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Abstract. Federated Learning (FL) provides a framework for collabo-
rative training of deep learning models while preserving data privacy by
avoiding sharing the training data. However, recent studies have shown
that a malicious server can reconstruct training data from the shared
gradients of traditional neural networks (NNs) in FL, via Gradient Inver-
sion Attacks (GIAs) that emulate the client’s training process. Contrary
to earlier beliefs that Stochastic Neural Networks (SNNs) are immune
to such attacks due to their stochastic nature (which makes the train-
ing process challenging to mimic), our findings reveal that SNNs are
equally susceptible to GIAs as SNN gradients contain the information
of stochastic components, allowing attackers to reconstruct and disclose
those uncertain components. In this work, we play the role of an attacker
and propose a novel attack method, named Inverting Stochasticity from
Gradients (ISG), that can successfully reconstruct the training data by
formulating the stochastic training process of SNNs as a variant of the
traditional NN training process. Furthermore, to improve the fidelity of
the reconstructed data, we introduce a feature constraint strategy. Ex-
tensive experiments validate the effectiveness of our GIA and suggest
that perturbation-based defenses in forward propagation, such as using
SNNs, fail to secure models against GIAs inherently.

Keywords: Federated Learning · Gradient Inversion Attacks

1 Introduction

Federated Learning (FL) [22] is a promising decentralized framework for train-
ing deep learning models collaboratively to address data governance and privacy
challenges. It is applicable to a range of fields, such as healthcare [31] and the
Internet of Things (IoT) [23]. Unlike traditional centralized training that col-
lects all training data on a central server, FL eliminates the need to gather data
centrally. Initially, a global model is distributed to clients by the server. Each
client then locally uses their private data to compute gradients, which are sub-
sequently aggregated by the server to update the global model. It ensures that
only gradients rather than sensitive data are shared with the server, thereby
preventing any risk of information leakage during model training.
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Fig. 1: The architecture of VBs and BLs (see Sec. 3 for more details), alongside the
reconstructed images of the CIFAR-10 and CelebA images using IG [9], GIFD [7], and
our proposed ISG attack. Circles represent neurons in corresponding neural networks.

However, recent studies have shown that FL is not always resistant to infor-
mation leakage. In particular, by seeing through the shared gradients, a malicious
server could potentially compromise privacy by deducing sensitive attributes
(e.g., gender, age) of clients [8]. More seriously, Gradient Inversion Attacks
(GIAs) can infer maximal information about clients by directly reconstructing
the training data from gradients [9, 32, 35]. It involves initializing dummy data,
calculating the corresponding dummy gradients to simulate the training process,
and iteratively optimizing the dummy data by minimizing the discrepancy be-
tween the true and dummy gradients, eventually leading the dummy data to
approximate the original data closely. To protect against GIAs, some works ex-
plored defenses by perturbing the gradients, including clipping [27,29] and noise
addition [35]. Although high-level perturbations can effectively defend against
privacy breaches, they significantly impact the model performance [5,10,35]. To
address this, other studies [26] have investigated leveraging the intrinsic proper-
ties of Stochastic Neural Networks (SNNs), specifically Variational Bottlenecks
(VBs) [1,15], to counteract GIAs. SNNs also comprise Bayesian Layers (BLs) [3].
As illustrated in Fig. 1, VBs map input to distributions instead of deterministic
points, and BLs treat each parameter not as a single-fixed-value but as a distri-
bution over possible values. In each forward propagation, SNNs randomly sample
features or parameters from these distributions, leading to the fact that given
the same input, the output and gradients are always distinctive. The unique,
non-shared stochastic elements within SNNs prevent the server from accurately
emulating the training process, providing an effective defense against GIAs [26].

In this work, we show that SNNs are as vulnerable to GIAs as traditional (de-
terministic) deep learning networks. Our findings indicate that the gradients of
SNNs contain the information of both training data and stochastic elements (in-
cluding both the re-sampled features and model parameters) used in local train-
ing, allowing attackers to closely approximate those stochastic elements through
the gradients. This enables the malicious server significantly reduces the stochas-
ticity of SNNs when simulating the local training process. From an attacker’s
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standpoint, we propose a novel attack method termed Inverting Stochasticity
from Gradients (ISG), which can successfully reconstruct the training data from
the gradients of SNNs. Fig. 2 illustrates the overview of our ISG attack. Addition-
ally, we investigate the issue of local minima in GIAs, attributed to convolutional
kernels. To address this, we introduce a novel component, namely the feature
correction multiplier, to constrain the optimization space, thereby improving
the fidelity of reconstructed images. Furthermore, we demonstrate that defense
mechanisms relying on stochasticity (perturbation) during forward propagation
are ineffective in protecting models against GIAs.

Our main contributions are summarized as follows:

– We evaluate the defense effectiveness of two types of SNNs against state-of-
the-art GIAs: VB-based SNNs for feature stochasticity and BL-based SNNs
for model parameter stochasticity;

– We propose a novel attack to bypass the defense of SNNs. To the best of
our knowledge, we are the first to systemically reconstruct the training data
from the gradients of VB- and BL-based SNNs;

– We study the local minima in GIAs caused by convolutional kernels and
introduce a feature constraint strategy to achieve higher fidelity in the re-
covered images;

– We conduct extensive experiments to validate our approach, which shows
the superior performance of our attack over current state-of-the-art GIAs.

2 Related Work

Gradient Inversion Attacks. In an FL system, where multiple edge clients col-
laborate under the coordination of a potentially malicious server to train a model
F(θ; ·) with parameters θ and a given loss function L(·), GIAs [7,9,20,32,34,35]
enable the server to reconstruct the original training image x from the gradients
∇θ shared by clients. The attack mechanism involves initializing a dummy image
x̂ and simulating the training process to generate corresponding dummy gradi-
ents ∇L(F(θ; x̂), y) with y being the label that extracted from gradients [32,34].
Through iterative optimization aimed at minimizing the discrepancy, quanti-
fied by a distance metric D(·) (such as Euclidean [35] and Cosine Similarity [9]
distance), between ∇θ and ∇L(F(θ; x̂), y), the dummy image x̂ is refined to
approximate the original image x closely. This can be formulated as follows:

x̂ = argmin
x̂

D(∇L(F(θ; x̂), y),∇θ) +Rimg(x̂), (1)

where Rimg(·) is the regularization function to improve the fidelity of x̂, such as
TV [9] and GAN [7, 20]. However, the efficacy of GIAs depends on mimicking
the forward and backward propagation processes occurring at edge clients. When
these processes become stochastic, they present a challenge to server emulation,
leading to the server’s failure in successfully recovering the training data [26,30].
Stochastic Neural Networks. Stochastic Neural Networks (SNNs) include the
integration of Bayesian layers (BLs) [3] and Variational Bottlenecks (VBs) [1,15].
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VBs are known for their enhanced security features, particularly their effective-
ness in defending against GIAs [26]. BLs treat each parameter not as a single-
fixed-value but as a distribution over possible values. VBs map input features
to distributions instead of deterministic points. The properties of SNNs appear
in that parameters or data representations are newly sampled from their respec-
tive distributions in each forward propagation. This results in diverse outputs
and gradients for the same input data. This stochasticity in SNNs fools GIAs
by disrupting attempts to replicate the training process at local clients [26, 30],
thereby safeguarding against potential data leakage. Although the work of [2]
tried to recover training data from gradients in VB-based models, their approach
only applies to fully connected models with bias terms and not to mini-batch
training, making it less applicable in practice. In contrast, convolutional SNNs,
more prevalent in practice, continue to show robustness against GIAs.

3 Problem Formulation

Consider a generic SNN for image classification tasks with parameters θ. Given
a batch of images x and labels y, the predicted class probabilities across L
categories for each image is defined by F(θ; ·) : x ∈ RB×C×H×W → RB×L,
with B,C,H,W being the batch size, the number of channels, height and width,
respectively. The SNN, as illustrated in Fig. 2, includes a feature extractor, along
with an FC layer, a VB [15, 26], and a BL [3] (Fig. 1 for visual details of VBs
and BLs). Notably, in practical applications, a model supports flexible module
placement, allowing for multiple or no specific modules anywhere in the network.

The feature extractor of parameter θext is responsible for learning and ex-
tracting task-relevant features xext ∈ RB×c×h×w from the raw input data x with
c, h, w being the number of features, their height and width:

xext = f(θext;x). (2)

VB comprises a probabilistic encoder and a decoder, with a prior distri-
bution p(zvb) of latent variable zvb, typically assumed to follow the standard
normal distribution [1, 15]. Given an input xvb, VB first produces the mean µvb
and standard deviation σvb standing for multivariate Gaussian distributions to
approximate the latent space distribution p(zvb) as follows:

µvb, σvb = f(θenc;xvb), (3)

where θenc denotes the parameters of VB’s posterior estimator (encoder). Then,
the process of sampling latent features zvb from the posterior distribution zvb ∼
N (µvb, σ

2
vbI) is realized by using the reparameterization trick [1] via intermediate

noise εvb sampled from a standard normal distribution, that is:

εvb ∼ N (0, I), (4)
zvb = µvb + σvb ⊙ εvb, (5)
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Fig. 2: Our proposed ISG attack starts by randomly initializing x̂, m, ε̂vb, and ε̂b (used
for constructing ẑvb, θ̂b). The process unfolds as follows: a malicious server 1) receives
the client’s gradients, which is computed using private training images; 2) extracts the
label from the gradients (Sec. 4.4) and simulates the client’s forward propagation using
x̂, m, ε̂vb, and ε̂b; 3) calculates the dummy gradients per Eq. (9b); 4) computes the
ISG attack loss as Eq. (10), and 5) jointly optimizes x̂, m, ε̂vb, ε̂b with respect to the
attack loss until the algorithm converges.

where εvb, µvb, σvb, zvb are in RB×cvb×hvb×wvb with cvb, hvb, wvb being the number
of latent features, their height and width; ⊙ and I denote the element-wise
product and the identity matrix, respectively. The sampled features zvb is then
sent to the decoder to generate new features yvb ∼ p(yvb|zvb), as follows:

yvb = f(θdec; zvb), (6)

with θdec being the parameters of decoder.
BLs maintain a set of means θµ and deviations θσ as learnable parameters

that define the posterior distribution of model parameters. Unlike traditional
models where parameters are deterministic, the BL samples a new set of parame-
ters θb by the reparameterization trick from the posterior distribution N (θµ, θ

2
σI)

for each forward propagation. Thus, the output yb of a BL for a given input xb
can be expressed as follows:

εb ∼ N (0, I), (7a)
θb = θµ + θσ ⊙ εb, (7b)
yb = f(θb;xb), (7c)

where εb, θµ, θσ, θb are in Rhb×wb (hb and wb being the height and width), and
εb is the intermediate noise sampled from a standard normal distribution.
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Overall, the gradients ∇θ of this SNN is derived as follows:

∇θ = ∇L(F(θ;x), y), (8)

where L(·) is the loss function for classification tasks, usually cross-entropy loss,
incorporates the Kullback-Leibler divergence (KLD) between the posterior and
priors distributions for VBs and BLs [3, 15], which ensures the posteriors are
closely aligned with the assumed prior distributions.

Therefore, consider an FL system, in which each client computes gradients
∇θ using its private training data x, y, alongside the SNN F(θ; ·) and the loss
function L(·) specified by the server. These true gradients are then transmitted to
a curious but honest server. The objective is to produce a set of synthetic images
x̂ that closely resemble the original training images x by utilizing the gradients
∇θ known at the server. This attack must be achieved without any knowledge of
the sampled features zvb or the parameters θb, as they are discarded by clients
after each iteration and are not shared with the server.

4 Methodology

We begin by formulating our optimization objective of ISG attack as follows:

x̂ = argmin
x̂,m,ε̂vb,ε̂b

D(∇̂θ,∇θ) +Rimg(x̂) +Rfeat(θ; x̂,m) +Rkl(ε̂vb) +Rkl(ε̂b), (9a)

∇̂θ = ∇L(F̂(θ; x̂,m, ε̂vb, ε̂b), y), (9b)

where ∇̂θ is the dummy gradients and F̂(θ; ·) represents our defined forward-
propagation for mimicking the training process. This process involves the dummy
images x̂, the feature correction multiplier m, the dummy intermediate noise ε̂vb
and ε̂b. They are jointly optimized together. ε̂vb and ε̂b are learned to construct
the dummy sampled features ẑvb and parameters θ̂b as the approximation of
zvb and θb in VB and BL, respectively. Rimg(·), Rfeat(·), and Rkl(·) denote the
regularization functions for improving the reconstruction quality. The distance
measurement D(·) is based on the MSE loss [32, 35]. For simplicity, we denote
the objective function as follows:

x̂ = argmin
x̂,m,ε̂vb,ε̂b

Lgrad(x̂,m, ε̂vb, ε̂b), (10)

where Lgrad(x̂,m, ε̂vb, ε̂b) encapsulates the objective function in (9a). Fig. 2 de-
picts the overview of our proposed attack, and we provide detailed explanations
for each component in the subsequent subsections.

4.1 Feature Constraint Strategy

When using GIAs to recover training data from gradients in traditional CNNs,
we find that the optimization process tends to stall in local minima, unlike in
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(a) (b)

Fig. 3: The image reconstruction by using the gradients from the MLP and ResNet-
18. a) The MSE between the true and dummy gradients of the feature extractor, and
b) The MSE between the true and dummy features, as the optimization iterations
progress.

MLPs. We apply a well-established GIA, named IG [9], to a three-layer MLP
(with 1024 hidden neurons) [26] and a ResNet-18 [11] model, each concluding
with an FC layer for prediction, to reconstruct the CIFAR-10 [16] data from
their gradients. Remarkably, ResNet-18 has over 11 million parameters within
its convolutional feature extractor, vastly outnumbering the MLP’s mere 4.2 mil-
lion parameters, which suggests that the extensive gradient count of ResNet-18
could lead to more significant information leakage [9]. However, surprisingly, the
images reconstructed from ResNet-18 underperform significantly in visual qual-
ity compared to those from MLPs, as depicted in Fig. 3. We further analyze the
MSE between the true and dummy gradients of the feature extractor (Fig. 3a),
as well as between the true and dummy extracted features (Fig. 3b) across opti-
mization iterations in GIAs. The dummy extracted features x̂ext is calculated per
Eq. (2) by using the dummy images x̂. According to the results, ResNet-18 con-
sistently demonstrates a higher MSE—almost 10× for dummy gradients and a
1000× for dummy features—when compared to the MLP. This indicates that the
shared weights within convolutional kernels may trap the optimization in local
minima, thereby hindering the accurate reconstruction of data from gradients.

To mitigate the issue of local minima entrapment and maximize the utility of
gradient information for detailed reconstruction of training images, we propose a
novel component: a learnable feature correction multiplier m ∈ RB×c×h×w. This
multiplier is positioned after the convolutional feature extractor to correct the
dummy features x̂ext. The corrected features x̂corr is defined as the element-wise
product between the multiplier m and the dummy features x̂ext, that is:

x̂corr = m⊙ x̂ext = m⊙ f(θext; x̂). (11)

The corrected features are then used for predictions and gradients calculation by
the remaining FC layers. Given that m is the partial input to the FC layers, inde-
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pendent of the convolutional kernels, and previous discussions have showed that
the input of FC layers can be accurately inferred from the gradient, this enables
m as a well-estimated discrepancy in the extracted features. Thus, x̂corr rather
than x̂ext, provides a closer approximation of the true features, xext. Therefore,
to better align the dummy features with the true features, we introduce an l2
regularization term between the dummy and corrected features as follows:

Rfeat(θ; x̂,m) = αcorr||f(θext; x̂)⊙ (1−m)||2 = αcorr||x̂ext − x̂corr||2, (12)

where αcorr is the scale factor. By adding the feature regularization, we impose a
constraint on the dummy images x̂, effectively narrowing the optimization space.
This leads to the achievement of more accurately reconstructed images.

4.2 Inverting Stochasticity

We argue that SNN gradients implicitly retain the information of not only train-
ing data but also stochastic elements like randomly sampled features and param-
eters. This implies that reconstructing stochastic elements alongside the training
data from gradients is feasible. By approximating stochastic elements, the at-
tacker can spot the "stochastic" process utilized during training, allowing the
recovered stochastic features and parameters to be used in the dummy forward
propagation to emulate the client’s training process. Consequently, the problem
simplifies to reconstructing training data from gradients in a traditional neural
network, where stochasticity is no longer a factor.

Specifically, let µ̂vb and σ̂vb denote the mean and standard derivation of
the dummy latent space posterior distribution of VB by using dummy training
images x̂ per Eq. (3). Instead of directly sampling features from the dummy
posterior distribution as Eq. (4), a jointly learnable noise ε̂vb ∈ RB×cvb×hvb×wvb

is utilized to construct the dummy sampled features ẑvb, that is:

ẑvb = µ̂vb + σ̂vb ⊙ ε̂vb, (13)

and the output of VB is calculated by Eq. (6) using ẑvb.
In parallel, for BLs, instead of sampling parameters directly per Eq. (7a),

another learnable noise ε̂b ∈ Rhb×wb is used to form the dummy parameters θ̂b:

θ̂b = θµ + θσ ⊙ ε̂b, (14)

and the forward propagation of BLs uses θ̂b as parameters by following Eq. (7c).
Optimizing solely with gradient may result in ε̂vb and ε̂b deviating from

the standard Gaussian distribution. This deviation can lead to the generation
of unrealistic images with artifacts. To mitigate this issue, we incorporate the
KLD between ε̂vb, ε̂b, and the standard Gaussian distribution to regularize their
distributions [10,15]. Thus, Rkl(·) is defined as follows:

Rkl(ε) = αkl
1

2
(− log std2(ε) + std2(ε) + mean2(ε)− 1), (15)

where mean(·) and std(·) are the functions of calculating the mean and standard
deviation, respectively, with αkl serving as the scale factor.
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4.3 Image Regularization

To generate more realistic images, we follow the works of [9,32] to incorporate an
image regularization scaled by factor αimg during the optimization. Specifically,
since the pattern gradually changes in natural images, Total Variation (TV) [25]
is introduced to enforce neighbor-wise smoothness of dummy images x̂ [9], and
the l2 norm of dummy images x̂ is also applied to penalize large pixel values [32].
Therefore, image regularization can be formulated as follows:

Rimg(x̂) = αimgTV (x̂) + αimg||x̂||2. (16)

4.4 Label Extraction

Consider the model is generally trained with cross-entropy loss using one-hot
labels, and the vector ∇W i

pred represents the gradient of weights W i
pred that is

connected to the ith logit in the prediction (last) layer. The ground-truth label
y can be analytically identified as checking the sign of ∇W i

pred in single image
training [34], as follows:

y = i, s.t. ∇W i
pred

T · ∇W j
pred ≤ 0, ∀j ̸= i, (17)

The study of [32] extends this concept to batch label restoration, demonstrating
that utilizing extracted labels, as opposed to learning dummy labels, enhances
the stability and efficiency of training data reconstruction.

5 Experiments

5.1 Experimental Setup

FL Tasks and Datasets. We evaluate our ISG attack on four widely dis-
cussed FL tasks [9, 19,20,26]. (1) 10-class image classification on the CIFAR-10
dataset [16] with 50,000 training images of size 32 × 32; (2) 100-class image
classification on the CIFAR-100 dataset [16] with 50,000 training images of size
32× 32; (3) Gender classification on the CelebA dataset [21] with 23,999 images
of facial attributes of size 64× 64, and (4) 200-class image classification on the
Tiny-ImageNet dataset [18] with 100,000 training images of size 64 × 64. Ad-
hering to FL principles [12, 22], attackers lack prior knowledge of the dataset,
including the distribution of training data. We randomly sample 128 training
images for each task and calculate the model gradients via a single local update.
Victim Models. We adopt four extensively evaluated models [9, 26] in FL as
backbones: (1) ResNet-18 [11], (2) ResNet-34 [11], (3) ConvNet [9], and (4) a
3-layer MLP with 1024 hidden neurons [26]. In VB-based models, a VB with
256 latent dimensions is inserted between the feature extractor and the FC lay-
ers—or the final layer in the case of MLPs [26]. In models integrated with BLs,
a BL featuring an input channel dimension of 256, with both weights and bi-
ases as distributions [15], is appended to the final FC layer to make confidence
predictions. All models are randomly initialized.
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Implementation. The experiments are performed on a single server with two
GeForce RTX 3090 GPUs. Our method leverages the PyTorch library [24], build-
ing upon the repository of [9]. Our approach starts the attack by randomly ini-
tializing x̂, m, ε̂vb, and ε̂b, following standard normal distributions. The hyper-
parameters αcorr, αkl, and αimg are configured to 1, 1e-8, and 1e-6, respectively.
The Adam [14] algorithm is adopted to optimize x̂, m, ε̂vb, and ε̂b for 15,000
iterations. The initial learning rate is set to 0.1, which is reduced to every 10% of
its value at the 3

8 , 5
8 , and 7

8 milestones of the total iteration count. Our attack al-
gorithm does not leverage any additional information, such as BN statistics [32]
or a GAN pre-trained on IID data [7, 20]. The source code of our work will be
made available to the public on GitHub3.
Evaluation Metrics. To quantitatively assess the quality of image reconstruc-
tions, we employ four metrics to compare original images with their reconstruc-
tions: (1) Mean Squared Error (MSE↓), which calculates the average squared
discrepancy between the pixel values of two images; (2) Learned Perceptual Im-
age Patch Similarity (LPIPS↓) [33], which measures the similarity of features
extracted from two images using a pre-trained Alexnet [17], with values ranging
from 0 to 1; (3) Peak Signal-to-Noise Ratio (PSNR↑), the ratio of the maxi-
mum possible power of an image to the power of corrupting noise, expressed in
decibels (dB); and (4) Structural Similarity Index Measure (SSIM↑) [28], which
computes the similarity between two images based on structural information, lu-
minance, and contrast variations, with values ranging from −1 to 1. To evaluate
the quality of the reconstructed stochastic elements, namely the dummy stochas-
tic features and parameters in VB and BLs, we consider two metrics, including
(1) MSE↓: the mean squared error between the stochastic elements sampled by
the client and those recovered by the attacker; and (2) Signal-to-Noise Ratio
(SNR↑): the ratio of signal power to noise power. The symbols ↓ and ↑ denote
that, for the respective metric, a lower or higher value indicates a better quality
of the reconstructed image (in other words, a more effective attack).

5.2 Comparison against State-of-the-Art GIAs

GIAs baseline. We compare our proposed ISG attack against several state-of-
the-art GIAs, including (1) Deep Leakage from Gradient (DLG) [35]: employs
MSE as the gradient matching loss and utilizes the L-BFGS optimizer for 1,200
iterations; (2) improved Deep Leakage from Gradient (iDLG) [34]: integrates the
label extraction to DLG; (3) Inverting Gradient (IG) [9]: adopts a negative co-
sine similarity measure of gradients with TV regularization. The Adam optimizer
is used to optimize for 24,000 iterations. The results report the best outcome
from four trials with different random seeds; (4) Gradient Inversion (GI) [32]:
leverages MSE with the knowledge of BatchNorm [13] statistics. We report the
best reconstruction of four restarts as well; (5) Generative Gradient Leakage
(GGL) [20]: uses a BigGAN [4] (pre-trained on ImageNet [6]) as the image prior

3 https://github.com/SillyPuffo/ISG



Unveiling Privacy Risks in SNN Training 11

and optimizes the GAN’s latent code via the Adam optimizer for 2,500 itera-
tions, and (6) Generative Gradient Leakage with Feature Domain Optimization
(GIFD) [7]: optimizes the features of the first 13 layers in BigGAN, conducting
1,000 iterations of optimization for each layer.
Experimental Results. Tab. 1 presents the quality assessments of recon-
structed images x̂ and reconstructed stochastic elements. For the CIFAR-10
classification task, we evaluate the quality of images and reconstructed features
ẑvb, derived from the gradients of a VB-ResNet18 model. Concurrently, for the
gender classification FL task, we report the quality of reconstructed CelebA im-
ages and the reconstructed model parameters θ̂b, obtained from the gradients of a
Bayesian ConvNet model. Bold numbers denote the best performance of attacks.
These results show that existing GIAs fail to reconstruct training data through
the gradients of SNNs due to their inability to mimic forward propagation. In
contrast, our ISG attack successfully recovers the training data by effectively
reconstructing the stochastic elements, thus circumventing the defenses estab-
lished by either VBs or BLs. Specifically, our ISG attack improves SSIM by
approximately 5× on VB-ResNet18 and reduces MSE of reconstructed images
by nearly 20× on Bayesian ConvNet. Fig. 4 depicts a comparative visualization
of original and reconstructed images for the CIFAR-10 and CelebA datasets. The
images reconstructed by existing attacks appear predominantly as noise, lacking
discernible visual information. In contrast, images recovered through our ISG
attack preserve significant visual information, revealing considerable privacy of
the clients.

Table 1: Comparative Reconstruction Metrics for VB-ResNet18 and Bayesian Con-
vNet in Image Classification on CIFAR-10 and Gender Classification on CelebA.

Dataset Model Methods
Reconstructed Images x̂ ẑvb or θ̂b

MSE ↓ LPIPS ↓ PSNR ↑ SSIM ↑ MSE ↓ SNR ↑

CIFAR10 VB-ResNet18

DLG [35] 0.2390 0.4051 3.1322 0.0059 - -
iDLG [34] 0.1078 0.3336 4.9769 0.0299 - -

IG [9] 0.2275 0.4084 3.2456 0.0163 - -
GI [32] 0.1057 0.3471 4.9973 0.0341 - -

GGL [20] 0.2160 0.6475 6.7497 0.1322 - -
GIFD [7] 0.2376 0.6972 6.2816 0.0474 - -
Ours 0.0233 0.0632 8.4871 0.5831 0.0028 26.81

CelebA BL-ConvNet

DLG [35] 0.2102 0.9763 3.4137 0.0119 - -
iDLG [34] 0.2404 0.9402 3.1118 0.0049 - -

IG [9] 0.2267 0.8926 3.2541 0.0112 - -
GI [32] 0.2223 0.9301 3.2747 0.0054 - -

GGL [20] 0.2296 0.8746 6.5874 0.1174 - -
GIFD [7] 0.2271 0.8592 6.5855 0.0805 - -
Ours 0.0148 0.2997 9.3730 0.4736 0.2449 6.0964
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Fig. 4: Visualization of different attack results for VB-ResNet18 and Bayesian ConvNet
in the CIFAR-10 classification and gender classification FL tasks, respectively.

5.3 Batch Images reconstruction

We evaluate the efficacy of our ISG attack in reconstructing a batch of images
from an averaged gradient in SNNs. Specifically, in the Tiny-ImageNet clas-
sification task, we compute the VB-MLP gradients via a single local training
step across varying batch sizes. Table 2 and Figure 5 illustrate the quantitative
analysis and visual reconstructions of batch images from an averaged gradient,
respectively. The findings indicate that our method successfully recovers batches
of images from an averaged gradient, with the reconstructed images retaining
significantly more fine detail compared to reconstructions from convolutional
model gradients as presented in Sec. 5.2. This observation aligns with our earlier
insights in Sec. 4.1 that the shared weights in convolutional kernels can poten-
tially cause optimization to be trapped in local minima.

5.4 Ablation Study

In this section, we systematically analyze the individual contributions of key
components within our proposed ISG attack on SNNs, to quantify their respec-
tive impacts on the attack’s overall effectiveness. The results of this analysis, fo-
cusing on the CIFAR-100 image classification task utilizing VB-ResNet32, are de-
tailed in Table 3. We adjust several critical components: the process of Inverting
S tochasticity denoted by "IS", the regularization term Rkl(·), the feature correc-
tion multiplier m, and the feature regularization term Rfeat(·). Symbols ✓ and
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Table 2: Quality of Batch Reconstruction by Using Gradients of VB-MLP.

Dataset Batch Size Reconstructed Images x̂ ẑvb

MSE ↓ LPIPS ↓ PSNR ↑ SSIM ↑ MSE ↓ SNR ↑

Tiny-ImageNet

1 9.4e-5 0.0004 22.2502 0.9917 0.0024 28.7953
8 0.0028 0.0083 19.4303 0.9747 0.0354 27.1164
16 0.0058 0.0197 18.0602 0.9556 0.1059 24.6211
32 0.0071 0.0276 15.8763 0.9256 0.1947 21.8593
64 0.0124 0.0426 14.0831 0.8885 0.3311 19.6521
128 0.0294 0.1537 10.4532 0.7030 1.8609 10.2723

Fig. 5: Visual results of VB-MLP in the Tiny-ImageNet classification task

− are used to indicate the inclusion and exclusion, respectively, of these com-
ponents. The reconstruction process for stochastic elements shows the critical
importance when adopting GIAs to SNNs. GIA cannot accurately replicate the
authentic training process without knowledge of the stochastic elements, thus
hindering its ability to reconstruct the training data. Rkl(·) contributes to a
better reconstruction of stochastic features by constraining the distribution of
those features, which results in a reduced MSE of the reconstructed stochastic
features and an improved SNR.

Our proposed feature correction multiplier m, in conjunction with the fea-
ture regularization term Rfeat(·), plays a pivotal role in enhancing the fidelity
of reconstructed images. Incorporating them together resulted in nearly a 50%
reduction in the LPIPS index as reported in Tab. 3. To delve deeper into their
contributions, Fig. 6 shows the MSE between the actual and dummy gradients
across iterations under different configurations. These include scenarios without
incorporating m and Rfeat(·) (denoted as "w/o m", as the baseline) and with
different scale factors (αfeat) for Rfeat(·). The curves demonstrate that utilizing
our proposed feature constraint strategy significantly narrows the gap between
the dummy and actual gradients — achieving nearly a 4× improvement over
the baseline. This suggests that our proposed strategy effectively limits the op-
timization space. Additionally, a visual comparison on the right side of Fig. 6
shows that when αfeat = 1, the reconstructed images reveal considerably more
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Table 3: Ablation Study Results on CIFAR-100 Image Reconstruction from VB-
ResNet34 Gradients. IS denotes the Process of Inverting Stochasticity (see Sec. 4.2).

IS Rkl m Rfeat
Reconstructed Images ẑvb

MSE ↓ LPIPS ↓ PSNR ↑ SSIM ↑ MSE ↓ SNR ↑

− − ✓ ✓ 0.1195 0.2237 4.8976 0.1518 2.0487 -3.248
✓ − − − 0.0274 0.0435 8.1699 0.5639 0.0584 12.8174
✓ ✓ − − 0.0313 0.0536 7.9803 0.5326 0.0524 12.8780
✓ ✓ ✓ − 0.0253 0.0482 8.2175 0.5770 0.0731 11.1999
✓ ✓ ✓ ✓ 0.0215 0.0273 8.6080 0.6295 0.0441 13.1634

Fig. 6: The left part shows the MSE between the true and dummy gradients as the
optimization progresses. The right part depicts the reconstructed images. Both parts
are evaluated on the CIFAR-100 dataset with different hyperparameter settings.

details than the baseline, aligning with the curve results. All experimental results
substantially support our analyses and motivations discussed in Sec. 4.1.

6 Conclusion

In this work, we overturned the assumption that SNNs are inherently resistant
to GIAs due to their stochastic nature. Our findings exposed their vulnerability,
by showing that SNN gradients retain information about stochastic components,
allowing attackers to reconstruct these components and reduce their stochastic
impact. We demonstrated that existing defense strategies relying on stochastic
perturbations during forward propagation fall short against GIAs. This suggests
a pressing need for more robust defense mechanisms. Alternatively, we suggest
exploring gradient perturbation-based defenses, such as Gradient Sparsification
and Noisy Gradient, which, despite their trade-off between model performance
and privacy [12,35].
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