temporally and spatially, respectively.

Baselines To our knowledge, VMC [17] stands out as the sole video editing
approach utilizing a cascaded video diffusion pipeline. VMC adapts temporal
attention layers within the keyframe generation module, leveraging their novel
motion distillation objective. For comparison purposes, we introduce an addi-
tional variant that employs direct inference using the cascaded pipeline with
modified target text, starting from the DDIM inverted latents [42].

Qualitative Results We qualitatively compare our method against baselines
in Fig. 8. DreamMotion generates videos that match the structure and layout of
the input video while adhering to the edit prompt, while other methods struggle
to maintain the structural and motion integrity of the original video. Since all
three methods use unaltered temporal interpolation and super-resolution models
after the generation of keyframes, they commonly produce temporally consistent
videos. For comprehensive results, please refer to the appendix.
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Fig. 9: Ablation of spatial and temporal self-similarity alignments. Joint op-
timization of LV-DDS + LS-SSM + LT-SSM generates the optimal output videos.

Quantitative Results Adopting the metrics outlined in Sec. 4.1, we com-
pare our method quantitatively against baseline approaches, detailed in Tab.
2. Notably, our approach demonstrated substantial superiority in Structure and
Motion Preservation (SM-Preserve).

4.3 Ablation Studies

In Fig. 6, we evaluate the impact of using bounding box-driven masks to se-
lectively filter gradients during LV-DDS update. The results demonstrate that
filtering gradients responsible for appearance injection enhances the precision of
video editing and improves visual fidelity while avoiding issues of blurriness and
saturation.

We next ablate the necessity of our self-similarity guidances. Fig. 3 illus-
trates the optimization progress with and without our self-similarity alignments.
The process begins with the initial input video (top row). Solely using LV-DDS
for appearance injection (left) leads to the accumulation of structural errors
as optimization progresses, resulting in motion deviation in the final output.
However, when the process is regularized by the spatial and temporal self-
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Text-Align Frame-Con Motion-Fidelity Frame-LPIPS

Ours wo LS-SSM + LT-SSM 0.8202 0.9648 0.8426 0.3247
Ours wo LT-SSM 0.8114 0.9567 0.9011 0.3186
Ours wo masks 0.8180 0.9695 0.8653 0.3416

Ours (full) 0.8209 0.9726 0.9259 0.3042
Table 3: Quantitative ablation. We demonstrate the impact of each factor by
removing individual losses and masking conditions.

Fig. 10: Limitation. DreamMotion limits its ability to produce videos that necessitate
substantial structural alterations.

similarities (right), edited videos maintain the structure and motion fidelity
throughout the optimization. Additionally, in Fig. 9, we illustrate video editing
results under different optimization setups: (i) LV-DDS. (ii) LV-DDS + LS-SSM.
(ii) LV-DDS + LS-SSM + LT-SSM. The absence of spatial self-similarity loss leads
to inconsistency in object structures across frames. For instance, the shape of a
bird’s wing varies, creating visible discrepancies, as shown in Fig. 9-left. While
aligning spatial self-similarity with the original video preserves structural in-
tegrity, it may generate artifacts in optimized areas. However, these artifacts are
efficiently addressed through the addition of temporal self-similarity guidance.
Lastly, Tab. 3 provides a quantitative analysis of each optimization term and
masking condition.

5 Conclusion

In this work, we have addressed the intricate challenge of diffusion-based video
editing, a domain where formulating temporally consistent, real-world motion
remains a notable obstacle. DreamMotion introduced score distillation-based
optimization to text-to-video diffusion models, marking a departure from tradi-
tional, ancestral sampling-based video editing. Our framework adeptly incorpo-
rated new content as specified by target text descriptions using the Video Delta
Denoising Score, while preserving the the structural integrity and motion of the
original video via a novel space-time self-similarity alignment. Through rigorous
validation in both cascaded and non-cascaded video diffusion settings, our ap-
proach has proven superior in maintaining the essence of the original video while
seamlessly integrating desired alterations. Regarding limitations, our framework
is designed to preserve the structural integrity of the original video, and as such,
it is not suited for edits that require significant structural changes (see Fig. 10).
Ethics Statement Our work is based on generative models that carry the risk
of being repurposed for unethical uses, such as misleading content.
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