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Abstract. With the rise of digital media content production, the need
for analyzing movies and TV series episodes to locate the main cast of
characters precisely is gaining importance. Specifically, Video Face Clus-
tering aims to group together detected video face tracks with common
facial identities. This problem is very challenging due to the large range
of pose, expression, appearance, and lighting variations of a given face
across video frames. Generic pre-trained Face Identification (ID) mod-
els fail to adapt well to the video production domain, given its high
dynamic range content and also unique cinematic style. Furthermore,
traditional clustering algorithms depend on hyperparameters requiring
individual tuning across datasets. In this paper, we present a novel video
face clustering approach that learns to adapt a generic face ID model to
new video face tracks in a fully self-supervised fashion. We also propose
a parameter-free clustering algorithm that is capable of automatically
adapting to the finetuned model’s embedding space for any input video.
Due to the lack of comprehensive movie face clustering benchmarks, we
also present a first-of-kind movie dataset: MovieFaceCluster. Our dataset
is handpicked by film industry professionals and contains extremely chal-
lenging face ID scenarios. Experiments show our method’s effectiveness
in handling difficult mainstream movie scenes on our benchmark dataset
and state-of-the-art performance on traditional TV series datasets.

1 Introduction

Video Face Clustering can be defined as the task of grouping together human
faces in a video among common identities. It contributes significantly to sev-
eral other research domains, such as video scene captioning [39], video question
answering [49], and video understanding [52]. Having an understanding of the
spatial location, face size, and identity of the characters that appear in specific
scenes is essential for all the aforementioned tasks. Clustering faces in a video
is a challenging unsupervised problem that has garnered a lot of interest over
the past few decades [38, 40, 55, 63]. Given the rise in the creation of video
production content and the subsequent need for its analysis, face clustering in
the movie/TV series domain has garnered significant interest in the last couple
of years [41, 47]. It serves as an effective editing tool for movie post-production
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personnel, helping them select scenes with a specific group of characters, among
other benefits. We thus primarily focus on the video production content domain
for evaluating our proposed method, given its closeness to real-world scenarios
and use cases.

Varying Parameter

 Trivial Face  Trivial Face

 Trivial Face
 Trivial Face

 Pose  Lighting  (Partial) Occlusion  Expression  Appearance Change

Fig. 1: Select hard case clusters pre-
dicted using our algorithm from within
MovieFaceCluster dataset. Trivial
face represents an easy ID sample
for each cluster. The term “varying
parameter” depicts the dominant
image attributes that are particularly
challenging for a given face crop. It
is not part of the dataset annotations
but is depicted for enhanced reader
understanding.

The video production content domain of-
ten provides an unique set of challenges for
face clustering, in terms of large variations in
facial pose, lighting, expression and appear-
ance (Fig. 1). In specific domains with high-
quality standards, such as movies that pos-
sess a unique cinematic style1, performance
of face identification (ID) models trained
on generic large-scale datasets is often lim-
ited for such domains (Tab. 6). Furthermore,
hand labeling a large cast of characters, of-
ten present in movies/TV series, can be very
time-consuming and error-prone. As a result,
the inherent challenges in video face clus-
tering and difficulties in hand labeling often
limit video-specific model training. In this pa-
per, we propose an algorithm that successfully
tackles these limitations. Specifically, our pro-
posed method adapts a generic face ID model
to a specific set of faces and their observed
variations in a given video in a fully self-
supervised fashion. Also, traditional deep face
clustering algorithms [66] present certain limitations, which can be categorized
into two main types. The first group [14, 19] adopts a bottom-up approach to
clustering and incorporates a pre-defined distance function to compare face em-
beddings, thus requiring a user-defined threshold to specify a positive match.
The second group [10, 32] follows a top-down approach and requires the number
of known clusters or minimum cluster sample count as input for its initialization.
Thus, both these groups have shortcomings in terms of requiring non-intuitive
user-defined parameters. We present a novel agglomerative clustering algorithm
that improves on these limitations. It is fully automated without the need for
any user input and uses a distance metric that is optimized for the given model-
learned embedding space.

Overall, our proposed method VideoClusterNet can be divided into two main
stages. The first stage involves a fully self-supervised learning (SSL) based fine-
tuning of a generic face ID model on a given set of video faces. The finetuning
task is formulated as an iterative optimization task facilitated through alternat-
ing stages of model finetuning and coarse face track matching. The SSL finetun-
ing bootstraps itself by soft grouping together high-confidence matching tracks

1 Particular movie features include high resolution, high dynamic range, and large
facial attribute variations.
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at regular training intervals. The second stage involves a track clustering algo-
rithm that adopts the loss function used for SSL finetuning as a distance metric.
Our clustering algorithm computes a custom matching threshold for each track
and combines tracks with high-confidence matches in an iterative bottom-up
style.

Given the unique in-the-wild challenges in video production domain, the
academic research community lacks a standardized video dataset benchmark
for real-world performance evaluation. Thus, we also present a novel video face
clustering dataset, which incorporates challenging movies hand-selected by ex-
perienced film post-production specialists. We conduct extensive experiments
of our proposed method on this dataset to validate its effectiveness for charac-
ter clustering in mainstream movies. In addition, we provide results on selects
benchmark datasets, showing that our method attains state-of-the-art perfor-
mance.

In summary, we propose the following contributions: 1) A fully self-
supervised video face clustering algorithm, which progressively learns robust
identity embeddings for all faces within a given video face dataset, facilitated
via iterative soft matching of faces across pose, illumination, and expression vari-
ations observed in the dataset. 2) A self-supervised model finetuning approach
that, unlike prior works, relies only on positive match pairs, removing any depen-
dence on manual ground truth cluster labels or use of temporal track constraints
to obtain negative match pairs. 3) A deep learning-based similarity metric for
face clustering, which automatically adapts to a given model’s learned embed-
ding space. 4) A novel video face clustering algorithm that does not depend on
any user-input parameters.

Additionally, we present a new comprehensive movie face clustering dataset
to better evaluate video face clustering algorithms on real-world challenges.

2 Related Work

We review prior work in video-based face clustering and list out some deep
learning metric and self-supervised learning based methods since they form an
important component of our approach.

Auxiliary labels assisted Video Face Clustering: Single frame-based
face clustering has drawn a lot of attention in the past few decades. For a detailed
survey, please refer to [66]. For the video domain, early work focused on using
additional information available from TV series episodes/movies. Specifically,
methods such as [5, 11, 20, 21, 36, 38, 40, 46] utilize aligned captions, transcripts,
dialogues, or a combination of the above with detected faces to perform identity
clustering.

Contextual Information based Video Face Clustering: Following work
using supplementary labels, methods such as [18, 59] leverage contextual infor-
mation, e.g., clothing and surrounding scene contents, while [37] use aligned
audio to help localize faces. Alternatively, [63] incorporate gender information
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Fig. 2: Overview of VideoClusterNet: Stage 1: Given the temporal continuity in the video
domain, faces detected in consecutive frames are first locally grouped into tracks using a motion
tracking algorithm. Stage 2: A large-scale pre-trained face ID model is finetuned on these tracks
using temporal self-supervision (w/ only positive pairing), via learning through natural and
augmented face variations within each track. The finetuning is bootstrapped by soft-matching
tracks across common identities. Performing these two steps alternatively helps the model better
understand the given set of faces. Stage 3: An agglomerative clustering algorithm based on a
model-learned similarity metric groups common identity tracks.

along with temporal constraints through face motion tracking. Unlike previous
approaches, our method requires no explicit contextual information.

Video Face Clustering using temporal feature aggregation, 3D con-
volutions: Another line of work, such as in [22, 31], incorporates mechanisms
to aggregate deep learning-based features of a given face track to provide a sin-
gle track level embedding, which is in turn used to perform non-temporal face
clustering. Recent approaches, such as [25], adopt 3D convolutions inside the
feature extractor to model temporal identity information better. Our method
utilizes temporal information in a more flexible way, thus allowing the use of
any feature encoder architecture.

Temporal Track Constraints based Video Face Clustering: A large
body of methods focuses on generating identity labels through the creation of
positive image pairs. They track a given face across consecutive frames and neg-
ative pairs through co-occurring tracks. Approaches such as [8, 27, 57] apply
such temporal constraints in semi/fully supervised settings, whereas methods
like [1, 12, 13, 26, 42, 47, 48, 53, 54, 55, 56] use temporal constraints in an unsu-
pervised manner, with the majority of them adopting some contrastive pair loss
formulation. We significantly improve on this major trend by skipping negative
pairs selection and, thus, any complex mining strategy for obtaining them.

Deep Metric Learning: Deep face clustering inherently relies on having
embeddings of the same identity closer to each other and of different identities
farther away in the representation space. Approaches such as [9, 29, 34, 45, 58, 60]
focus on optimizing such a space and require defining a face similarity metric
to improve video face clustering performance. Most approaches incorporate a
contrastive-based similarity metric, such as triplet loss, to help obtain an em-
bedding space optimized for a given set of faces in a video. We adopt the metric
defined in Eq. (2) that does not rely on any negative pairing, thereby avoiding
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any sub-optimality induced through incorrect negative pair selection. In this pa-
per, we also utilize this metric for final video track clustering, which provides
enhanced performance since the embeddings are optimized w.r.t. the metric it-
self.

Joint Representation and Clustering: [41] proposes two methods, TSiam
and SSiam, to generate positive and negative pairs for model finetuning on a set
of given video faces. TSiam adopts track-level constraints, i.e., sampling faces
within the same and co-occurring tracks for positive and negative pairing, re-
spectively. SSiam mines hard contrastive pairs using a pseudo-relevance feedback
(pseudo-RF) inspired mechanism [57]. Both methods employ complex modules
that depend on finetuned parameters to mine negative pairs. In contrast, our
proposed method does not depend on negative pairs at all, making it much
simpler and more generalized.

[61] incorporates a Markov Random Field (MRF) model to assign coarse
track cluster labels, used as weak supervision for iteratively training a feature
encoder. Negative pairs are mined through specific temporal constraints to boot
start optimization of MRF. Unlike related prior works, we present a model adap-
tation stage that is highly effective due to the self-distillation procedure and its
sole dependence on positive match pairs. Our final clustering algorithm directly
benefits from the model finetuning stage by incorporating the self-supervised
training objective as a distance metric. Such a learned metric helps boost clus-
tering performance as it evaluates inter-track distances in an embedding space,
which is explicitly optimized for reduction in observed same identity distances.

3 Method

3.1 Overview

A high-level overview of our proposed method is shown in Fig. 2. The following
subsections describe in detail the prominent components of our approach.

3.2 Face Track Pre-Processing

In a standard frame rate video, frame content within the same scene gradually
varies w.r.t. its temporal neighboring frames. To exploit this temporal stability
for face clustering, we first locally cluster detected faces in a video by motion
tracking, akin to all major prior works [9, 41, 55]. This pre-processing stage
consists of four components.

First, scene cuts are detected in the given video, which divides it into con-
tiguous separate sections, here coined as shots. Each scene cut represents a ma-
jor change in scene composition, either involving a camera angle or scene setting
change. We employ a threshold-based scene cut detection algorithm implemented
in PySceneDetect library [3]. Second, we utilize a face detection algorithm to find
all visible faces in each frame of the processed shots. We adopt RetinaFace [16]
as our face detector due to its current state-of-the-art benchmark performance.
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Third, the detected face crops are evaluated for their face ID quality by
thresholding facial attributes based on blurriness and crop size. Crops failing
the quality test are directly labeled as Unknown. Fourth, detected faces within
a given shot are locally linked into a face track using a motion tracking al-
gorithm. We adopt the state-of-the-art method, BoT-SORT [2], to generate
tracks. For each face track t, a face crop I is sampled every 12-th frame, i.e.,
t = [It1 , It2 , ...., Itn ], where tn = 12 ∗ n + f1 and f1 denotes the original frame
index for the first frame in the track’s sampled set t. This particular frame inter-
val assumes a video frame rate of 24 fps and ensures, in most cases, that there
is a significant change in either facial pose and/or expressions through the track
duration.

3.3 Task Objective Formulation

Following [22, 54], we consider a set of all detected tracks within a given video,
which can be denoted by T = {tj |j = 1, 2, ...., N} for a set of N tracks. The face
clustering objective can be defined as assigning an unique cluster id d for each
track tj , where all tracks with the same id belong to an unique facial identity
in the set T . Note that the ground truth number of clusters is undefined. More
formally,

tdj = {−1, 1, 2, ...}, ∀j = {1, 2, ..., N}, (1)

where d = −1 indicates the Unknown face cluster. This cluster represents
tracks with the majority of their faces flagged as failures in any of the previously
mentioned face attributes tests or if the face ID model was uncertain about it.
The latter case is detailed in Sec. 3.6.

3.4 Self Supervised Model Finetuning

To adapt a large-scale pre-trained face ID model to a specific set of faces, we
incorporate the notion of finetuning the model for that face track set. Tradi-
tional supervised finetuning would require human supervision, i.e. ground truth
labels, which can be tedious depending on the number of tracks involved. To al-
leviate this problem, several approaches in the domain of self-supervised feature
learning (SSL) have recently been proposed [7, 24, 35, 51]. Especially inter-
esting are methods that only use positive pairs for contrastive-based learning
[23, 65]. Inspired by [64], we adopt a self-distillation-based SSL method that
uses a teacher-student mechanism and positive pairs.

First, we modify the technique to perform finetuning rather than training
from scratch. As shown in Fig. 3, given the pre-trained face-ID model, which
has no specific architecture limitations, we attach a randomly initialized multi-
layer perceptron (MLP) as a model head. For a Transformer model architecture
[17], separate heads are attached for the class and patch token embeddings, re-
spectively. The base model with the attached head(s) is duplicated to create a
teacher branch, with the original one designated as the student branch.
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Second, image pairs are curated from each track’s sampled crop set. Images in
a given pair are first passed through a set of augmentations, then an embedding
pair is obtained as the output of the two constructed branches. We adopt a
similarity loss to compare these embeddings, presented as follows:

Lssl = −1 ∗ softmax

(
embedt − c

temp

)
∗ log(softmax(embeds)), (2)

where embedt and embeds are the embeddings from teacher and student
branches, respectively. Here, c denotes a rolling average teacher embedding com-
puted across training batches, and temp is a fixed softening temperature. Re-
spective loss gradients are back-propagated through the student branch weights
only, while the teacher branch weights are updated via a moving average of the
student weights at regular training intervals. Since the model is finetuned on all
face tracks that need to be clustered in a self-supervised fashion, the training
and validation sets are identical2.

   Teacher Branch

    Gradient 

   backprop
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   Teacher branch weights
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Fig. 3: Self-Supervised Model Finetuning: Face crop
pair sampled from within same/matched track(s) is passed
through a student and teacher branch, respectively. Gradi-
ents w.r.t. similarity loss are backpropagated only through
the student branch, while the teacher weights are updated
as moving average of student weights. Random augmen-
tation set includes horizontal flipping, rotation, and color
temperature variations.

As the branch heads are
randomly initialized, each of
the branch’s base model is
frozen for an initial training
phase. First, the heads are up-
dated separately, akin to the
description above. Then, both
the base model and the heads
are updated. Such a struc-
tured training regime encour-
ages the model branch heads
to produce robust and consis-
tent embeddings for a given
facial identity across the ob-
served range of poses, expres-
sions, lighting and appearance
changes, thus improving over-
all clustering performance for that specific video. Model finetuning hyperparam-
eters such as training epochs, batch size, and learning rate2 are kept constant
and are agnostic to a given dataset’s attributes.

Specific image augmentations2 are applied during the finetuning process. This
ensures that the model observes enhanced facial variations during its finetun-
ing and helps reduce its primary dependence on natural variations present in the
video. Tab. 2 provides empirical evidence in support of this fact wherein the track
count ranges between 119 and 917 across our dataset movies. Our method man-
ages to achieve significant performance improvements over benchmark methods
across all movies despite these notable track count variations, evident in Tab. 3.

2 Refer supplementary material for further details
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3.5 Coarse Track Matching

Since a given face track is limited to being within a shot, there is no significant
variation in lighting and/or face appearance across the track, which theoretically
puts an upper bound on the model learning capacity.

 Visualized model embedding space

   Step 1: Compute pdf 

    for each track crop 

         w.r.t. its fitted 

           Gaussian 

    Step 2: Select outlier 

   crops w.r.t. pdf values 

    Step 3: Match other 

   tracks by computing 

       mean pdf w.r.t. 

          given track  

      Custom track matching 

       threshold visualized 

               as a ring

      non-matched 

neighbouring track

             matched 

    neighbouring track

   Multivariate gaussian fitted 

for each track crop distribution 

Fig. 4: Coarse Face Track Matching: A Multivari-
ate Gaussian is fitted to every track crop distribution.
Then, a custom track matching threshold is computed
using outlier crops pdf values. Neighboring tracks hav-
ing a mean pdf value higher than a custom threshold are
soft-matched with the given track.

However, for real-world sce-
narios such as those likely to be
observed in movies and TV se-
ries, such parameters can vary
greatly throughout the video. To
account for such variations and
facilitate further model learn-
ing, we perform fully auto-
mated coarse matching of tracks
across the entire dataset. Im-
age pairs generated from such
coarse-matched tracks enable the
model to better adapt to specific
lighting and appearance varia-
tions encountered in a given face
across the entire dataset. This
notion is supported by our exper-
imental findings in Sec. 4.

For coarse track matching, we leverage multiple sampled crops of the same
identity in a given face track. To model this track crop distribution, we found
empirically that fitting a multivariate normal distribution on all track crop em-
beddings works the best. Mathematically, we adopt

Ntj (µtj , Σtj ) = (2π)−d/2 ∗ det(Σtj )
−1/2 ∗ exp

(
−1
2 (x− µtj )

⊤Σ−1tj (x− µtj )
)
, (3)

where µtj ∈ Rd and Σtj ∈ Rd×d are the mean and covariance matrix for the
jth face track, computed using all its sampled face crop embeddings. Here, d
denotes the number of dimensions of the fitted distribution, which equals the
dimension of track crop embeddings.

To automatically set a custom threshold value for matching a given face track
to other neighboring tracks in the model learned embedding space, we resort to
the probability density function (pdf) values of a given track’s crop embeddings.
Specifically, the pdf values of all crop embeddings are computed w.r.t. their
parent track’s fitted distribution using Eq. (3). We then consider the lowest
25% of these values and compute their mean. Experimental values ranging from
5% to 40% were considered, with value of 25% empirically providing optimal
true positive matches and avoiding any false positive matches. This provides a
customized matching threshold, which is illustrated as a ring around the track’s
distribution in Fig. 4. To get coarse matches for a given track, we compute a mean
embedding for every other dataset track and its corresponding pdf value w.r.t.
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the given track’s fitted distribution. If a neighboring track’s pdf value is equal to
or higher than that given track’s custom match threshold, then the track pair’s
distributions have significant overlap, hinting at a strong face identity match.

Algorithm 1: Face Track
Clustering

Input:
Filtered Face Tracks
T = {tj |j = 1, 2, ..., N}
∋ tj = {It1 , It2 , ...Itn |tn =
12 ∗ n + f1},

finetuned model θft, Similarity
metric S

Stage 3.1 (Compute track crop
embedding set):

for tj in T do
for Itn in tj do

Etn ←− θft(Itn )
end
tjE = {Et1

, Et2
, ..., Etn}

end
TE = {t1E , t2E , ...tNE}
Stage 3.2 (Compute custom
track threshold):

for tjE in TE do
SimtjE

= {S(Etl
, Etm )

∀(l,m) ∈ nC2}
Threstj ←− mean(SimtjE

)

end
Tthres = {Threst1 , ..., ThrestN }
Stage 3.3 (Perform track
clustering):

Initialize i = 0, C = {Cj =
{tjE}∀j = 1, 2, ..., N}

repeat
for Cj in C do

for Ck in C if k ̸= j do
Simjk ←−
mean({S(tjEa , tkEb

)

∀(a, b) ∈ nC2})
if Simjk <
Threstj /Threstk
then

Cj ←−
merge(Cj , Ck)

end
end

end
C = link_merges(C)
NCi

= cluster_count(C)
Repeat Stage 2 for new
merged cluster set C

i = i + 1
until NCi

−NCi−1
= 0;

Output: Clustered track IDs C

Further, given coarse matches for ev-
ery dataset face track, we curate face crop
pairs across these track matches for the
next iteration of model finetuning. In par-
ticular, for each face crop in a given track,
we randomly sample a track from a set
of its coarsely matched tracks. The im-
age pair is created by randomly sampling
a crop from within the sampled track. We
empirically found that this image pairing
mechanism works better than other more
complex strategies, such as thresholding
inter track euclidean/cosine distances. If a
track has no coarse matches, then we cre-
ate pairs from within the same track.

3.6 Track Face Quality Estimation

In complex face identification scenarios,
excluding bad quality crops/tracks be-
comes essential for coarse track matching
and final clustering. Bad face quality of
a given track often relates to model un-
certainty, which can result in sub-optimal
performance for coarse matching and fi-
nal clustering phases. To automatically es-
timate the face quality of track crops,
we adopt SER-FIQ [50], which utilizes a
dropout layer to determine consistency in
embeddings across multiple model itera-
tions. For bad quality crops, the learned
model that is uncertain about them would
predict embeddings with high variance,
thus resulting in a low-quality score.

To compute the face quality score for
a given track (tqs), we adapt SER-FIQ to
work on a track level by obtaining scores
for each track crop and averaging them.
To detect bad quality tracks, we adopt the
median absolute deviation (MAD) [30] to detect outlier tracks based on dataset
track score distribution and compute a threshold value2. Low quality score tracks
are filtered out from coarse track matching and final clustering modules and their
final track cluster IDs are assigned as Unknown.
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Fig. 5: Comparative t-SNE embedding visualizations [33] on MovieFaceCluster:The Hidden Sol-
dier dataset. Left: Ground Truth (GT), Right: Our method. Each dot in the diagram above repre-
sents the finetuned model’s extracted embedding for a given face crop Itn in a given track’s sampled
crop set t. Face embeddings assigned to a given color constitute a single cluster. Our method predicts
almost perfectly the cluster designations (22 clusters) w.r.t. ground truth (21 clusters). Also note
that our method correctly assigns cluster IDs to certain outlier tracks in GT. Such tracks pose a
significant face clustering challenge owing to their distance from respective GT cluster centers.

3.7 Track Clustering Algorithm

To cluster tracks across common identities, we utilize the SSL loss function in
Eq. (2) as an embedding similarity metric. Prior works incorporate Euclidean or
other pre-defined distance metrics to compare model embeddings [41, 47]. Our
proposed metric has a significant benefit. A finetuned model’s embedding space
is directly optimized w.r.t. this metric, thus making it optimal for evaluating
embedding similarity. As such, there are no implicit assumptions made about
the space through generic distance functions. Unlike other methods that define
a global matching threshold [14], our approach provides enhanced performance
through the adaptive custom threshold computed for each track. Such a thresh-
olding mechanism helps the algorithm automatically adjust to how effectively
the model can match a given track’s identity across a true positive match pair.

Our proposed clustering methodology is detailed in Algorithm 1. We begin by
creating all possible pair combinations among sampled face crops within a given
track. Here, we exclude tracks filtered out by the track face quality estimation
module described in Sec. 3.6. A pair’s similarity value is computed via the loss
metric by passing the respective face crops through each of the model branches.
As the loss metric is not commutative, a mean value is computed by alternatively
sending both images through each of the branches. A custom track matching
threshold is set as the average of all curated pair similarity values in the given
track. This threshold represents quantitatively how well the model matches face
crops belonging to a given common facial identity since the crops are part of the
same track. We repeat this step for all tracks in the dataset.

The next stage comprises merging tracks in a bottom-up approach, akin to
Hierarchical Agglomerative Clustering (HAC) [14]. Initially, each track is as-
signed an individual cluster, and tracks are iteratively merged if they satisfy a
matching criterion. It involves creating all pairwise combinations of face crops
across both tracks for a given candidate track pair. Given the similarity (loss)
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value for every crop pair combination, taking a mean across them provides a
matching potential value for that candidate track pair. If this match potential is
lower than either of the track’s custom match thresholds, then the track pair is
considered a positive match. This process is repeated for all possible track com-
binations in the dataset. All positively matched pairs are searched for common
tracks so that they can be combined together into a bigger cluster. For example,
if track pairs (1,2) and (2,3) are matched, then tracks 1, 2, and 3 are combined
together. This entire matching process is run in an iterative fashion. For later it-
erations, where clusters could have more than one track, mean track embeddings
are considered instead of a combined set of face crops for cluster pair matching,
to avoid exponentially growing match computations. The algorithm terminates
when no new clusters are merged in the new iteration.

4 Results

In this section, we present our experimental analysis on popular benchmark
datasets and our curated movie dataset.

4.1 Benchmark Datasets

Following prior work [4, 41, 47], we evaluate our proposed method on TV series
episodes of Big Bang Theory (BBT) and Buffy The Vampire Slayer (BVS),
specifically the first six episodes of BBT season 1 and BVS season 5, respectively.
BBT is a TV series with a primarily indoor setting, a cast of 5∼8 different
characters, and 625 average face tracks per episode. Here, all shots include wide-
angle scenes, and faces are relatively small. The most common face ID challenges
are pose and lighting variations. BVS poses different challenges. The main cast
comprises 12∼18 characters, and there are 919 average face tracks per episode.
Shots are mainly captured outdoors, and scenes are dark. It also has more close-
up shots and, thus, larger face sizes. Detailed statistics on these datasets can be
found in Tab. 1 in [4]. Tab. 1 compares our method with state-of-the-art methods
on BBT and BVS, respectively.

Method BBT S01 Episode
S1E1 S1E2 S1E3 S1E4 S1E5 S1E6 Combined

SCTL [54] 66.48 - - - - - -
TSiam [41] 96.4 - - - - - -
SSiam [41] 96.2 - - - - - -
MLR [4] 95.18 94.16 77.81 79.35 79.93 75.85 83.71
BCL [47] 98.63 98.54 90.61 86.95 89.12 81.07 89.63
CCL [42] 98.2 - - - - - -

VCTRSF [53] 99.39 99.84 97.58 96.41 98.47 93.33 94.20
Ours⋆† 99.70 99.67 98.60 98.80 99.10 97.10 98.70

Method BVS S05 Episode
S5E1 S5E2 S5E3 S5E4 S5E5 S5E6 Combined

HMRF [55] - 50.3 - - - - -
WBSLRR [56] - 62.7 - - - - -

TSiam [41] - 92.46 - - - - -
SSiam [41] - 90.87 - - - - -

CP-SSC [44] - 65.2 - - - - -
MvCorr [43] - 97.7 - - - - -

MLR [4] 71.99 61.27 66.60 67.07 69.59 61.72 66.37
BCL [47] 92.08 79.76 84.00 84.97 89.05 80.58 83.62
CCL [42] - 92.1 - - - - -
Ours⋆† 96.30 99.10 98.70 97.43 99.00 96.78 96.10

Table 1: WCP/Clustering Accuracy on BBT-S01 and BVS-S05. ⋆We use ArcFace-R100 [15] as our
pre-trained base model. Combined results indicate clustering performance on set of face tracks from
all six episodes combined together. † For fair literature comparison, we use the same face detection,
tracking, and clustering labels as provided in [41, 47], thereby not utilizing our proposed advanced
pre-processing modules in order to effectively compare pure track clustering performance against
literature methods.
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Attribute
Dataset TV series Episode/Movie Unique

characters
Track Count Unique ethnicity (other

than White/Caucasian) (cast
percentage)

Avg. Track
Face Quality

Score †
S01E01 6 647 A (Minor) 0.7193
S01E02 5 613 A (Minor) 0.7108

The Big Bang S01E03 7 562 A (Minor) 0.7094
Theory (BBT) S01E04 8 568 A (Minor) 0.7140

S01E05 6 463 A (Minor) 0.7177
S01E06 6 651 A (Minor) 0.7111

Average: 6.33 Total: 3504 Unique Count: 1 Average: 0.714
S05E01 12 786 None 0.7090
S05E02 13 866 None 0.7117

Buffy The S05E03 14 1185 None 0.7150
Vampire Slayer S05E04 15 852 None 0.7125

(BVS) S05E05 15 733 None 0.7081
S05E06 18 1055 None 0.7142

Average: 14.5 Total: 5477 Unique Count: 0 Average: 0.712
An Elephant’s Journey 18 562 None 0.7112

Armed Response 14 119 AA (Major), ME (Major) 0.7085
Angel Of The Skies 29 319 None 0.7150

Death Do Us Part (2019) 7 395 AA (Major) 0.7177
MovieFaceCluster American Fright Fest 37 457 AA (Minor) 0.7098

The Fortress 64 917 A (Major) 0.6918
Under The Shadow 9 143 ME (Major) 0.7134
The Hidden Soldier 21 594 A (Major) 0.7056
S.M.A.R.T. Chase 10 113 A (Major) 0.7110

Average: 23.2 Total: 3619 †† Unique Count: 3 Average: 0.706

Table 2: Specific dataset attribute comparisons across BBT, BVS and our MovieFaceCluster dataset.
A: Asian, AA: African American, ME: Middle Eastern characters. † Score is computed as the average
of all track quality scores as part of a given TV series episode/movie. A given track quality score
is computed as the average of face quality scores for each of its sampled crops, using SER-FIQ [50]
and ArcFace-R100 [15] as the pre-trained model for extracting embeddings. Our lower average face
quality score indicates that MovieFaceCluster contains on average more challenging cases for face
clustering compared to literature datasets. †† Only tracks containing decent quality face crops were
added as part of each movie dataset, resulting in a slightly lower track count. Please refer to the
supplementary material for further dataset analysis and comparisons.

4.2 Metrics

We define two primary metrics at face track level for evaluating video face clus-
tering performance, namely Weighted Cluster Purity/Accuracy (WCP) and Pre-
dicted Cluster Ratio (PCR). WCP is defined as the fraction of common identity
tracks in a predicted cluster, weighted by the cluster track count. PCR is the
ratio between the predicted cluster and ground truth cluster count. Note that a
ratio closer to 1 is deemed better.

4.3 Movie Dataset

Mainstream movies present challenges for face clustering due to extreme pose, il-
lumination, and appearance variations. Considering the lack of significant bench-
mark datasets in the academic research community, we present a new movie
benchmark dataset named MovieFaceCluster 3, containing a collection of
movies, hand-selected by film post-production specialists, with unique face clus-
tering challenges 2. Given the set of movies, we run the preprocessing mentioned
in Sec. 3.2 to obtain a specific track dataset for each movie. We hand-label
each track with an ID using the main character cast from that track’s parent
3 The MovieFaceCluster dataset can be downloaded from here

https://www.flawlessai.com/dataset/
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movie. Also, false detections and extreme unidentifiable tracks are pre-filtered
out using the track face quality estimation module mentioned in Sec. 3.6. Tab. 2
provides detailed statistics and comparisons of this curated dataset versus liter-
ature datasets. Overall, our presented dataset provides more unique characters,
comparable track count, higher ethnic diversity and more challenging face tracks
compared to publicly available datasets.
Tab. 3 also compares our method to other state-of-the-art (SoTA) approaches
on this benchmark to provide empirical evidence of our algorithm’s effectiveness.
We implemented all five literature methods due to the lack of their public code
implementations 2. Fig. 5 shows a t-SNE visualization of our learned embeddings
and clustering performance on one dataset movie, and Fig. 1 illustrates some
hard case clustered tracks using our proposed method on MovieFaceCluster.

Movie
An Armed Angel Death American The Under The S.M.A.R.T.

Method Elephant’s Response Of The Do Us Fright Fortress The Hidden Chase
Journey
(2019)

Skies Part (2019) Fest Shadow Soldier

Weighted Cluster Accuracy (%) & Pred Cluster Ratio (Pred / GT)
TSiam [41] 90.7 & 1.44 84.9 & 1.36 77.1 & 0.62 92.9 & 1.57 89.3 & 0.83 68.6 & 0.69 71.8 & 2.11 90.7 & 1.33 79.6 & 1.70
SSiam [41] 88.1 & 1.61 86.6 & 1.21 75.5 & 0.59 94.4 & 1.28 86.2 & 0.78 71.1 & 0.73 68.3 & 2.33 88.7 & 1.24 82.3 & 1.80
JFRAC [61] 91.4 & 1.33 85.2 & 1.50 73.4 & 0.62 90.8 & 0.71 91.5 & 0.86 65.3 & 0.77 73.1 & 2.00 92.6 & 1.19 85.8 & 1.70
CCL [42] 89.5 & N.A.† 89.7 & N.A.† 75.0 & N.A.† 95.4 & N.A.† 87.2 & N.A.† 62.7 & N.A.† 77.4 & N.A.† 84.0 & N.A.† 89.9 & N.A.†

VCTRSF [53] 96.3 & N.A.† 92.2 & N.A.† 77.7 & N.A.† 96.5 & N.A.† 91.3 & N.A.† 78.8 & N.A.† 78.7 & N.A.† 94.4 & N.A.† 88.4 & N.A.†
Ours 97.2 & 1.11 94.1 & 0.93 85.9 & 0.72 98.0 & 1.14 97.6 & 0.92 89.3 & 1.02 82.5 & 1.88 98.5 & 1.04 93.8 & 1.50

Table 3: Quantitative comparisons on each MovieFaceCluster dataset movie. For a fair compari-
son, we incorporate ArcFace-R100 [15] as the pre-trained feature extractor for all reported methods,
including ours. We outperform SoTA methods w.r.t. cluster accuracy and predicted cluster ratio.
Details on our implementation of all comparative methods can be found in the supplementary ma-
terial. †Number of ground truth clusters is required as input for these methods, so PCR isn’t a valid
performance metric while also being a major limitation for these methods.

5 Ablative Analysis

We ablate the central components of our method and analyze limitations and
future directions.

Model Finetuning We ablate on the effectiveness of generic face ID model fine-
tuning to a given set of face tracks as part of our proposed method. Tab. 4
provides a comparison of clustering performance w/ and w/o using the model
finetuning module. Note that our proposed clustering algorithm depends on the
similarity metric learned during the finetuning stage. As such, to compare both
methods in a fair way, we adopt a baseline clustering algorithm, i.e., HAC with
average linkage and cosine distance metric. Performing model finetuning results
in roughly 6% increase in cluster accuracy, which underlines its usefulness.

Final Clustering Algorithm We further ablate on the performance of our final
clustering approach vs. baseline algorithm, i.e., HAC in Tab. 5. Here, we keep
the model finetuning stage constant in all methods to compare fairly. As for
HAC, we take the mean of a given track’s sampled crop embeddings to obtain
a representative track embedding. We further ablate on the loss function as
a similarity metric. Specifically, we compare our final clustering algorithm with
one that uses Euclidean and Cosine distances as similarity metrics. Our approach
involving the loss metric outperforms all other methods.
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Generic face ID Model Architectures In Tab. 6, we ablate on our approach’s gen-
eralization capabilities to incorporate any generic face ID model, fairly agnostic
to its architecture class. Specifically, we compare some prominent face ID models
from both CNN and Transformer architecture classes incorporated as part of our
method, against using them (w/o finetuning) along with the baseline clustering
method (HAC). Regardless of the incorporated face ID model, our finetuning
method provides roughly a 5 ∼ 12% performance boost, which underlines our
method’s capability to adapt to and improve any generic face ID model.

Limitations and Future Work The use of a generic face ID model means that
any pre-existing model biases may also be propagated through our method. For
example, if the generic model has learned an incorrect similarity between two
distinct facial identities, then our algorithm might adapt to it and provide a false
positive cluster for that given pair. A future direction could be to automatically
detect such biases, such that a given pair’s embeddings are specifically pulled
apart. This could be done by incorporating an outlier detection technique based
on pair similarity values for a cluster’s tracks. Also, given that we finetune on a
set of face tracks, it might not be optimal for real-time applications depending
on the track set size.
Method Cluster

Accuracy
(%)

Baseline-(Non-Finetuned) 86.10
Ours-(Finetuned) 91.52

Table 4: Ablation for
model finetuning mod-
ule, using ArcFace-R100
as the base model. Ex-
periments are performed
on MovieFaceCluster:
The Hidden Soldier
dataset and HAC as
the final clustering algo-
rithm.

Clustering Similarity Cluster Cluster
Algorithm Metric Accuracy

(%)
Ratio

(Pred/GT)
Baseline
(HAC)

Cosine 91.52 1.43 (30/21)

Ours Cosine 93.70 2.0 (42/21)
Ours Euclidean 96.50 3.5 (74/21)
Ours Loss Func. 98.50 1.04 (22/21)

Table 5: Ablation for final clus-
tering algorithm, compared with
baseline HAC, and using pre-
defined metrics within our al-
gorithm. Experiments are per-
formed on MovieFaceCluster:
The Hidden Soldier dataset and
using ArcFace-R100 as the base
model.

Face ID Model Cluster Acc. (%)
Baseline Ours

FaRL-P16 [62] 78.7 90.2
VGGFace2-R50 [6] 84.2 95.7
ArcFace-R100 [15] 86.1 98.5
AdaFace-R100 [28] 86.9 98.4

Table 6: Ablation for var-
ious base face ID models
incorporated in our method.
We perform comparisons
using our proposed method
and pre-trained model +
baseline clustering (HAC).
Experiments are performed
on MovieFaceCluster: The
Hidden Soldier dataset.

6 Conclusion

We present a novel video face clustering algorithm that specifically adapts to a
given set of face tracks through a fully self-supervised mechanism. This helps the
model better understand and adapt to all observed variations for a given facial
identity across the entire video without any human-in-the-loop label guidance.
Our fully automated approach to video face clustering specifically helps avoid
any sub-optimal solutions that may be induced from non-intuitive user-defined
parameters. In addition, using a model-learned similarity metric over generic
distance functions helps provide SoTA video face clustering performance over
other competing methods. Extensive experiments and ablation studies on our
presented comprehensive movie dataset and traditional benchmarks underline
our method’s effectiveness under extremely challenging real-world scenarios.
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