
Supplementary Material for: Unveiling Privacy
Risks in Stochastic Neural Networks Training:
Effective Image Reconstruction from Gradients

Yiming Chen1,2 � , Xiangyu Yang1,2 , and Nikos Deligiannis1,2

1 Department of Electronics and Informatics, Vrije Universiteit Brussel (VUB),
B-1050 Brussels, Belgium

2 Interuniversitair Micro-Elektronica Centrum, B-3001 Leuven, Belgium
{cyiming, xyanga, ndeligia}@etrovub.de

A Proof of the Label Extraction Strategy

In this section, we present a comprehensive proof of the proposition outlined in
Section 4.4. The proposition is as follows:

Proposition 1. Consider the model is generally trained with cross-entropy loss
using one-hot labels, and the vector ∇W i

pred represents the gradient of weights
W i

pred that is connected to the ith logit in the prediction (last) layer. The ground-
truth label y can be analytically identified as checking the sign of ∇W i

pred in single
image training, as follows:

y = i, s.t. ∇W i
pred

T · ∇W j
pred ≤ 0, ∀j ̸= i. (1)

The authors of [10] established Prop. 1 for traditional (deterministic) neural
networks, which is based on the proposition [10] below:

Proposition 2. For any model with parameters θ that is generally trained with
cross-entropy loss using one-hot labels, let L(F(θ;x), y) represent the model’s
computed loss, and oi the logit output for the ith class, given training images x
and labels y. Then, the gradient of the loss with respect to each output is:

gi =
∂L(F(θ;x), y)

∂oi
=

−1 + eoi∑
j eoj

, if i = y

eoi∑
j eoj

. otherwise
(2)

As eoi∑
j eoj

∈ (0, 1), we have gi ∈ (−1, 0) when i = y and gi ∈ (0, 1) when i ̸= y.
Therefore, the ground-truth label y can be identified as the index of the output oi
that has a negative gradient.

We demonstrate that Proposition 1 is still applicable to Bayesian Layer-based
SNNs, particularly when the last layer is a Bayesian Layer. The proof proceeds
as follows:
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Proof. Let W i
µ and W i

σ represent the mean and standard deviation, respectively,
standing for the posterior distribution of the final layer’s weights associated with
the ith logit. Following Eq. (7) in Sec. 3 of our paper, the weights linked to the
ith logit, Wi, are sampled from N (W i

µ,W
i
σ
2
I) via reparameterization trick [1],

as follows:
Wi = W i

µ +W i
σ ⊙ εi, (3)

where εi ∼ N (0, I). For an input vector a, the output logit oi of Bayesian layer
is given by:

oi = WT
i · a = (W i

µ +W i
σ ⊙ εi)

T · a. (4)

Note that the bias is omitted for brevity, as it does not affect the proof. Based
on Eq.2 from Prop. 2, the gradients of W i

µ can be derived as follows:

∇W i
µ =

∂L(F(θ;x), y)

∂W i
µ

=
∂L(F(θ;x), y)

∂oi
· ∂oi
∂W i

µ

= gi ·
∂[(W i

µ +W i
σ ⊙ εi)

T · a]
∂W i

µ

= gi · a. (5)

Since a remains constant for all i. Therefore, the ground-truth label y can be
analytically determined by checking the sign of ∇W i

µ, which is different from
that of the others. Overall, this suggests that Prop. 1 remains valid for networks
with a Bayesian final layer. Specifically, when extracting the true label from
the gradients of the last (Bayesian) layer, the gradient vector ∇W i

pred in Prop. 1
refers to the gradient of the "weights" (i.e., the mean of the posterior distribution,
W i

µ), which is linked to the ith logit in the last layer.
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B Derivation of Intermediate Noise Regularization

This section provides a full derivation of Eq. (15) from Sec. 4.2, originally estab-
lished by [5], to aid readers unfamiliar with the Kullback-Leibler Divergence loss.
Here, µ and σ are the mean and standard deviation of ε, respectively, calculated
by mean(·) and std(·) functions (see Sec. 4.2):

Rkl(ε) = αkl · DKL(N (µ, σ2)||N (0, 1))

= αkl ·
∫
z

1√
2πσ2

exp (− (z − µ)2

2σ2
) log

1√
2πσ2

exp (− (z−µ)2

2σ2 )

1
1√
2π

exp (− z2

2 )

dz

= αkl

∫
z

[
−(z − µ)2

2σ2
+

z2

2
− log σ]N (µ, σ2)dz

= αkl[−
∫
z

(z − µ)2

2σ2
N (µ, σ2)dz +

∫
z

z2

2
N (µ, σ2)dz −

∫
z

log σN (µ, σ2)dz]

= αkl(−
E[(z − µ)2]

2σ2
+

E[z2]
2

− log σ)

= αkl
1

2
(− log σ2 + σ2 + µ2 − 1). (6)

C Additional Reconstructed Images

Additional reconstructed images from CIFAR-10 using gradients of VB-ResNet18
and from CelebA using gradients of BL-ConvNet are depicted in Fig. 1 and 2,
respectively.
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Fig. 1: Visualization of different attack results of VB-ResNet18 on the CIFAR-10 clas-
sification FL tasks. The quality of image reconstruction is quantitatively assessed and
reported in Tab. 1 of Sec. 5.2 in our main paper.
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Fig. 2: Visualization of different attack results of Bayesian ConvNet on the gender
classification FL tasks. The quality of image reconstruction is quantitatively assessed
and reported in Tab. 1 of Sec. 5.2 in our main paper.
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D Duration Analysis of Various Attack Algorithms for
Image Reconstruction

Configuration. In this section, we explore the time required for our proposed
attack approach to complete the reconstruction process from gradients. To en-
sure a fair comparison, the optimization iterations for IG [3], GI [8], and our
proposed attack are uniformly set at 13,000, utilizing the Adam optimizer [4].
For DLG [11] and iDLG [10], the iterations are limited to 1,200, employing the
L-BFGS optimizer [7]. GGL [6] and GIFD [2] adopted the pre-trained BigGAN
for a deep image prior. Given GGL’s rapid convergence as reported in [6], we ad-
hered to the original experimental setup, allocating a total of 2,500 optimization
iterations. For GIFD, the approach involves searching the intermediate features
of BigGAN’s first 13 layers, assigning 1,000 iterations per layer, resulting in a
cumulative total of 13,000 iterations.
Results. Tables 1 and 2 present the duration of reconstruction (in seconds) for
various attack approaches applied to the VB-ResNet18 and BL-ConvNet models,
respectively. The observations reveal that incorporating an approximation of
stochasticity does not substantially extend the duration of the reconstruction
process. For instance, the time increase is only 17 seconds compared to IG (which
took 472.05 seconds) on VB-ResNet18. On the contrary, DLG and iDLG require
a significant amount of time to complete the attack task due to the use of the
L-BFGS optimizer.
Trade-off between the attack duration and the quality of reconstruc-
tion. We report the relationship between the averaged duration of a reconstruc-
tion attack and the averaged LPIPS [9] scores of the training data reconstructed
from the gradients in Fig. 3. The closer the points in the legend are to the origin,
the better the overall performance of the algorithm. The figures illustrate that
our proposed approach is effective in terms of both speed and the quality of the
reconstructed images.

Table 1: The duration of different gradient inversion attack algorithms to complete a
CIFAR-10 image reconstruction from the gradients of VB-ResNet18.

DLG [11] iDLG [10] IG [3] GI [8] GGL [6] GIFD [2] Ours

Time/s 1642.21 1671.51 472.05 434.76 260.87 1011.52 489.04
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Table 2: The duration of different gradient inversion attack algorithms to complete a
CelebA image reconstruction from the gradients of BL-ConvNet.

DLG [11] iDLG [10] IG [3] GI [8] GGL [6] GIFD [2] Ours

Time/s 767.98 807.49 332.90 299.75 215.96 767.80 293.19

(a)

(b)

Fig. 3: Illustration of the relationship between the duration of a single reconstruction
attack and the LPIPS scores of the training data reconstructed from the gradients of
(a) VB-ResNet18 and (b) BL-ConvNet, respectively
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