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In this supplementary, we provide additional analysis and experimental re-
sults, including:

– Description of ISS subsampling algorithm and its visualization of various
categories of 3D shapes (Section A);

– More ablation experiments and analysis (Section B);
– More visualization results (Section C);

A ISS Critical Points

In our paper, we utilize Intrinsic Shape Signature (ISS) to obtain the critical
points of each point cloud for decomposing the 3D object into patches. The
ISS methodology [1] employs a dual approach for 3D shape analysis. It utilizes a
view-independent representation to directly match shape patches across different
perspectives, complemented by a view-dependent transformation that captures
the geometry of observation, thus streamlining the process of rapid pose estima-
tion. We can obtain the ISS critical points by computing weighted covariance
matrix of point pi over a radius rdensity:

Cov(pi) =

∑
∥pj−pi∥2<rdensity

wj(pj − pi)(pj − pi)T∑
∥pj−pi∥2<rdensity

wj
, (1)

where
wj =

1

|{pk : ∥pk − pj∥2 < rdensity}|
(2)

donates the weight of point pj . Then we compute eigenvalues of Cov(pi) as
λ1
i , λ

2
i , λ

3
i , in the order decreasing magnitude. To this end, we can acquire the
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ISS critical point pi if

λ2
i

λ1
i

< γ21 and
λ3
i

λ2
i

< γ32, (3)

where γ21 and γ32 are two set parameters. Fig. 1 shows critical points in 3D
point cloud of different categories. We can find that these points cover the main
geometric shape of the 3D objects.
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Fig. 1: Visualization of ISS critical points(red) in 3D points cloud of different cate-
gories.

B More Ablation Study

B.1 Sensitivity on hyperparameters K, s

We explore the impact of the choice of K in constructing the K-NN Graph and
the scale s of the wavelet operator on attack performance, as illustrated in Tab. 1.
The experiments on ModelNet40 and ShapeNetPart suggest that the values of
K and s have minimal impact on the effectiveness of the attack. This is because
variations in K for the K-NN Graph do not affect the selection of the ISS points
targeted for the attack, and ours WPA induces perturbations with comparable
CD and HD for patches centered on the same point. Additionally, increasing the
scale s of the wavelet operator signifies a higher frequency band in the spectral
domain addressed by the wavelet filter. Consequently, all our experiments are
conducted with K = 10 and s = 2.
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Table 1: Sensitive analysis on K, s. Victim model: PointNet.

Module Variant Method ModelNet40 ShapeNetPart
ASR↑ CD↓ HD↓ ASR↑ CD↓ HD↓

K
-N

N
G

ra
ph

K = 5
WPAhc 100% 0.0005 0.0025 100% 0.0006 0.0391
WPAlc 100% 0.0004 0.0024 100% 0.0005 0.0309

K = 10
WPAhc 100% 0.0004 0.0020 100% 0.0006 0.0301
WPAlc 100% 0.0004 0.0020 100% 0.0006 0.0299

K = 20
WPAhc 100% 0.0004 0.0022 100% 0.0007 0.0443
WPAlc 100% 0.0004 0.0022 100% 0.0006 0.0320

K = 40
WPAhc 100% 0.0004 0.0021 100% 0.0007 0.0420
WPAlc 100% 0.0004 0.0021 100% 0.0006 0.0313

W
av

el
et

O
pe

ra
to

r s = 1
WPAhc 100% 0.0004 0.0020 100% 0.0006 0.0308
WPAlc 100% 0.0004 0.0020 100% 0.0006 0.0279

s = 2
WPAhc 100% 0.0004 0.0020 100% 0.0006 0.0301
WPAlc 100% 0.0004 0.0020 100% 0.0006 0.0299

s = 3
WPAhc 100% 0.0005 0.0029 100% 0.0005 0.0351
WPAlc 100% 0.0005 0.0029 100% 0.0005 0.0290

s = 4
WPAhc 100% 0.0005 0.0031 100% 0.0004 0.0205
WPAlc 100% 0.0005 0.0031 100% 0.0004 0.0227

Table 2: Quantitative comparison of WPAhc, WPAlc, and WPAhc+lc. The bold num-
bers donate the best attacks. For fair comparison, we maintain a same number of
perturbed points across the three methods.

Dataset Method PointNet DGCNN PointConv CurveNet
ASR↑ CD↓ HD↓ ASR↑ CD↓ HD↓ ASR↑ CD↓ HD↓ ASR↑ CD↓ HD↓

ModelNet40
WPAhc 100% 0.0004 0.0020 100% 0.0008 0.0069 100% 0.0012 0.0075 100% 0.0007 0.0057
WPAlc 100% 0.0004 0.0020 100% 0.0006 0.0043 100% 0.0010 0.0062 100% 0.0006 0.0047

WPAhc+lc 100% 0.0004 0.0022 100% 0.0008 0.0069 100% 0.0012 0.0076 100% 0.0007 0.0057

ShapeNetPart
WPAhc 100% 0.0006 0.0301 100% 0.0019 0.0306 100% 0.0025 0.0337 100% 0.0020 0.0445
WPAlc 100% 0.0006 0.0299 100% 0.0018 0.0250 100% 0.0019 0.0234 100% 0.0019 0.0353

WPAhc+lc 100% 0.0007 0.0432 100% 0.0019 0.0309 100% 0.0025 0.0336 100% 0.0021 0.0445

B.2 Introducing Noise into Both the Smoothness and Sharpness

We conduct experiments on the attack method named WPAhc+lc that combines
both WPAhc and WPAlc, and present the comparative results in Tab. 2. Specif-
ically, WPAhc+lc introduces noise to patches with the highest curvature while
applying noise to other patches with the lowest curvature, treating the noise ac-
cording to the methods of WPAhc and WPAlc, respectively. Notably, WPAhc+lc

maintains the same proportion(50%) of perturbed points, with other experiment
settings remaining constant. The results indicate that WPAhc+lc does not signif-
icantly enhance the attack performance, achieving a comparable attack success
rate to the others. The perturbation size is slightly inferior to WPAlc but within
the same order of magnitude. This demonstrates the efficacy of the WPA method,
indicating its insensitivity regardless of whether patches of the highest or lowest
curvature are selected.



4 M. Yang, D. Liu, et al.

Matrix Individual Patch Matrix Individual Patch 

Bed Chair

Matrix Individual Patch Matrix Individual Patch 

Monitor Sofa

Matrix Individual Patch Matrix Individual Patch 

Toilet Vase

Fig. 2: Visualization on matrix Ψ , individual wavelet ψi at point pi, and patch Pi.
For clearly reading, we only demonstrate a part of Ψ .

C More Visualization Results

C.1 Decomposed Patches Pi

We provide more visual results in Fig. 2 for illustrating how we decompose
patches from the whole point cloud via wavelet analysis. The point cloud is
transformed into a spectral domain representation, the wavelet coefficient ma-
trix Ψ , through the wavelet operator. A minor portion of the Ψ is highlighted,
illustrating the excellent locality of the spectral graph wavelet transform. More-
over, each individual wavelet ψi in the Ψ corresponds one-to-one with points
in the data domain, enabling the visualization of effectiveness across all points.
Based on this, we decompose each point into its corresponding geometry-sensitive
patch Pi.

C.2 Patches {Pi}ISS Centering at ISS Critical Points

Fig. 3 shows patches {Pi}ISS centering at critical points, which are subsampled
from ISS methodology. After a critical point pi obtained from ISS subsampling
algorithm ϕISS , we can decompose the origin point cloud into a instinct patch
Pi according to corresponding the wavelet ψi in matrix Ψ .

C.3 Adversarial Examples and Wavelet Coefficients

We also provide more visualization results in Fig. 4 of adversarial examples
generating by WPAhc/WPAlc. Specifically, it includes an additional 6 categories
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Fig. 3: Visualization of patches {Pi}ISS centering at ISS critical points(red).

of 3D point clouds: bed, chair, monitor, sofa, toilet, and vase. The second and
third rows of Fig. 4 respectively display the adversarial examples generated by
WPAhc and WPAlc, which add geometrical consistency perturbations to patches
with high and low curvature magnitudes. This strategy enables WPA to execute
remarkably effective attacks by perturbing only a subset of points. The final row
illustrates the visualization of the wavelet coefficient matrix Ψ .
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Fig. 4: Visualization on the adversarial examples and wavelet coefficients of GT.
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