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Abstract. With the maturity of depth sensors, point clouds have re-
ceived increasing attention in various 3D safety-critical applications, while
deep point cloud learning models have been shown to be vulnerable to
adversarial attacks. Most existing 3D attackers rely on implicit global
distance losses to perturb whole points, failing to restrict the proper
3D geometry as point clouds are highly structured. To this end, in this
paper, we propose a novel Wavelet Patches Attack (WPA), which lever-
ages local spectral attributes to identify curvature-aware patches for hid-
ing imperceptible perturbations aligned with their local geometric char-
acteristics. Specifically, WPA first transforms the point cloud into the
spectral domain using a wavelet operator, obtaining potential geometric
structures in different local regions. Each wavelet corresponds to differ-
ent curvature contexts of local points. Then, by decomposing the 3D
object with different curvature-aware levels through the wavelet coeffi-
cients, we can perceive the local geometric characteristics and get various
curvature-consistent patches. At last, based on the curvature variations
of patches, WPA introduces two-type perturbations along the tangent
plane and normal vector direction to hide imperceptible noise in slow-
and fast-variation patches for preserving the geometric-sensitive local
characteristics of smoothness and sharpness, respectively. Experiments
demonstrate the superior imperceptibility of our attack method, achiev-
ing favorable results on existing 3D classification models while exhibiting
robust resistance to various defense mechanisms.

Keywords: Point Cloud · Adversarial Attack · Wavelet Transform

1 Introduction

Deep neural networks have shown to be vulnerable to adversarial examples [10,
35], which add visually indistinguishable perturbations to network inputs but
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Fig. 1: Motivation of our proposed attack. Different from perturbing whole points with
global constraint or transformation, we utilize local spectral filters to perceive detailed
local structures, then hide imperceptible noise in a subset of geometric-sensitive points,
to preserve local geometric contexts for generating high-quality adversarial examples.

lead to incorrect prediction results. In the realm of 2D image, researches [4,18,26,
39] on adversarial attacks have achieved considerable progress, employing meth-
ods that add pixel-wise noise in the spatial or feature domain. However, as the
3D point cloud plays an important role in autonomous driving [3], robotics [24],
healthcare [34], etc., the study of robustness in 3D models becomes increasingly
critical. Yet, investigations into attacks on 3D deep models are still relatively un-
derexplored. Moreover, unlike 2D images [6–9], the unordered 3D data presents
more challenges for adversarial attacks on deep-learning models.

Most existing 3D adversarial attack methodologies [11, 38, 42, 46, 49, 52–54]
generally adapt 2D adversarial techniques to the 3D scenario. Some of them [42,
46,49,53] adhere to the point addition/dropping framework, which identifies and
modifies critical points within the point cloud to distort the whole representa-
tive features. Other works [1, 11, 19, 23, 25, 36, 38, 41, 51] follow the C&W frame-
work [10] to globally perturb the point clouds’ Euclidean coordinates through
the optimization of the gradients in end-to-end. As illustrated in the upper of
Fig. 1(a), these approaches generally employ global distance constraints, such
as Chamfer and Hausdorff distances in the data domain, to add noise while im-
plicitly preserving the original shape. Although they achieve high attack success
rates, the noise applied under global constraints fails to restrict the proper 3D
geometry as point clouds are highly structured, easily disrupting the structural
dependencies among neighboring points. Recently, some methods [14, 20, 21, 37]
have tried to utilize spectral tools to explicitly preserve the 3D geometries via
frequency analysis. As demonstrated in the lower of Fig. 1(a), these methods uti-
lize the Graph Fourier Transform(GFT) [12] to transform point clouds into the
graph spectral domain, introducing noise to specific frequency bands to generate
adversarial samples. However, GFT is a global transformation, which leads to
changes across all points in the data domain, still failing to preserve the detailed
point-to-point geometric dependency of distinct local regions.

To alleviate the above issues, we endeavor to first decompose the point cloud
into local regions with distinct geometric structures, then introduce to preserve
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the topology of geometric-sensitive regions to achieve heightened impercepti-
bility. Specifically, we incorporate the Spectral Graph Wavelet Transform from
graph spectral tools [12,15,30] for analyzing the local geometric structures of the
point cloud data. As depicted in Fig. 1(b), given that the wavelet kernel predom-
inantly affects a point and its neighbor area, it can decompose the 3D object into
curvature-aware patches according to the local geometries. By integrating these
patch-level geometric contexts, we selectively add noise to geometric-sensitive
patches with distinctive curvature characteristics, such as smooth or sharp re-
gions. Then, we introduce to minimize the perturbation size of these noises to
preserve corresponding smoothness and sharpness. In this way, we can generate
adversarial samples by perturbing only a subset of points, while perceiving the
local geometric information for completely preserving the original 3D shape.

To this end, in this paper, we propose a novel Wavelet Patches Attack (WPA)
method, which adeptly utilizes local spectral properties to identify curvature-
aware patches, thereby hiding imperceptible perturbations that align with their
local geometric characteristics. WPA starts by transforming the point cloud into
the spectral domain via the wavelet operator, thus unveiling the potential geo-
metric structures within various local points. Each wavelet corresponds to differ-
ent curvature contexts of local points. Following this, through the wavelet coef-
ficients, the 3D object can be decomposed into patches with different curvature-
aware levels, enabling perceiving the local geometric characteristics and getting
various curvature-consistent patches. Ultimately, based on the curvature vari-
ations of different patches, WPA introduces two-type perturbations along the
tangent plane and normal vector direction to hide imperceptible noise in slow-
and fast-variation patches for preserving the patch-wise local characteristics of
smoothness and sharpness, respectively.

Our main contributions are summarized as follows:

– We introduce a novel Wavelet Patches Attack (WPA), a technique capa-
ble of analyzing and capturing the geometric characteristics of various local
regions within a point cloud, and adeptly hiding perturbations within ar-
eas of specific geometric structures. Unlike previous attacks that employed
global constraints or transformations, our method better preserves the local
geometric context, achieving superior imperceptibility.

– By perturbing only a subset of points, we have achieved an exceptionally high
success rate of attack, while maintaining perturbation sizes that are equal
to or even lower than those of other methods. Distinct from approaches
that utilize deep learning to identify critical points for noise addition, our
strategy employs traditional signal processing and geometric methods to
locate sensitive points, offering greater interpretability.

– We conduct extensive experiments using popular 3D classification models on
the ModelNet40 and ShapeNetPart datasets, validating the effectiveness of
WPA. Moreover, we demonstrate WPA’s robustness against current point
cloud defense mechanisms and its superior performance compared to other
attacks.
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2 Related Work

Adversarial attacks on 3D point cloud. Deep neural networks are vulnera-
ble to adversarial examples, which has been extensively explored in the 2D image
domain [27–29]. Recently, many works [11, 22, 37, 38, 42, 46, 49, 52–54] have been
adapted to 2D adversarial attacks in the 3D vision community, which can be
mainly divided into two categories: 1) point-addition/dropping attack: Xiang et
al. [46] proposed point generation attacks by adding a limited number of syn-
thesized points/clusters/objects to a point cloud, and showed its effectiveness
in attacking the PointNet model [31]. Recently, more works [42, 49, 53] utilize
gradient-guided attack methods to identify critical points in point clouds for
modification, addition, and deletion. Their goal is to add or remove key points
that can be identified by calculating the label-dependent importance score refer-
ring to the calculated gradient. 2) point perturbation attack: Previous point-wise
perturbation attacks [38, 41] learn to perturb xyz coordinates of each point by
adopting the C&W framework [1] based on the Chamfer and Hausdorff dis-
tances with additional consideration of the benign distribution of points. The
subsequent works [11, 23, 25, 51] further applied the iterative gradient method
to achieve more fine-grained adversarial perturbation. Since 3D objects gener-
ally contain complex and diverse geometric characteristics in different regions,
previous works fail to perceive corresponding different types of point-to-point
dependencies and directly perturb the whole point clouds, resulting in low im-
perceptibility. In this paper, we make the first attempt to distinguish the local
geometric characteristics of different regions of a 3D object, and only hide the
imperceptible noise in certain regions for preserving corresponding geometrics.
Spectral methods for 3D point cloud. Numerous methodologies have been
developed that use spectral information to understand point clouds. For in-
stance, several 3D denoising techniques [33, 50] convert the input point cloud
into the graph spectral domain, wherein the rough shape of a point cloud is en-
capsulated within low-frequency components. Consequently, the spectral filter
facilitates the reconstruction of the point cloud’s original, noise-free structure.
Additionally, various applications [2, 32] capture the intricate details of point
clouds via transformed high-frequency components, employing these to identify
contours or eliminate redundant information. Recently, [14,22,37] has employed
the Graph Fourier Transform (GFT) to transpose point clouds into the spectral
domain for generating adversarial examples. Specifically, [14] perturbs specific
frequency bands to add perturbation that preserve geometric characteristics. [37]
fuses two point clouds from different classes in the spectral domain for obtaining
the decision boundary. [22] adds global noise to all points to preserve geometric
shapes globally, perturbing sharp or smooth regions in random directions. How-
ever, as the GFT is a type of global transformation, [14, 22, 37] are incapable
of aligning perturbations with the local geometric structures. In contrast, our
utilization of wavelets’ pronounced locality aids in identifying the local regions
corresponding to each point, thereby enabling us to hide imperceptible noise in
specific points.
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Fig. 2: Pipeline of our proposed WPA attack. To capture the local geometric struc-
tures of 3D objects, we first utilize the wavelet operator to transform the point cloud
into the spectral domain with different filters for obtaining detailed and distinct local
representations. Then, we apply the ISS subsampling algorithm on the 3D shape with
previously obtained local wavelet coefficients to locate critical points and decompose
object into curvature-consistent patches. Based on these patches, we develop two-type
attack methods WPAhc and WPAlc to selectively perturb the points on the impercep-
tible regions (i.e., characteristics of smoothness and sharpness) of low visual sensitivity.

3 Methodology

3.1 Overview

Problem formulation. Point cloud data represents the collection of surface
points sampled from a target object or scene within the selected three-dimensional
coordinate system. In general, a point cloud P comprises an unordered set of
points {pi}ni=1, where pi ∈ R3 signifies a coordinate vector, n denotes the number
of points encompassed by the point cloud. Since our paper primarily focuses on
the task of 3D point cloud classification, we denote the 3D classification model as
f(·) : Rn×3 → RC . For each input P, the classifier’s objective is to yield a correct
prediction y = F (P) = argmaxi∈[C]f(P)i ∈ Y . Y = {1, 2, 3, . . . , C} represents
the authentic class of the point cloud, and C denotes the number of classes.
Generally, to achieve adversarial attacks on point cloud classification models,
the attackers aim to add adversarial noise ∆ ∈ Rn×3 to the original point cloud
P, so that the well-trained classifier is misled to make wrong predictions for the
adversarial point cloud P ′ = P +∆.
Attack pipeline. To generate high-quality adversarial samples, we propose a
novel Wavelet Patches Attack (WPA), which aims to hide adversarial noise in
specific regions of a point cloud while preserving corresponding local geometric
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characteristics. As shown in Fig. 2, WPA first transforms the point cloud into
the spectral domain using wavelet filters to generate a wavelet coefficients matrix
that represents the geometric dependency across local points. Then, to generate
curvature-aware patches according to the coefficients matrix, we employ an In-
trinsic Shape Signature (ISS) strategy to uniformly sample critical points, and
utilize them to meticulously carve out wavelet patches with local characteris-
tics of wavelets at each point. Combining these feature points with their corre-
sponding patches, WPA proceeds to rank them based on curvature magnitude.
To make the attack more natural and imperceptible, we only select two specific
patches with sensitive geometric curvatures (lowest curvature of smoothness and
highest curvature of sharpness) for perturbations. Two distinct attack variants,
i.e., WPAhc and WPAlc, are further devised to attack these selected patches, re-
spectively. In this manner, our approach is able to perceive and preserve distinct
local geometries for generating high-quality adversarial samples.

3.2 Exploring Local Geometric Characteristics of Point Clouds
through Wavelets Processing

Most existing 3D attack methods are developed in the data domain, which per-
turb points through implicit global distance constraints. Although some methods
try to add noise in the spectral domain, all of these methods globally perturb the
whole points of 3D objects, failing to perceive and preserve the distinctive types
of point-to-point dependencies in local regions (such as smoothness and sharp-
ness). To perceive local geometric characteristics for better preserving the topol-
ogy of 3D objects, we endeavor to utilize the wavelet operator, the pronounced
locality of which enables explicit preservation of local geometric characteristics
across various parts of the point cloud, while retaining interaction information
between points in the spectral domain.
Preliminary of spectral transformation. To transform the unordered point
cloud into spectral domain, point cloud P is commonly represented by a symmet-
ric (i.e. undirected) graph G = {V, E ,A} containing n = |V| nodes. V represents
the node set, E denotes the edge set, and A signifies the weighted adjacency
matrix of the graph. To capture local correspondence within the point cloud,
we construct an undirected K-nearest-neighbor graph (K-NN graph), subse-
quently completing the V of G. The graph weights wi,j = wj,i ∈ A are then
determined by calculating the Euclidean distance between points pi and pj , i.e.,
wi,j = wj,i = ||pj − pj ||2. Moreover, each node vi ∈ V is assigned a graph signal
hi. Different from previous work [14], we treat the graph signal hi as δi, where
δi ∈ Rn is a one-hot vector with 1 on vi and zeros elsewhere.

In general Graph Fourier Transformation (GFT), the combinatorial graph
Laplacian operator is defined as L :=D−A, whereD represents the degree ma-
trix, with each element di,j =

∑n
j=1 wi,j . As the constructed G has non-negative

real values for wi,j , the resulting matrix L is real, symmetric, and positive
semi-definite. It admits an eigenvalue-decomposition L = UΛUT , where U =
[u1, . . . ,un] comprises orthonormal eigenvectors ui, and Λ = diag(λ1, . . . , λn)
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consists of eigenvalues {λ1 = 0 ≤ λ2 ≤ . . . ≤ λn}. In the realm of graph sig-
nal processing, the aforementioned eigenvalues λ are referred to as the graph
spectrum.
Transform point clouds through wavelet operator. Diverging from global
transformations like the aforementioned GFT, the Spectral Graph Wavelet Trans-
form [12] was the first to combine a spectral design with spatial domain local-
ization. This wavelet transform presents a sparser encoding for graph signals,
with the wavelet kernel acting within its local region, equivalent to the neigh-
borhood of the central node. Therefore, wavelet transform demonstrates higher
encoding efficiency, particularly in undirected graphs formed by point clouds,
enabling a more precise capture of local characteristics and geometric structures
for each point. To perceive and preserve the local geometries, we introduce to
utilize wavelet transform for spectral transformation in this section.

Specifically, the wavelet kernel is constructed by designing a real-valued func-
tion g(·) : Rn → Rn. In the spectral domain of L, g(·) manifests as a band-pass
filter, akin to the Fourier transform of the "mother wavelet" for the continuous
wavelet transform. Therefore, we can define the wavelet operator/transformation
as:

T s
g = gs(L) = UΛ(gs(λ))U

T , (1)

where s denotes the scale of wavelet operator. By applying the T s
g to hi of each

node, we can obtain corresponding individual spectral graph wavelet coefficients
centered at node i:

ψs,i = T s
ghi = UΛ(gs(λ))U

Thi. (2)

It is worth noting that due to the band-pass filter nature of the wavelet kernel
function g(·), g(0) = 0, and lim

λ→0
g(λ) → 0, wavelet transform typically introduces

a set of scaling functions to serve as a low-pass filter during signal decomposition.
To enhance the representation of low-frequency signals, the same goes for our
work. Thereby, T s

gh gives the wavelet coefficients ψs,i for the graph signal h at
scale s.
Analysis on wavelet outputs. By applying the wavelet transformation to the
undirected K-NN graph G, we can obtain the wavelet coefficients matrix as:

Ψ = ϕWT (P, s) = [ψs,1, . . . ,ψs,n], (3)

where ϕWT denotes the wavelet transformation. From the perspective of graph
signal processing, the j-th coefficient in the vector ψs,i ∈ Rn represents the
contribution of node j concerning the central node i or, in other words, the
energy diffused from the node i to node j. In terms of the practical significance of
point cloud data, the wavelet ψs,i for each point characterizes the local geometric
structures and semantic context within the local points, centered around node
i. By comparing the coefficient of each individual wavelet with ϵ, we can utilize
a threshold ϵ to define geometry-sensitive patch Pi ⊆ P at pi. We decompose
these patches from the whole point cloud via the following formulation:

Decompose(P,Ψ ; i, ϵ) = Pi = {pj}i, s.t. |ψs,i(j)| > ϵ, pi,pj ∈ P. (4)
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Based on this, we can obtain n number of patches {Pi}ni=1 for each point in P.
For example, as illustrated in Fig. 3, we acquire the wavelet coefficient matrix Ψ
for each object through the wavelet transformation. This matrix’s sparsely high-
lighted sections correspond to the wavelet’s localized effects. Consequently, from
the individual wavelets ψi in the matrix (center of the subplot), we can obtain
the attended patch Pi acquired from Eq. (4), with each patch encompassing the
geometric context of the local region.

3.3 Crafting Imperceptible Perturbations in Curvature-aware
Patches

By employing the above spectral methods, we are able to perceive point-based
regions corresponding to different local geometries. To scrutinize the variances
among different patches and their significance in point cloud classification tasks,
we analyze the patches by calculating their curvature and selectively add noise
only on the geometric-sensitive patches. To minimize the number of perturbed
points and imperceptibly hide noise, we devise distinct attack methodologies for
selected patches with varying curvatures.
Select specific patches for decomposing point clouds. Using all patches
constructed on each point is complicated since there are significant overlaps
between adjacent patches. Therefore, we propose to employ a subsampling al-
gorithm to to decompose the whole point cloud into different local patches, i.e.,
it suffices to select a subset from {Pi}ni=1, one that can approximate the entire
original point cloud.

To be specific, we utilize the Intrinsic Shape Signature (ISS) algorithm, which
is a traditional point cloud processing method calculating the curvature of the
point cloud and the normal vectors. It employs curvature and normal vector to
construct an intrinsic shape signature, capturing local shape details. The analysis
of the ISS yields a set of feature points PISS ⊂ P. By leveraging the wavelet
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outputs and ISS, the point cloud can be decomposed into distinct patches:

{Decompose(P,Ψ ; i, ϵ)}mi=1 = {Pi}ISS , s.t. pi ∈ PISS = ϕISS(P), (5)

where m is the number of points in PISS , ϕISS denotes the ISS subsampling
algorithm and each single patch Pi is centering at pi.
Add curvature-aware noise to specific patches. In order to hide adver-
sarial perturbations within specific patches more covertly, we conduct curvature
calculations and subsequent sorting for each wavelet patch in {Pi}ISS . For the
highest or lowest curvatures, the adversarial perturbation is applied along the
direction of the normal vectors or tangent plane at the patch points, respectively.

In accordance with the chosen patch curvature magnitudes, two types of
attacks are constructed as WPAhc and WPAlc. For patch curvatures character-
ized by highest magnitudes denoted as P high and lowest magnitudes denoted
as P low, we introduce perturbations ∆high,∆low ∈ Rn×1, respectively. These
perturbations are added to the normal vectors and tangent plane directions of
the patch points:

P high = Pm−k+1 ∪ Pm−k+2 ∪ · · · ∪ Pm, (6)

P low = P1 ∪ P2 ∪ · · · ∪ Pk, (7)

where m is the number of patches contained in {Pi}ISS . P high and P low re-
spectively represent the sets of patches with the k highest or lowest curvatures.
To selectively perturb points, diagonal mask matrices are constructed as:

Mhigh = diag(rhighi ) ∈ Rn×n s.t. rhighi =

{
0, pi /∈ P high

1, pi ∈ P high , (8)

Mlow = diag(rlowi ) ∈ Rn×n s.t. rlowi =

{
0, pi /∈ P low

1, pi ∈ P low , (9)

which ensures the perturbations are zero for non-selected points. The final ad-
versarial perturbation ∆ can be obtained through the following:

∆ =

{
∆high ·MhighNnormal, for WPAhc

∆low ·MlowNtangent, for WPAlc , (10)

where Nnormal = [n1, · · · ,nn]
T and Ntangent = [t1, · · · , tn]T are matrices com-

posed of the normal vectors n ∈ R3 or tangent vectors t ∈ R3 for each point in
P. n and t can be calculated for point pi using traditional methods introduced
in [13]. In particular, the 3 × 3 positive semi-definite covariance matrix C is
constructed as:

C =
∑
i ̸=j

(pj − pi)⊗ (pi − pj), s.t. pi,pj ∈ P high or pi,pj ∈ P low, (11)

where ⊗ denotes the operator of outer product. By performing eigenvalue de-
composition on C, ni will be obtained as the eigenvector corresponding to the
smallest eigenvalue, and the vector resulting from the addition of the other two
eigenvectors as ti.
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3.4 Generating Adversarial Examples.

The task of generating the adversarial sample P ′ can be formulated as the fol-
lowing optimization problem:

min
∆

Lmis(f(P ′), y) + α · Lreg(P ′,P), s.t. P ′ = P +∆, (12)

where Lmis is the cross-entropy loss used to enhance the misclassification of
the model, Lreg is the regularizer penalizing the difference between P ′ and P,
and α is the penalty parameter. Here, we employ Chamfer distance(CD) [5]
and Hausdorff distance(HD) [17] as the regularizer loss Lreg(P ′,P). The final
formulation for adversarial sample generation can be represented by:

min
∆

Lmis(f(P ′), y) + α · (β1 · LCD(P ′,P) + β2 · LHD(P ′,P)), (13)

where

P ′ = P +∆, s.t. ∆ =

{
∆high ·MhighNnormal, for WPAhc

∆low ·MlowNtangent, for WPAlc . (14)

4 Experiments

4.1 Attack Setup

Datasets and baselines. We employ ModelNet40 [44] and ShapeNetPart [48]
to evaluate the performance of various adversarial attack methods on point
clouds. Specifically, ModelNet40 consists of 9,843 CAD models designated for
training and 2,468 for testing. ShapeNetPart consists of 12,137 shapes allocated
for training, with 2,874 set aside for testing. Notably, we exclusively selected
objects from the test set that were accurately classified by benign classifiers to
generate adversarial samples, which are ensured to uniformly sample to 1,024
points. Our approach is comprehensively evaluated on the four most popular
models, i.e., PointNet [31], DGCNN [40], PointConv [43], and CurveNet [47].
Implementation details. The B-spline wavelet kernel was applied as Tg in
Eq. (1). We use Adam optimizer to optimize the objective in Eq. (13). A steadfast
training regimen of 200 iterations is implemented, wherein the learning rate and
momentum are established at 0.01 and 0.9, respectively. The penalty coefficients
β1 = 1 and β2 = 0.1 are adopted as the default values in Eq. (13). The initial
penalty coefficient α in Eq. (12) is set to 10, subject to automatic adjustment
via a binary search conducted over 20 iterations, which follows [1]. In Eq. (4),
we set the threshold ϵ to 10−5, and the proportion of points under attack that
determined by k in Eqs. (6) and (7) is established at 0.5. We select K = 10 for
the building a K-NN Graph and s = 2 as the scale in Eq. (3) for the wavelet
operator. All experiments are conducted on a single NVIDIA Quadro RTX 5000
GPU.
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Table 1: Quantitative comparison on the perturbation size generated by different
attack methods on ModelNet40 and ShapeNetPart dataset. The bold numbers denote
the most imperceptible attacks, and the underscored numbers denote the second-best.

Dataset Method PointNet DGCNN PointConv CurveNet
ASR↑ CD↓ HD↓ ASR↑ CD↓ HD↓ ASR↑ CD↓ HD↓ ASR↑ CD↓ HD↓

M
od

el
N

et
40

PGD [26] 100% 0.0018 0.0302 100% 0.0019 0.0202 100% 0.0019 0.0129 100% 0.0015 0.0286
AdvPC [11] 100% 0.0013 0.0346 100% 0.0012 0.0186 100% 0.0010 0.0127 100% 0.0018 0.0278
SI-Adv [16] 100% 0.0002 0.0205 100% 0.0004 0.0054 100% 0.0003 0.0116 100% 0.0006 0.0199
GeoA [41] 100% 0.0064 0.0175 100% 0.0176 0.0402 99% 0.0014 0.0062 100% 0.0012 0.0067
GSDA [14] 100% 0.0007 0.0031 100% 0.0104 0.1401 100% 0.0017 0.0218 100% 0.0040 0.0142
ITA [19] 100% 0.0037 0.0052 100% 0.0058 0.0066 - - - - - -

GSDA++ [21] 100% 0.0006 0.0028 100% 0.0072 0.0135 - - - - - -
WPAhc 100% 0.0004 0.0020 100% 0.0008 0.0069 100% 0.0012 0.0075 100% 0.0007 0.0057
WPAlc 100% 0.0004 0.0020 100% 0.0006 0.0043 100% 0.0010 0.0062 100% 0.0006 0.0047

Sh
ap

eN
et

P
ar

t PGD [26] 100% 0.0017 0.0434 100% 0.0019 0.0628 100% 0.0018 0.0442 98% 0.0016 0.0377
AdvPC [11] 100% 0.0019 0.0543 100% 0.0029 0.0649 100% 0.0015 0.0404 69% 0.0016 0.0374
SI-Adv [16] 96% 0.0010 0.0433 95% 0.0009 0.0418 95% 0.0008 0.0125 91% 0.0008 0.0358
GeoA [41] 100% 0.0013 0.0358 100% 0.0025 0.0272 99% 0.0026 0.0251 100% 0.0022 0.0457
GSDA [14] 95% 0.0023 0.0257 98% 0.0035 0.0388 94% 0.0026 0.0240 100% 0.0526 0.1809
WPAhc 100% 0.0006 0.0301 100% 0.0019 0.0306 100% 0.0025 0.0337 100% 0.0020 0.0445
WPAlc 100% 0.0006 0.0299 100% 0.0018 0.0250 100% 0.0019 0.0234 100% 0.0019 0.0353

4.2 Attack Performance

Quantitative comparison. To fairly evaluate the efficacy of our proposed
WPA, we conducted a comparative analysis against five other methods, namely
PGD [26], AdvPC [11], SI-Adv [16], GeoA [41], GSDA [14], ITA [19], GSDA++ [21].
The results of this comparison are shown in Tab. 1. It is observed that our WPA
method achieves a 100% attack success rate(ASR) across four different victim
3D models, while generating adversarial samples with almost the lowest per-
turbation size according to evaluation metrics. This substantiates the effective-
ness of WPA, demonstrating its capability to hide imperceptible noise within
curvature-aware patches, thereby reducing the number of perturbed points to
achieve comparable, if not superior, adversarial attack impact.
Visualization results. We present the visualization results of our proposed
WPA alongside those of GeoA [41] and GSDA [14] in Fig. 4. It can be observed
that our adversarial examples are more imperceptible than other attacks. This
is attributed to the fact that, unlike GeoA and GSDA which employ global
constraints and transformations, our approach selectively perturbs geometric-
sensitive patches and introduces curvature-wise noise. Consequently, we achieve
remarkably effective attacks by only perturbing a subset of points. Additionally,
the right side of Fig. 4 also presents the visualization of the wavelet coefficients
of the original point clouds.
Evaluation on Robustness. To demonstrate the efficacy of attacks on well-
defended 3D models, we conducted experiments with various defense meth-
ods, including Statistical Outlier Removal(SOR) [55], Simple Random Sam-
pling(SRS) [49], Dup-Net [55], and IF-Defense [45]. As illustrated in Tab. 2,
the success rate of PGD is relatively low across all defenses because it often re-
sults in an uneven local distribution and outliers. Conversely, SI-Adv and GeoA
achieved higher success rates as they global constrain the geometric shape of
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Wavelet CoefficientsGT GeoA GSDA WPAℎ𝑐 WPA𝑙𝑐

Perturbed PointsOrigin Points Large Small

Fig. 4: Visualization of the adversarial examples and wavelet coefficients.

Table 2: ASR of different attacks on PointNet on ModelNet40 equipped with various
defenses. The bold numbers denote the highest rate, and the underscored numbers
denote the second-highest.

Defense PGD SI-Adv GeoA GSDA WPAhc WPAlc

No Defense 100.0% 99.8% 100.0% 100.0% 100.0% 100.0%
SOR [55] 52.3% 97.4% 62.5% 81.0% 98.9% 96.2%
SRS [49] 51.4% 85.6% 67.6% 81.0% 80.4% 83.9%

DUP-Net [55] 49.5% 95.8% 59.2% 68.9% 98.1% 95.5%
IF-Defense [45] 37.1% 61.2% 38.7% 50.1% 72.3% 68.2%

the object’s surface with geometric-aware constraints, thereby reducing outliers.
GSDA introduces perturbations in the spectral domain, corresponding to smaller
noise in the data domain, and likewise achieves commendable attack outcomes.
In comparison, our WPA secured the highest attack success rates against nearly
all defensive methods, indicating that the noise we introduce aligns with the
geometric characteristics of the object’s local regions, achieving effective results
through perturbation in a fewer patches.

4.3 Ablations

Effectiveness of various components in WPA pipeline. We firstly con-
duct ablation experiments on the components within our WPA pipeline, apply-
ing various attacks on point clouds transformed by the wavelet operator. Tab. 3
demonstrates the experiment results. In the attacks without using the ISS sub-
sampling algorithm, we randomly select points equivalent in number to the ISS
critical points as substitutes. In the attacks that do not utilize "HC" or "LC",



Hiding Imperceptible Noise in Curvature-Aware Patches for 3D Attack 13

Table 3: Effectiveness of various components in WPA pipeline. The bold numbers de-
note the most imperceptible attacks, and the underscored numbers denote the second-
best. "ISS?" denotes wheather we apply the ISS subsampling algorithm. "HC?"/"LC?"
denote we perturb the patches with the k highest/lowest curvature and project the noise
to normal/tangent direction. Victim model: PointNet.

ISS? HC? LC? ModelNet40 ShapeNetPart
ASR CD HD ASR CD HD

✕ ✕ ✕ 100% 0.00125 0.00695 87% 0.00054 0.03237
! ✕ ✕ 100% 0.00064 0.00437 99% 0.00059 0.03777
! ! ✕ 100% 0.00044 0.00197 100% 0.00058 0.03008
! ✕ ! 100% 0.00045 0.00204 100% 0.00059 0.02986

Table 4: Investigation on different types of wavelet kernel. Victim model: PointNet.

Wavelet Kernel Method ModelNet40 ShapeNetPart
ASR CD HD ASR CD HD

Meyer WPAhc 100% 0.0005 0.0020 100% 0.0005 0.0312
WPAlc 100% 0.0005 0.0022 100% 0.0005 0.0293

Mexican Hat WPAhc 100% 0.0004 0.0021 100% 0.0007 0.0434
WPAlc 100% 0.0004 0.0023 100% 0.0006 0.0334

B-spline WPAhc 100% 0.0004 0.0020 100% 0.0006 0.0301
WPAlc 100% 0.0004 0.0020 100% 0.0006 0.0299

we randomly select a same number of patches to perturb without changing the
generated noise’s direction. The results indicate that on the ModelNet40 dataset,
the adversarial samples crafted using ISS exhibit a lower perturbation size. This
is attributable to the fact that the local regions where the critical points obtained
from ISS subsampling play a more pronounced role in the feature of the whole
shape. Conversely, on the ShapeNetPart dataset, attacks applying ISS achieved
a higher ASR, but requiring a larger perturbation budget. On the other hand,
attack strategies that targeted specific curvatures yielded superior experimental
outcomes. This is attributable to the strategic concealment of noise within the
local geometric structures, thereby achieving enhanced imperceptibility.
Investigation on different types of wavelet kernel. To investigate the
impact of different wavelet kernels within the wavelet operator on attack per-
formance, we conducted experiments utilizing a variety of wavelet kernels. As
shown in Tab. 4, our WPA remains relatively insensitive to the choice of wavelet
kernel, provided all other experimental conditions are kept constant. This insen-
sitivity arises because, although various wavelet kernels transform point cloud
data into the spectral domain in distinct manners, the spectral information post-
transformation encompasses the intrinsic geometric structural features of the
point cloud. Consequently, WPA yields comparable perturbation sizes in the
data domain for patches corresponding to each point. Based on these findings,
we select the B-spline wavelet kernel, which demonstrated the most favorable
experimental outcomes, as the default setting for all subsequent experiments.
Investigation on the proportion of perturbed points determined by k.
As illustrated in Fig. 5, we conducted evaluations on WPAhc and WPAlc under
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Fig. 5: WPAhc and WPAlc attack performance when setting different proportion of
perturbed points determined by k, in terms of ASR, CD and HD results between
adversarial examples and the origins.

Fig. 6: WPAhc and WPAlc attack performance when applying varied β1,β2. All Attacks
achieved 100% success rate. Experiments are conducted on ModelNet40 using PointNet
as the model of classifier.

various k settings in Eqs. (6) and (7). By adjusting the k for patches with k
highest/lowest curvature, WPAhc/WPAlc introduces imperceptible noise to dif-
ferent proportion of points. The results indicate that the adversarial attacks are
successful across all values, demonstrating our method’s efficacy in hiding noise
within the point cloud’s geometric structure. When the proportion of perturbed
points is set to 0.5, the adversarial samples exhibit superior and stable perturba-
tion sizes, achieving commendable attack performance with only partial points
perturbed.
Investigation on penalty parameters β1 and β2. To investigate the impact
of the regularization constraints β1 and β2 in Eq. (13), we conducted a study
wherein one value was held constant at its default setting while another was
varied. The experimental findings revealed that varying β1 and β2 yielded a
consistent attack success rate of 100%. Moreover, as demonstrated in Fig. 6, the
default settings of β1 = 1 and β2 = 0.1 delivered the most optimal results in
terms of perturbation size.

5 Conclusion

In this paper, we propose a novel Wavelet Patches Attack(WPA), which lever-
ages local spectral attributes to identify curvature-aware patches for hiding im-
perceptible perturbations aligned with their local geometric characteristics. By
utilizing the wavelet transform, we are able to capture local regions embedded
with the local geometric context, subsequently decomposing the point cloud into
geometric-sensitive patches. Then, we introduced imperceptible noise to different
patches based on curvature variations, thereby generating adversarial examples
with minimized perturbation size by perturbing only a subset of points. Exper-
iments validate both effectiveness and robustness of our WPA.
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