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Fig. 1: CoSHAND synthesizes an image of a future after a specific interaction (dotted
blue mask) has occurred. In (a) we demonstrate CoSHAND’s ability to perform complex
manipulations on deformable objects such as kneading dough and opening a book. In
(b) we show generalization to robot gripper interactions. In (c) we show it is possible
to generate diverging futures given the same input context but different hand controls.

Abstract. Humans naturally build mental models of object interactions
and dynamics, allowing them to imagine how their surroundings will
change if they take a certain action. While generative models today have
shown impressive results on generating/editing images unconditionally or
conditioned on text, current methods do not provide the ability to per-
form object manipulation conditioned on actions, an important tool for
world modeling and action planning. Therefore, we propose to learn an
action-conditional generative models by learning from unlabeled videos of
human hands interacting with objects. The vast quantity of such data on
the internet allows for efficient scaling which can enable high-performing
action-conditional models. Given an image, and the shape/location of
a desired hand interaction, CoSHAND, synthesizes an image of a future
after the interaction has occurred. Experiments show that the resulting
model can predict the effects of hand-object interactions well, with strong
generalization particularly to translation, stretching, and squeezing in-
teractions of unseen objects in unseen environments. Further, CoSHAND
can be sampled many times to predict multiple possible effects, modeling
the uncertainty of forces in the interaction/environment. Finally, method
generalizes to different embodiments, including non-human hands, i.e.
robot hands, suggesting that generative video models can be powerful
models for robotics.

https://coshand.cs.columbia.edu/
coshand.cs.columbia.edu
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1 Introduction

Humans and animals have an impressive ability to mentally simulate what would
happen to an object if they were to interact with it [7]. Our ability to reason
about our actions and the resulting dynamics of the objects around us has de-
veloped from years of interacting with our environment with our hands. Such
mental models and forecasting allow us to simulate realistic experiences depend-
ing on a specific interactions. Enabling machines to similarly model the future
based on interactions can be useful in a variety of tasks such as robotic planning
and augmented or virtual reality.

Current generative models are often conditioned on modalities that are easy
to acquire at scale, such as text [20,38,44]. However, these conditioning modal-
ities are not aligned to the action space to enable machines to predict how ob-
jects and the environment change and potentially deform in physically plausible
ways according to a specific interaction. For example, even with a detailed text
conditioning of “squeezing a pillow so that it deforms horizontally”, the precise
direction and distance of the deformation is hard to capture via text (see Fig. 2).
The key question is, how do we give machines the ability to imagine interactions
with their environment?

In this work, we propose to learn an action-conditional generative model by
leveraging large amounts of unlabeled videos of people interacting with objects
using their hands. Given an image, and the shape/location of a desired hand
interaction, CoSHAND, (Controlling the World by Sleight of Hand), synthesizes
an image of a future after the interaction has occurred.

We use existing off-the-shelf hand segmentation methods to obtain binary
hand masks which we can then pair with before and after frames of a video. By
using automatic segmentation methods and unlabeled videos (180k examples of
real-world hand-object interactions from the SomethingSomethingv2 dataset),
we can efficiently obtain a large-scale dataset, highlighting the potential to effi-
ciently scale up the approach to achieve stronger performance and better general-
ization. Furthermore, using binary masks allows the method to be agent-agnostic
enabling capabilities for non-human agents. We fine-tune CoSHAND from a pre-
trained image diffusion model. Image generative models (such as DallE-2 [31])
have seen billions of images of hand-objects pairs in a variety of configurations,
allowing us to leverage it’s strong priors about how objects and hands move
with respect to each other. Furthermore, the probabilistic generative nature of
diffusion models allows CoSHAND to model uncertainty in future states due to
environment/interaction forces.

We perform several quantitative and qualitative experiments on our training
dataset and an unseen (In-the-wild) test set that we create. CoSHAND can predict
the effects of hand-object interactions well. A key achievement is the generaliza-
tion ability to novel objects and scenes not in the training set. Particularly we see
strong results on interactions involving translations, stretching, and compressing,
where objects are clear, separable from surrounding objects, and in-frame in the
input image. The model performs decently on more complex object interactions
such as large rotations and precise deformations involving folding. Interestingly,
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our method can also predict the effects of a robot gripper’s interactions, even
though it has not been trained on robot data; a promising direction towards
robotic planning. Finally, we benchmark against various unconditional and text-
conditional generative models to show the benefits of our proposed approach of
controlling by hand.

Fig. 2: We show that text-conditioning is insufficient to model interactions, whereas
hands allow for better control. Columns 1 & 2 show the input image, query caption,
and output of text conditional generation. Columns 3 & 4 show the input image, query
hand mask, and output of CoSHAND. Column 5 shows the ground truth output. Notice
that CoSHAND is able to achieve precise control (including the exact final location of
the knife in row 1 and the precise squeezing motion in rows 2 & 3) which results in a
output that is more consistent with the ground truth.

2 Related Work

2.1 Diffusion Models

Diffusion models have gained tremendous momentum in generative modeling in
computer vision. Compared to previous generative architectures such as VAEs
and GANs, diffusion models offer many advantages including better training
stability, improved coverage of multi-modal distribution of training data, and
scalability. Prior works [12] have shown strong experimental results that demon-
strates diffusion model beats GAN [15] in image synthesis quality. In DDPM
[21], authors propose an effective implementation of diffusion model for image
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generation by iteratively denoising an image composed of Gaussian noise. La-
tent Diffusion Model (LDM) [33] proposed an efficient diffusion architecture that
performs denoising in latent space of a VAE [32] instead of pixel space. Due to
its fully open-source release, Stable Diffusion has been used as a strong image
prior to solve many challenging task in computer vision such as semantic image
editing [4,14,35], 3D [10,26,43], and segmentation [1,28]. In this work, we lever-
age the strong visual priors provided by the internet-pretrained diffusion model
to solve the zero-shot hand-conditioned interaction understanding problem.

2.2 Conditional Generation

While large-scale diffusion models have recently shown incredible capabilities in
generating images and video scenes, methods to control these models are still
emerging. Such control is imperative in using these models for extracting plau-
sible world dynamics and making them useful for various applications. Several
works have aimed to tackle this control problem from a variety of angles such
as text-conditioning by manipulating the weights of the attention maps [4, 19],
camera-view conditioning like in [26], and image based conditioning with a sep-
arate set of additional weights like in [23] or [50]. Different from a normal text
conditioned prediction models, world model [17] is a class of models that predict
the future conditioned on past observation as well as an action. World models
have been applied in robotics for manipulation [9,13,18,44], locomotion [18,42],
and planning [45]. We propose a unique approach of utilizing hand interaction
based image conditioning to predict future states by learning from a large-scale
dataset of human videos and generalizing to other embodiments.

2.3 Hand Environment Interaction

Hand-environment interaction forms a significant percentage of embodied hu-
man experience, making it an important area of study in computer vision and
robotics. Prior works have widely explored this topic from various angles. A line
of work in computer vision extensively studies the problem of 3D reconstruction
of human hands and objects from images [5,37,46–48]. Another line of work inves-
tigates affordances of objects [2,11,27,29,30,49]. Instead of recognition and recon-
struction, many methods propose synthesizing hand-object grasp [3,8,22,25,49].
Other works incorporate physics simulation to generate dynamic grasps for ob-
jects that are physically plausible [6]. Different from prior work, our proposed
method focuses on predicting the changes in object state such as position, ap-
pearance, and geometry (deformable objects) caused by hand motions, from a
single view.

3 Method

We present our method to solve the task of generating an image depicting a
future state of the scene after a certain hand interaction has occurred.
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3.1 Learning From Hands at Scale

Recent large-scale models have shown impressive results on tasks such as image
generation, visual question answering, etc. These can largely be attributed to the
scale of data with which they have been trained on. For example, Stable Diffusion
[34] was trained on the LAION-5B dataset [36] which likely includes numerous
examples of people interacting with objects in diverse scenarios. We hypothesize
that the model understands something about the state of objects based on a
certain hand position. Furthermore, objects are often manipulated by hands in
the real world, thus Stable Diffusion has likely seen more objects in different
states (such as laptops ‘opened’ and ‘closed’) when the hand is present as well.
Therefore the key question is how to unlock control to enable manipulation
between states (such as opening a laptop). Allowing the model to understand the
relationship between hand motions and object states would enable interaction.

We aim to leverage these priors by using Stable Diffusion as a starting point
and finetuning a large-scale pretrained image-based model on video, as video
datasets provide an easy way to extract before and after states of the world to
obtain the affects of the applied interaction. Not only does this give us strong
priors about how hands and objects interact, but it also allows us to generalize
to objects and scenes beyond the data distribution we train on. Furthermore, the
priors learned from these hand-object interactions can be transferred to other
embodiments such as robot arms as seen in Sec 4.4, enabling generalization
beyond hands. We emphasize that CoSHAND can be easily scaled to larger video
datasets because we use off-the shelf models to represent hands, therefore there
are no metadata/annotation requirements.

3.2 Problem Formulation

We introduce CoSHAND, and show an overview in Fig. 3. Given an RGB image
xt ∈ RH×W×3, the corresponding binary hand-mask ht ∈ RH×W which marks
the pixels belonging to the hand in the input image, and a query hand-mask
ht+1 ∈ RH×W which marks an action taken, our goal is to learn a function f
such that

f(xt, ht, ht+1) = x̂t+1

where x̂t+1 ∈ RH×W×3 is the estimated image and should be perceptually similar
to the true but unobserved future xt+1.

3.3 Conditioning Diffusion Models on Context

Image diffusion models have become increasingly popular due to the impressive
quality of produced images and the ease and stability of training in comparison to
GANs. In DDPM [21], a model is trained to learn to reverse the diffusion process,
which gradually denoises data to produce an image. In latent diffusion models
[33], rather than learning to denoise images in the pixel space, the model is
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Fig. 3: CoSHAND Method. We propose a novel approach of controlling by hands to
enable manipulating objects in an image. Given an image, the corresponding hand
mask, and a query hand mask of the desired interaction, CoSHAND synthesizes an image
with the interaction applied. Such visual conditioning allows for object interaction.

trained to denoise in the latent space of a VAE as this reduces the computational
complexity, and increases the expressiveness of the latent code that is learned.

Similar to LDM [33], we use a fixed autoencoder, E , which first encodes an
image x ∈ RH×W×3, into its latent representation z = E(x). The fixed decoder,
D reconstructs the image from the latent: x̂ = D(z) = D(E(x)). Both the encoder
and decoder are initialized from the pre-trained Stable Diffusion image model
[34], allowing us to take advantage of the priors that have been learned. Because
we care about modeling an interaction on a specific scene, we provide the current
image as context to the model. We encode each image xt, the corresponding
hand masks ht, and the future query hand mask ht+1, and perform channel-wise
concatenation to obtain our full ‘context’ latents ci ∈ Rh×w×3c. We concatenate
the context latents with the latent embedding of the image we are aiming to
denoise zi ∈ Rh×w×c along the channel dimension (where i indicates the diffusion
time step and zi indicates the encoded latent with i steps of added noise).

We learn the diffusion reverse process in this latent space with a U-Net pa-
rameterized by θ, ϵθ, trained to iteratively denoise the input image by predicting
the noise vector that is subtracted at each time step. We want to model the con-
ditional distribution p(z|x) such that the synthesized image looks semantically
similar to the input image. This is because the task entails retaining much of
the semantics of the objects and backgrounds in the scene. Therefore, along with
channel conditioning, we apply cross-attention to condition the model on a CLIP
embedding of the input image τ(xt). We use a frozen CLIP image encoder and
randomly drop the conditioning signals ci and τ(xt) with a probability of 5%
during training. At inference time, we start from Gaussian noise and condition
on ci and τ(xt) using ϵθ. Our learning objective is:

min
θ

Ez,c∼E(x),i,ϵ∼N (0,1)||ϵ− ϵθ(zi, ci, τ(xt), i))||22.
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Fig. 4: Examples In-the-wild (from our lab/home environment). We test
CoSHAND against challenging In-the-wild collected in our home/lab environments.
CoSHAND remains robust in these scenarios, showcasing its strong generalization ability.
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4 Experiments

The central hypothesis of our paper is that by (a) training large-scale diffusion
models with our proposed hand conditioning for action control, and (b) learning
from a large dataset of unlabeled human videos, we can predict future states of
the objects across different scenes and embodiments (human and robot hands).
The goal of the experiments section is to test this hypothesis by presenting a set
of rigorous and controlled experiments.

4.1 Datasets

SomethingSomethingv2 (Human Video Dataset): We have seen strong
results when training large models with large-scale datasets, as it leads to im-
pressive results in open-world settings with strong performance and generaliza-
tion. To leverage this, we finetune our model on the SomethingSomethingv2
dataset [16]. The dataset contains over 180k videos of humans performing pre-
defined, basic actions with everyday objects, for example ‘moving something
up’, ‘putting something next to something’, or ‘pushing something from left to
right‘. To obtain hand masks, we use Segment Anything [24] with the provided
bounding boxes as prompts. We split each video into frames at a frame-rate of
12 FPS and sample before and after images at intervals of 3. At training time,
we sample one frame of context and one later target frame.

In-the-wild (Self-Recorded Video Dataset): We are able to achieve
generalization to different environments and objects not present in the original
dataset. To showcase examples beyond the test set of the SomethingSomethingv2
dataset, we record 45 videos in our labs/homes of interactions between our hands
(single and bi-manual) and a variety of objects in and around our lab/home
environments. We aim to find object categories outside the dataset such as dough
and white boards (however due to the great diversity of SomethingSomethingv2
object categories do overlap but of course instances are unique). Some samples
and results are visualized in our qualitative results (see Fig. 4).

BridgeDatav2 (Robot Dataset): Because many high-level object dynam-
ics and interactions are similar across embodiments, we show promising zero-shot
(no further training/fine-tuning) generalization results. We use select examples
from various environments in the BridgeData V2 [40] which contains over 60k
trajectories of the WidowX 250 6DOF arm interacting with a variety of objects
in 24 different environments.

4.2 Baselines and Metrics

Central to object deformations and interaction planning is understanding the
effects of manipulating of a scene. Therefore, we compare our method of us-
ing hand conditioning against baselines, which perform image generation with
different forms of control:
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Method SSIM ↑ PSNR ↑ LPIPS ↓

MCVD 0.231 8.75 0.307
UCG 0.340 12.08 0.124
IPix2Pix 0.289 9.53 0.296
TCG 0.234 9.05 0.221
Ours 0.414 13.72 0.116

(a) Results on validation subset of Some-
thingSomethingv2. All metrics demonstrate
that our method is able to outperform the base-
lines by a significant margin.

Method SSIM ↑ PSNR ↑ LPIPS ↓

MCVD 0.373 11.487 0.282
UCG 0.458 13.858 0.210
IPix2Pix 0.498 13.594 0.275
TCG 0.454 14.201 0.207
Ours 0.576 18.156 0.125

(b) Results on In-the-wild test set. We show
that our method can generalize to examples not
in the training distribution and that our method
outperforms baselines.

Table 1: Quantiative Results on SomethingSomethingv2 and In-the-wild
datasets.

– Masked Conditional Video Diffusion (MCVD) [39]: Prior work has
investigated predicting the future conditioned on previous frames. MCVD
proposes a masked conditional video diffusion model that can be used for
video prediction (forward and backward), unconditional generation, and in-
terpolation. For comparison, we trained MCVD for conditional future pre-
diction.

– Unconditional Generation (UCG): While MCVD is a strong baseline,
for a fair architecture comparison we also finetune the pre-trained Stable
Diffusion image model with the input frame as conditioning.

– InstructPix2Pix (IPix2Pix): is a strong text editing method. We eval-
uate InstructPix2Pix on this dataset (with captions provided in the SSv2
metadata) to show the difficulty of text based editing.

– Text-Conditional Generation (TCG): We also finetune the pre-trained
Stable Diffusion model to condition on the input image along with our cap-
tions (provided in the SSv2 metadata) fed in through cross-attention layers.
This allows for a more fair architectural comparison.

– Ours (CoSHAND): Our method is trained with an image, its corresponding
handmask, and a query handmask (indicating the action), and is expected
to predict the target image. Note that during evaluation, the mask can be
replaced for a robot arm mask as shown later in section 4.4.

We evaluate our method and baselines on three metrics that capture various
aspects of image similarity, including: PSNR which measures a scaled mean-
squared error, SSIM which measures the structural similarity [41], and LPIPS
which measures perceptual similarity [51].

4.3 Quantitative Analysis

We show numerical results on the test set of SomethingSomethingv2 in Table 1a.
We see that CoSHAND outperforms all other baselines in all three metrics includ-
ing PSNR, SSIM, and LPIPS. We notice that MCVD performs poorly compared
to other baselines likely due to the lack of pretrained priors or hand controls.
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UCG performs better however it still lacks hand controls and therefore can-
not synthesize specific futures. Text conditioning allows for high-level controls,
however most text-conditioning methods are unable to perform drastic object
manipulations therefore IPix2Pix and TCG do not show great performance. Fi-
nally, CoSHAND shows the strongest performance as it uses Stable Diffusion priors
and is trained on a large scale manipulation dataset.

In Table 1b we show numerical results on our In-the-wild dataset, showing
strong generalization capabilities. CoSHAND beats all baselines. Similar trends
hold in terms of large image model priors being key for generalizability. Further-
more, we support these metrics with qualitative comparisons as shown in Fig. 2.
We show that CoSHAND is able to accurately model the manipulation while TCG
only vaguely follows the desired interaction.

Fig. 5: We show that CoSHAND can perform complex manipulations on a va-
riety of rigid and deformable objects. We show interactions such as squeezing a
lemon, closing a drawer, rotating a bottle, and placing items inside cups, which requires
understanding of deformable and articulated objects, as well as occlusion. In columns
1, 3 & 5 we visualize the input image and the query hand mask of the desired interac-
tion. Columns 2, 4 & 6 portray the respective outputs of the applied hand interaction.

4.4 Qualitative Analysis

We conduct a qualitative analysis to understand what are success/failure cases of
CoSHAND and its generalization capabilities. Note that since CoSHAND is determin-
istic, given the same mask and context different samples produce slightly different
outputs. Therefore, during our qualitative analysis, we sample the model 4 times
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and manually asses the outputs and visualize the best of 4. We notice that the
variations for most samples are natural and usually correspond to uncertainty
of interaction/environment forces.

Results on SomethingSomethingv2: We visualize predictions on the val-
idation set of SomethingSomethingv2 in Fig. 5. Due to the diversity in actions
that CoSHAND was trained on, it is able to understand interactions such as push-
ing, pulling, stretching, and compressing rigid/deformable objects very well. We
also see decent success for more complex interactions such as putting objects
inside other objects, opening/closing things, and folding. The training dataset
includes bi-manual manipulation data, so we are able to accurately model one
and two hand interactions, a strong ability that can aid in downstream robotics
tasks. Furthermore, we can model secondary contact forces (e.g. when someone
pushes pencil which in-turn pushes a block that it is in contact with, see Fig. 4
row 5 column 3/4).
In-the-wild results: We investigate the models ability to generalize to open-
world setting. As seen in Fig. 4, the method works on unseen objects/environments
likely due to the large diversity in the training dataset. Furthermore, CoSHAND is
able to model situations where the hand does not remain in contact with the ob-
ject. In Fig. 8 the last three columns depict three different samples of CoSHAND,
reasoning about various possible futures when the forces of the interaction are
ambiguous and therefore many futures are possible.
Predicting two distinct futures: We show the capabilities of CoSHAND to
predict two futures given different conditioning. For example, in column 2 of
Fig. 1, the model initially sees the hand holding a bottle, but then the person
decides to move their hand either right or left, and the model is able to accurately
synthesize both futures. Similarly, in Fig. 7 the CoSHAND is able to model different
motions to erase a whiteboard. Providing a visual cue to this controllable model
allows us to detail two possible futures which can be highly useful for example
in planning or simulation.

Robustness to Hand Masks: While an off-the-shelf Segmentation model
can be used to obtain query handmasks as done in this work, a question that
could arise is ‘what if a user were to provide hand-drawn approximate hand
masks?’. We explore this questions by comparing segmentation masks obtained
via off-the-shelf models (‘SegAny’) to manually-drawn ‘high quality’ query hand-
masks and manually-drawn ‘low quality’ query hand-masks (where details of
hand/fingers are not captured in mask). To obtain manually-drawn handmasks,
we used Keynote’s line-drawing tool. CoSHAND is robust to even noisy hand masks.
However, CoSHAND is better able to reason about the interaction when given more
detailed handmasks from ‘SegAny’ & ‘high qual’, indicating that ‘higher quality’
conditioning produces more fine grained outputs. Therefore, one should strive
to select the best practically available hand mask. See figure in Supplemental.

Zero-Shot Generalization to Robot Interactions There is very little
data in robotics and much of the data that exists is constrained to research
lab based environments. Therefore, finding ways to transfer knowledge from
humans to robots is an important step towards generalizable robotics models. We
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Fig. 6: While CoSHAND is only trained on hands, it can generalize to robot arms for sim-
ple actions. For example, CoSHAND can predict reasonably the result of robotic actions
including: moving objects around, picking up objects, unfolding cloth, and sweeping
granular particles.

hypothesize that CoSHAND has learned many key aspects of interaction dynamics
which though trained on human videos, can be leveraged for other embodiments
such as a robot arm.

We aim to see how CoSHAND performs for robot datasets where the interaction
is executed by a robot arm. Similar to the setting with hands, we use off-the shelf
bounding box and segmentation models to obtain segmentation masks of the
robot arm. We input a current frame, the corresponding end effector mask, and
the query end effector mask to CoSHAND, which then produces the future state
of the scene. We evaluate on a small subset of data from BridgeDataV2, and
as seen in Fig. 6, we see good performance on simple object/action pairs such
as pushing a towel or picking up and moving a cup. This indicates a promising
path towards enabling robots with the ability to build mental models of objects
by watching humans interact with the world.

Image Editing: Controllable content creation is a key aspect for many designers
in the arts and gaming industries, and CoSHAND allows for a very natural way
to edit scenes through use of the hand. To perform this edit, we capture an
image of our hand overlaying and manipulating the image as input to CoSHAND.
In Fig. 1, we show an edit on a painting where the user lifts up a wilting flower.
Furthermore, in Fig. 7 we show editing the location of the snitch from Harry
Potter, and the bike from the movie E.T.
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Fig. 7: CoSHAND can edit images and
produce different futures. We can
move objects around in famous movie
scenes such as the snitch from Harry Pot-
ter and the bike from E.T. Furthermore,
we show that conditioned on the same in-
put context but different hand mask tra-
jectories, CoSHAND predicts an alternate
future, while maintaining the photore-
alism of the predicted future frames.

Fig. 8: Examples where forces are am-
biguous: The force of an interaction or the
environment affecting the interaction may be
ambiguous and therefore there may be many
possible futures. In column 2-4 we show three
different samples taken from CoSHAND show-
ing the diversity in the outputs when there is
uncertainty from interaction.

4.5 Ablation Study

We perform several rigorous ablations to test our hypothesis (see Table 9a &
Fig. 9b for quantitative results):

– No SD prior: As hypthesized, training CoSHAND from scratch without lever-
aging Stable Diffusion pretraining, results in poor performance, likely due to
the lack of prior knowledge of hand-object interactions.

– No CLIP conditioning: We remove CLIP conditioning signal and retrain
the model to verify CLIP embedding effectiveness. Performance drops on all
metrics, likely because without the clip embedding, the overall semantics of
the image are lost, making reconstructing details difficult.

– Less Training Data: When we train CoSHAND with 10% of the data, per-
formance and generalization suffer. This indicates that as the amount of
training data increases, we will see increase in the model’s capabilities.

– Ours + Context: We hypothesize that providing more frames of context
as input to CoSHAND would result in better performance as a temporal un-
derstanding is induced. We test this hypothesis by training CoSHAND with
4 frames of context and their corresponding handmasks, and querying one
step into the future. As expected, this improves performance. However, we
note that this setting is less common as multiple context frames are often
unavailable, therefore we do not delve deeply into this setting.

– Varying CFG scale: We notice that increasing the guidance scale beyond
a certain threshold, 2.5 in our case, causes the image becomes less dynamic
likely due to negative correlation between variance and cfg as seen in Fig.
9b. This is because a higher cfg causes the model to more closely replicate
the input image xt. On the other hand, guidance scales less than 2.0 result
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in the original image being ignored, hence decreasing performance. See Fig.
9b for visualization of numerical analysis.

Method SSIM ↑ PSNR ↑ LPIPS ↓

No SD prior 0.376 12.36 0.116
No CLIP Cond 0.366 11.76 0.173
Less Data 0.369 12.45 0.127
Ours 0.423 14.00 0.108
Ours + Context 0.448 14.76 0.088

(a) Table 9: We perform ablations on our
method. Note that the stable-diffusion pri-
ors and size of the dataset contribute to sig-
nificant performance gains. Furthermore, when
more context is available, the model is able to
better reason about the next state (bolded last
row).

(b) Fig 9: Classifier-Free Guidance Scale
Analysis. Performance peaks at a cfg value of
around 2.5, as too high guidance decreases the
variety of the possible generations, while too low
of a guidance ignores the input frame.

4.6 Limitations

Our approach aims to learn plausible manipulations between hands and objects,
therefore we find our model does not perform well in very unrealistic settings
(e.g.: using hands to change shapes of clouds, pushing buildings, etc). Further-
more, we find that when its not obvious if two objects are separated, sometimes
interactions with one object will result in ambiguous surrounding objects also
being altered.

5 Discussion

In this work, we propose hand conditioning as a new method for interacting with
a scene, allowing machines to build a mental model of the future conditioned
on a specific action. We introduce CoSHAND, a method that leverages large-scale
pretrained models and and learns from a large source of unlabeled data to build a
representation of interaction. We show experiments on the Something-Something
v2 dataset, real world examples, zero-shot generalization to robot grippers, and
interesting image edits. We note that CoSHAND does not require any metadata
and can therefore be easily scaled to improve results on robot datasets and
unrealistic image edits. This opens up exciting applications in robot planning,
controllable image generation, and augmented or virtual reality.
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