
YOLOv9: Learning What You Want to Learn
Using Programmable Gradient Information

Chien-Yao Wang1,2, I-Hau Yeh2, and Hong-Yuan Mark Liao1,2,3

1 Institute of Information Science, Academia Sinica, Taiwan
2 National Taipei University of Technology, Taiwan

3 Department of Information and Computer Engineering,
Chung Yuan Christian University, Taiwan

kinyiu@iis.sinica.edu.tw, ihyeh@emc.com.tw, liao@iis.sinica.edu.tw

Abstract. Today’s deep learning methods focus on how to design the
objective functions to make the prediction as close as possible to the
target. Meanwhile, an appropriate neural network architecture has to be
designed. Existing methods ignore a fact that when input data undergoes
layer-by-layer feature transformation, large amount of information will
be lost. This paper delve into the important issues of information bottle-
neck and reversible functions. We proposed the concept of programmable
gradient information (PGI) to cope with the various changes required by
deep networks to achieve multiple objectives. PGI can provide complete
input information for the target task to calculate objective function, so
that reliable gradient information can be obtained to update network
parameters. In addition, a lightweight network architecture – General-
ized Efficient Layer Aggregation Network (GELAN) is designed. GELAN
confirms that PGI has gained superior results on lightweight models. We
verified the proposed GELAN and PGI on MS COCO object detection
dataset. The results show that GELAN only uses conventional convo-
lution operators to achieve better parameter utilization than the state-
of-the-art methods developed based on depth-wise convolution. PGI can
be used for variety of models from lightweight to large. It can be used
to obtain complete information, so that train-from-scratch models can
achieve better results than state-of-the-art models pre-trained using large
datasets, the comparison results are shown in Figure 1. The source codes
are released at https://github.com/WongKinYiu/yolov9.

Keywords: object detection · information bottleneck · reversible model

1 Introduction

In recent years, researchers in the field of deep learning have mainly focused
on how to develop more powerful neural network architectures and learning
methods, such as CNNs [21–23,42,55,70,71], Transformers [8,9,40,41,60,68,69],
Perceivers [26, 26, 32, 52, 56, 80, 80], and Mambas [17, 39, 79]. In addition, some
researchers have tried to develop more general objective functions, such as loss
function [5, 45, 46, 50, 76, 77], label assignment [10, 12, 33, 66, 78] and auxiliary

https://github.com/WongKinYiu/yolov9


2 C.-Y. Wang et al.

Fig. 1: Comparisons of the real-time object detectors on MS COCO dataset. The
proposed GELAN and YOLOv9 surpassed all previous train-from-scratch methods in
terms of object detection performance. In terms of accuracy, the proposed method
outperforms RT DETR [43] pre-trained with a large dataset, and it also outperforms
depth-wise convolution-based design YOLO MS [7] in terms of parameters utilization.

supervision [18,20,24,28,29,51,54,67,75]. The above studies all try to precisely
find the mapping between input and target. However, most of past approaches
have ignored that input data may have a non-negligible amount of information
loss during the feedforward process, as shown in Figure 2. This loss of information
can lead to biased learning process of the model. The above problems can result
in DNNs to establish incorrect associations between targets and inputs, causing
the trained model to produce untrustworthy predictions.

In DNNs, the phenomenon of information loss during the feedforward process
is commonly known as information bottleneck [59]. The main methods that can
alleviate this phenomenon are as follows: (1) Reversible architectures [3, 16, 19]:
it mainly uses repeated input data to maintain the information of the input data
in an explicit way; (2) Masked modeling [1,6, 9, 27,70,72]: it mainly uses recon-
struction loss to maximize the mutual information between extracted features
and the input data in an implicit way; and (3) Deep supervision [28, 51, 54, 67]:
it uses shallow features that have not lost too much important information to
pre-establish a mapping from features to targets to ensure that important infor-
mation can be propagated to deeper layers. However, the above methods have
different drawbacks. For example, a reversible architecture requires additional
layers to combine repeatedly fed input data, which will significantly increase the
inference cost. In addition, since the input data layer to the output layer cannot
have a too deep path, this limitation will make it difficult to model high-order



YOLOv9 3

Fig. 2: Output feature visualization of different random initialized 50-layer networks:
(a) input image, (b) PlainNet, (c) ResNet, (d) CSPNet, and (e) proposed GELAN.

semantic information during the training process. As for masked modeling, its
reconstruction loss sometimes conflicts with the target loss. In addition, most of
mask mechanisms also produce incorrect associations with data. For the deep
supervision mechanism, it will produce error accumulation, and if the shallow
supervision loses information during the training process, the subsequent layers
will not be able to retrieve the required information. The above phenomenon
will be more significant on difficult tasks and small models.

To address the above-mentioned issues, we propose a new concept, which
is programmable gradient information (PGI). The concept is to generate reli-
able gradients through auxiliary reversible branch, so that the deep features can
still maintain key characteristics for executing target task. The design of auxil-
iary reversible branch use multi-path features integration to avoid the semantic
loss caused by a traditional deep supervision. In other words, we are program-
ming gradient information propagation at different semantic levels, and thereby
achieving better training results. The reversible architecture of PGI is built on
auxiliary branch, so there is no additional inference cost. Since PGI can freely
select loss function suitable for the target task, it also overcomes the problems
encountered by masked modeling. The proposed PGI mechanism can be applied
to various DNNs and is more general to various tasks.

In this paper, we also designed generalized ELAN (GELAN) based on ELAN
[65]. GELAN simultaneously takes into account the parameter utilization, com-
putational complexity, learning capability and inference speed. This design al-
lows users to arbitrarily choose appropriate computational blocks for different in-
ference devices. We combined the proposed PGI and GELAN to design YOLOv9.
The experimental results verified that the proposed YOLOv9 achieved the top
performance in all comparisons. Contributions of this paper are as follows:

1. We theoretically analyzed the existing DNNs from the perspective of re-
versible function, and successfully explained many phenomena that were
difficult to explain in the past. We also designed PGI and auxiliary reversible
branch based on this analysis and achieved excellent results.

2. The proposed PGI solves the important issues of existing reversible architec-
tures and deep supervision methods, and shows strong versatility on various
models and tasks.

3. The proposed GELAN shows great advantages of being light, fast, and accu-
rate when comparing with the most advanced depth-wise convolution-based
and Transformer-based model.

4. The performance of the proposed YOLOv9 on MS COCO dataset greatly
surpasses the existing real-time object detectors in all aspects.



4 C.-Y. Wang et al.

2 Related work

2.1 Real-time Object Detectors

The current mainstream real-time object detectors are the YOLO series [2, 7,
13–15,25,30,31,47–49,61–63,73,74], and most of these models use CSPNet [64]
or ELAN [65] and their variants as the main computational units. In terms of
feature integration, improved PAN [37] or FPN [35] is often used, and then
improved YOLOv3 head [49] or FCOS head [57, 58] is used as prediction head.
Recently some real-time object detectors, such as RT DETR [43], which puts its
foundation on DETR [4], have also been proposed. However, since it is extremely
difficult for DETR-based object detector to be applied to new domains without a
corresponding domain pre-trained model, the most widely used real-time object
detector at present is still YOLO series. This paper proposed YOLOv9 which
uses GELAN and PGI to improve the architecture and the training process.

2.2 Reversible Architectures

The operation unit of reversible architectures [3,16,19] must maintain the char-
acteristics of reversible conversion, so it can be ensured that the output feature
map of each layer of operation unit can retain complete original information.
Before, RevCol [3] generalizes traditional reversible unit to multiple levels, and
in doing so can expand the semantic levels expressed by different layer units.
Through a literature review of various DNNs, we found that there are many
high-performing architectures with varying degree of reversible properties. For
example, Res2Net module [11] combines different input partitions with the next
partition in a hierarchical manner, and concatenates all converted partitions
before passing them backwards. CBNet [34, 38] re-introduces the original in-
put data through composite backbone to obtain complete original information,
and obtains different levels of multi-level reversible information through various
composition methods. These network architectures generally have excellent pa-
rameter utilization, but the extra composite layers cause slow inference speeds.
DynamicDet [36] combines CBNet [34] and YOLOv7 [63] to achieve a very good
trade-off among speed, number of parameters, and accuracy. This paper designs
reversible branches based on DynamicDet. In addition, reversible information is
further introduced into the proposed PGI. The proposed new architecture does
not require additional connections during the inference process, so it can fully
retain the advantages of speed, number of parameters, and accuracy.

2.3 Auxiliary Supervision

Deep supervision [28, 54, 67] is the most common auxiliary supervision method,
which performs training by inserting additional prediction layers in the interme-
diate layers. Especially the application of multi-layer decoders introduced in the
transformer-based methods is the most common one. Another common auxiliary



YOLOv9 5

supervision method is to utilize the relevant meta information to guide the inter-
mediate layers to learn required properties of the target tasks [18,20,24,29,75].
Recently, there are many reports in the literature [53, 66, 81] that use different
label assignment methods to generate different auxiliary supervision mechanisms
to speed up the convergence speed of the model and improve the robustness at
the same time. However, the auxiliary supervision mechanism is usually only
applicable to large models, so when it is applied to lightweight models, it is easy
to make the performance worse. The PGI we proposed designed a way to repro-
gram multi-level semantic information, and this design allows both large models
and lightweight models to benefit from the auxiliary supervision mechanism.

3 Problem Statement

Usually, people attribute the difficulty of deep neural network convergence prob-
lem due to factors such as gradient vanish or gradient saturation, and these
phenomena do exist in traditional deep neural networks. However, modern deep
neural networks have already fundamentally solved the above problem by de-
signing various normalization and activation functions. Nevertheless, deep neural
networks still have the problem of slow convergence or poor convergence results.

In this paper, we explore the nature of the above issue further. Through
in-depth analysis of information bottleneck, we deduced that the root cause
of this problem is that the initial gradient originally coming from a very deep
network has lost a lot of information needed to achieve the goal soon after it is
transmitted. In order to confirm this inference, we feedforward deep networks of
different architectures with random initial weights, and then illustrate them in
Figure 2. Obviously, PlainNet has lost a lot of important information required for
object detection in deep layers. As for the proportion of important information
that ResNet, CSPNet, and GELAN can retain, it is indeed positively related to
the accuracy that can be obtained after training. We further design reversible
network-based methods to solve the above problems. In this section we elaborate
our analysis of information bottleneck principle and reversible functions.

3.1 Information Bottleneck Principle

According to information bottleneck principle, we know that data X may cause
information loss when going through transformation, as shown in Eq. 1 below:

I(X,X) ≥ I(X, fθ(X)) ≥ I(X, gϕ(fθ(X))), (1)

where I indicates mutual information, f and g are transformation functions, and
θ and ϕ are parameters of f and g, respectively.

In deep neural networks, fθ(·) and gϕ(·) respectively represent the operations
of two consecutive layers in deep neural network. From Eq. 1, we can predict
that as the number of network layer becomes deeper, the original data will be
more likely to be lost. However, the gradient for updating parameters of the



6 C.-Y. Wang et al.

deep neural network are based on loss function calculated by the output of the
network as well as the given target. As one can imagine, the output of a deeper
neural network is less able to retain complete information about the prediction
target. This will make it possible to use incomplete information during network
training, resulting in unreliable gradients and poor convergence.

3.2 Reversible Functions

When a function r has an inverse transformation function v, we call this function
reversible function, as shown in Eq. 2.

X = vζ(rψ(X)), (2)

where ψ and ζ are parameters of r and v, respectively. Data X is converted by
reversible function without losing information, as shown in Eq. 3.

I(X,X) = I(X, rψ(X)) = I(X, vζ(rψ(X))). (3)

When the network’s transformation function is composed of reversible functions,
more reliable gradients can be obtained to update the model. Almost all of
today’s popular models conform to the reversible property, such as Eq. 4.

X l+1 = X l + f l+1
θ (X l), (4)

where l indicates the l-th layer of a PreAct ResNet and f is the transformation
function of the l-th layer. PreAct ResNet [22] repeatedly passes the original data
X to subsequent layers in an explicit way. Although such a design can make a
deep neural network with more than a thousand layers converge very well, it
destroys an important reason why we need deep neural networks. That is, for
difficult problems, it is difficult for us to directly find simple mapping functions
to map data to targets. This also explains why PreAct ResNet performs worse
than ResNet [21] when the number of layers is small.

In addition, masked modeling approaches use approximation methods to try
to find the inverse transformation v of r, so that the transformed features can
retain enough information using sparse features. The formula is as follows:

X = vζ(rψ(X) ·M), (5)

where M is a dynamic binary mask. Other methods that are commonly used to
perform the above tasks are diffusion model and variational autoencoder, and
they both have the function of finding the inverse function. However, when we
apply the above approach to a lightweight model, there will be defects because
the lightweight model will be under parameterized to a large amount of raw data.
Because of the above reason, important information I(Y,X) that maps data X
to target Y will also face the same problem. For this issue, we will explore it
using the concept of information bottleneck [59], which is formulated as follows:

I(X,X) ≥ I(Y,X) ≥ I(Y, fθ(X)) ≥ ... ≥ I(Y, Ŷ ). (6)



YOLOv9 7

Fig. 3: PGI and related network architectures and methods. (a) Path Aggregation
Network (PAN)) [37], (b) Reversible Columns (RevCol) [3], (c) conventional deep su-
pervision, and (d) proposed Programmable Gradient Information (PGI). PGI is mainly
composed of three components: (1) main branch, (2) auxiliary reversible branch, and
(3) multi-level auxiliary information.

Generally speaking, I(Y,X) will only occupy a very small part of I(X,X).
However, it is critical to the target task. Therefore, even if the amount of in-
formation lost in the feedforward stage is not significant, as long as I(Y,X) is
covered, the training effect will be greatly affected. The lightweight model it-
self is in an under parameterized state, so it is easy to lose a lot of important
information in the feedforward stage. Therefore, our goal is to accurately filter
I(Y,X) from I(X,X). As for fully preserving the information of X, that is dif-
ficult to achieve. Based on the above analysis, we hope to propose a training
method that can not only generate reliable gradients to update the model, but
also be suitable for shallow and lightweight neural networks.

4 Methodology

4.1 Programmable Gradient Information

In order to solve the aforementioned problems, we propose a new auxiliary super-
vision framework called Programmable Gradient Information (PGI), as shown in
Figure 3 (d). PGI mainly includes three components, namely (1) main branch,
(2) auxiliary reversible branch, and (3) multi-level auxiliary information. From
Figure 3 (d) we see that the inference process of PGI only uses main branch
and therefore does not require any additional inference cost. As for the other
two components, they are used to solve or slow down several important issues
in deep learning methods. Among them, auxiliary reversible branch is designed
to deal with the problems caused by the deepening of neural networks. Network
deepening will cause information bottleneck, which will make the loss function
unable to generate reliable gradients. As for multi-level auxiliary information,
it is designed to handle the error accumulation problem caused by deep super-
vision, especially for the lightweight model of multiple prediction branch. Next,
we will introduce these two components step by step.



8 C.-Y. Wang et al.

Fig. 4: The architecture of GELAN: (a) CSPNet [64], (b) ELAN [65], and (c) GELAN.
GELAN imitates CSPNet and extend ELAN to support any computational blocks.

Auxiliary Reversible Branch In PGI, we propose auxiliary reversible branch
to generate reliable gradients and update network parameters. PGI makes the
feedforward features maintain complete information that maps from data to tar-
gets, it avoids the loss function finding false correlations from incomplete feed-
forward features that are less relevant to the target. However, adding reversible
architecture to main branch will consume a lot of inference costs. We analyzed
the architecture of Figure 3 (b) and found that when additional connections
from deep to shallow layers are added, the inference time will increase by 20%.
When we repeatedly add the input data to the high-resolution computing layer
of the network (yellow box), the inference time even exceeds twice the time.

Since our goal is to use reversible architecture to obtain reliable gradients, re-
versible architecture is not necessary in the inference stage. We regard reversible
branch as a deep supervision branch, and then design auxiliary reversible branch,
as shown in Figure 3 (d). As for the main branch deep features that would suffer
from information bottleneck problem, they will receive reliable gradient infor-
mation from the auxiliary reversible branch. These gradient information will
drive parameter learning to assist in extracting correct and important informa-
tion, and enable the main branch to obtain features that are more effective for
the target task. Moreover, the reversible architecture performs worse on shallow
networks than on general networks because complex tasks require conversion in
deeper networks. Our proposed method does not force the main branch to re-
tain complete original information but updates it by generating useful gradient
through the auxiliary supervision mechanism. The advantage of this design is
that the proposed method can also be applied to shallower networks.

Multi-level Auxiliary Information In this section we will discuss how multi-
level auxiliary information works. The deep supervision architecture including
multiple prediction branch is shown in Figure 3 (c). For object detection, differ-
ent layer in the feature pyramids used to perform different tasks, for example
together they can detect objects of different sizes. Therefore, after connecting to
the deep supervision branch, the shallow features will be guided to learn the fea-
tures required for small object detection, and at this time the system will regard
the positions of objects of other sizes as the background. The above deed will



YOLOv9 9

cause the deep features to lose a lot of information needed to predict the target
object. Regarding this issue, we believe that each layer in the feature pyramid
needs to receive information about all target to make subsequent main branch
can retain complete information to learn predictions for various targets.

The concept of multi-level auxiliary information is to insert an integration
network between the feature pyramid hierarchy layers of auxiliary supervision
and the main branch, and then uses it to combine returned gradients from differ-
ent prediction heads, as shown in Figure 3 (d). Multi-level auxiliary information
is then to aggregate the gradient information containing all targets, and pass it
to the main branch and then update parameters. At this time, the characteristics
of the main branch’s feature pyramid hierarchy will not be dominated by some
specific target’s information. As a result, our method alleviates the broken in-
formation problem in deep supervision. In addition, any integrated network can
be used in multi-level auxiliary information. Therefore, we can plan the required
semantic levels to guide the learning of network architectures of different sizes.

4.2 Generalized ELAN

Generalized efficient layer aggregation network (GELAN) is combined with CSP-
Net [64] and ELAN [65]. It takes into account lightweight, inference speed, and
accuracy. Its overall architecture is shown in Figure 4. We generalized the capa-
bility of ELAN [65], which originally only used stacking of convolutional layers,
to a new architecture that can use any computational blocks.

5 Experiments

5.1 Experimental setup and implementation details

We verify the proposed method with MS COCO dataset, and follow settings of
YOLOv7 AF [63] to conduct experimental results. All models are trained from
scratch for 500 epochs. For implementation details, we built general and extended
version of YOLOv9 based on YOLOv7 [63] and Dynamic YOLOv7 [36] respec-
tively. In the design of the network architecture, we replaced ELAN [65] with
GELAN using CSPNet blocks [64] with planned RepConv [63] as computational
blocks. We also simplified downsampling module and optimized anchor-free pre-
diction head. As for the auxiliary loss part of PGI, we follow YOLOv7’s auxiliary
head setting. Please see Appendix for more settings and details.

5.2 Comparison with state-of-the-arts

Table 1 lists comparison of our proposed YOLOv9 with other train-from-scratch
real-time object detectors. For small and medium-sized model, YOLOv9 achieves
better parameter utilization than YOLO MS which uses depth-wise convolu-
tion. For compact-sized model, YOLOv9-C has 42% less parameters and 22%
less calculations than YOLOv7 AF, but achieves the same AP (53%). For large-
sized model, YOLOv9-E has 16% less parameters, 27% less calculations than



10 C.-Y. Wang et al.

Table 1: Comparison of state-of-the-art real-time object detectors.

Model #Param. FLOPs APval
50:95 APval

50 APval
75 APval

S APval
M APval

L

YOLOv6-N v3.0 [30] 4.7 11.4 37.0 52.7 – – – –
YOLOv6-S v3.0 [30] 18.5 45.3 44.3 61.2 – – – –
YOLOv6-M v3.0 [30] 34.9 85.8 49.1 66.1 – – – –
YOLOv6-L v3.0 [30] 59.6 150.7 51.8 69.2 – – – –

YOLOv7 [63] 36.9 104.7 51.2 69.7 55.9 31.8 55.5 65.0
YOLOv7-X [63] 71.3 189.9 52.9 71.1 51.4 36.9 57.7 68.6

YOLOv7-N AF [63] 3.1 8.7 37.6 53.3 40.6 18.7 41.7 52.8
YOLOv7-S AF [63] 11.0 28.1 45.1 61.8 48.9 25.7 50.2 61.2
YOLOv7 AF [63] 43.6 130.5 53.0 70.2 57.5 35.8 58.7 68.9

YOLOv8-N [15] 3.2 8.7 37.3 52.6 – – – –
YOLOv8-S [15] 11.2 28.6 44.9 61.8 – – – –
YOLOv8-M [15] 25.9 78.9 50.2 67.2 – – – –
YOLOv8-L [15] 43.7 165.2 52.9 69.8 57.5 35.3 58.3 69.8
YOLOv8-X [15] 68.2 257.8 53.9 71.0 58.7 35.7 59.3 70.7

DAMO YOLO-T [74] 8.5 18.1 42.0 58.0 45.2 23.0 46.1 58.5
DAMO YOLO-S [74] 12.3 37.8 46.0 61.9 49.5 25.9 50.6 62.5
DAMO YOLO-M [74] 28.2 61.8 49.2 65.5 53.0 29.7 53.1 66.1
DAMO YOLO-L [74] 42.1 97.3 50.8 67.5 55.5 33.2 55.7 66.6

Gold YOLO-N [61] 5.6 12.1 39.6 55.7 – 19.7 44.1 57.0
Gold YOLO-S [61] 21.5 46.0 45.4 62.5 – 25.3 50.2 62.6
Gold YOLO-M [61] 41.3 87.5 49.8 67.0 – 32.3 55.3 66.3
Gold YOLO-L [61] 75.1 151.7 51.8 68.9 – 34.1 57.4 68.2

YOLO MS-N [7] 4.5 17.4 43.4 60.4 47.6 23.7 48.3 60.3
YOLO MS-S [7] 8.1 31.2 46.2 63.7 50.5 26.9 50.5 63.0
YOLO MS [7] 22.2 80.2 51.0 68.6 55.7 33.1 56.1 66.5

YOLOv9-T (Ours) 2.0 7.7 38.3 53.1 41.3 18.6 42.3 54.7
YOLOv9-S (Ours) 7.1 26.4 46.8 63.4 50.7 26.6 56.0 64.5
YOLOv9-M (Ours) 20.0 76.3 51.4 68.1 56.1 33.6 57.0 68.0
YOLOv9-C (Ours) 25.3 102.1 53.0 70.2 57.8 36.2 58.5 69.3
YOLOv9-E (Ours) 57.3 189.0 55.6 72.8 60.6 40.2 61.0 71.4

YOLOv8-X, and has significant improvement of 1.7% AP. We also include Ima-
geNet pretrained model to make the comparison in Figure 5. As for the parameter
utilization in the deep model, YOLOv9 shows the huge advantages of using PGI,
it requires only 66% of the parameters while maintaining the accuracy as RT
DETR-X. As for the amount of computation, YOLOv9 is also very competitive.
The above comparison results show that our proposed YOLOv9 has significantly
improved in all aspects compared with existing methods.

5.3 Ablation Studies

Generalized ELAN For GELAN, we first do ablation studies for computa-
tional blocks. We used Res blocks [21], Dark blocks [49], and CSP blocks [64]
to conduct experiments, respectively. Table 2 shows that after replacing Conv
blocks in ELAN with different computational blocks, the model can maintain
good performance. Users are indeed free to replace computational blocks and
use them on their respective inference devices. Among different computational
block replacements, CSP blocks perform particularly well. They not only re-
duce the amount of parameters and computation, but also improve AP by 0.7%.
Therefore, we choose CSP-ELAN as the component unit of GELAN in YOLOv9.



YOLOv9 11

Fig. 5: Comparison of state-of-the-art real-time object detectors. The methods par-
ticipating in the comparison all use ImageNet as pre-trained weights, including RT
DETR [43], RTMDet [44], and PP-YOLOE [73], etc. The YOLOv9 that uses train-
from-scratch method clearly surpasses the performance of other methods.

Table 2: Ablation study on various computational blocks.

Model Computational Block #Param. FLOPs APval
50:95

GELAN-S Conv 6.2M 23.5G 44.8%
GELAN-S Res [21] 5.4M 21.0G 44.3%
GELAN-S Dark [49] 5.7M 21.8G 44.5%
GELAN-S CSP [64] 5.9M 22.4G 45.5%

Next, we conduct ELAN block-depth and CSP block-depth experiments on
GELAN, and display the results in Table 3. We can see when the depth is greater
than or equal to 2, no matter it is improving the ELAN depth or the CSP depth,
the number of parameters, the amount of computation, and the accuracy will
always show a linear relationship. This means GELAN is not sensitive to the
depth, so users can arbitrarily adjust the depth of GELAN, and have a model
with stable performance. In Table 3, for YOLOv9-{S,M,C}, we set the pairing
of the ELAN depth and the CSP depth to {{2, 3}, {2, 1}, {2, 1}}.

Table 3: Ablation study on ELAN and CSP depth.

Model DepthELAN DepthCSP #Param. FLOPs APval
50:95

GELAN-S 2 1 5.9M 22.4G 45.5%
GELAN-S 2 2 6.5M 24.4G 46.0%
GELAN-S 3 1 7.1M 26.3G 46.5%
GELAN-S 2 3 7.1M 26.4G 46.7%

GELAN-M 2 1 20.0M 76.3G 51.1%
GELAN-M 2 2 22.2M 85.1G 51.7%
GELAN-M 3 1 24.3M 93.5G 51.8%
GELAN-M 2 3 24.4M 94.0G 52.3%

GELAN-C 1 1 18.9M 77.5G 50.7%
GELAN-C 2 1 25.3M 102.1G 52.5%
GELAN-C 2 2 28.6M 114.4G 53.0%
GELAN-C 3 1 31.7M 126.8G 53.2%
GELAN-C 2 3 31.9M 126.7G 53.3%



12 C.-Y. Wang et al.

Programmable Gradient Information In terms of PGI, we performed abla-
tion studies on auxiliary reversible branch and multi-level auxiliary information
on the backbone and neck, respectively. We designed auxiliary reversible branch
called reversible composite network (RCN) to use DHLC [34] linkage to obtain
multi-level reversible information. As for multi-level auxiliary information, we
use FPN and PAN for ablation studies and the role of PFH is equivalent to the
traditional deep supervision. The results are listed in Table 4. From Table 4,
we can see that PFH is only effective in extremely deep models, while our pro-
posed PGI can improve accuracy under different combinations. Especially when
using RCN, we get stable and better results. We also apply the lead-head guided
assignment (LHG) [63] to PGI, and achieved much better performance.

Table 4: Ablation study on PGI of backbone and neck.

Model Gbackbone Gneck APval
50:95 APval

S APval
M APval

L

GELAN-C – – 52.5% 35.8% 57.6% 69.4%
GELAN-C PFH – 52.5% 35.3% 58.1% 68.9%
GELAN-C FPN – 52.6% 35.3% 58.1% 68.9%
GELAN-C – RCN 52.7% 35.3% 58.4% 68.9%
GELAN-C FPN RCN 52.8% 35.8% 58.2% 69.1%
GELAN-C RCN – 52.9% 35.2% 58.7% 68.6%
GELAN-C LHG-RCN – 53.0% 36.3% 58.5% 69.1%

GELAN-E – – 55.0% 38.0% 60.6% 70.9%
GELAN-E PFH – 55.3% 38.3% 60.3% 71.6%
GELAN-E FPN – 55.6% 40.2% 61.0% 71.4%
GELAN-E PAN – 55.5% 39.0% 61.1% 71.5%
GELAN-E FPN RCN 55.6% 39.8% 60.9% 71.9%

We further make comparisons of PGI and deep supervision, these results are
shown in Table 5. We can see deep supervision can only bring gains in extremely
deep model. The proposed PGI can effectively handle problems such as informa-
tion bottleneck and information broken, and can comprehensively improve the
accuracy of models at all scales. The concept of PGI brings two valuable contri-
butions. The first one is to make the auxiliary supervision method applicable to
shallow models, while the second one is to make the deep model training process
obtain more reliable gradients. These gradients enable deep models to use more
accurate information to establish correct correlations between data and targets.

Table 5: Ablation study on PGI.

Model APval
50:95 APval

50 APval
75

GELAN-S 46.7% 63.0% 50.7%
+ Deep Supervision 46.5% -0.2 62.9% -0.1 50.5% -0.2
+ PGI 46.8% +0.1 63.4% +0.4 50.7% =

GELAN-M 51.1% 67.9% 55.7%
+ Deep Supervision 51.2% +0.1 68.2% +0.3 55.7% =
+ PGI 51.4% +0.3 68.1% +0.2 56.1% +0.4

GELAN-C 52.5% 69.5% 57.3%
+ Deep Supervision 52.5% = 69.9% +0.4 57.1% -0.2
+ PGI 53.0% +0.5 70.3% +0.8 57.8% +0.5

GELAN-E 55.0% 71.9% 60.0%
+ Deep Supervision 55.3% +0.3 72.3% +0.4 60.2% +0.2
+ PGI 55.6% +0.6 72.8% +0.9 60.6% +0.6



YOLOv9 13

Latency of Model We further compare the latency of different versions of
YOLO. The results are shown in Table 6. From the results we can see that the
proposed YOLOv9 is the fastest and the most accurate model. The YOLOv9-C
is 10% faster than YOLOv7 AF and maintain same accuracy.

Table 6: Batch 1 latency on T4 GPUs using TensorRT engine in FP16.
YOLOv6-L v3.0 [30] YOLOv7 AF [63] YOLOv8-L [15] YOLOv9-C (Ours)

Latency (ms) 7.9 6.7 8.1 6.1
APval

50:95 (%) 51.8/52.8distill 53.0 52.9 53.0

5.4 The Power of PGI

Visualization of PGI Figure 6 is used to explore and visualize the informa-
tion bottleneck issues and show whether PGI can provide more reliable gradients
during the training process. From the comparison, we can clearly see that PGI
accurately and concisely captures the area containing objects. As for GELAN
that does not use PGI, we found that it had divergence when detecting object
boundaries, and it also produced unexpected responses in some background ar-
eas. This experiment confirms that PGI can indeed provide better gradients to
update parameters and enable the feedforward stage of the main branch can ef-
fectively capture the correct relationship between the input data and the target.

Fig. 6: PAN visualization of GELAN and YOLOv9 (GELAN + PGI) after one epoch
of warm-up. GELAN originally had some divergence, but after adding PGI’s reversible
branch, it is more capable of focusing on the target object.

Versatility of PGI on Small Datasets Since PGI can more accurately cap-
ture the relation between data and targets, in theory it should be able to learn
more useful information from smaller datasets. And the pre-trained YOLOv9
should have better transfer learning capabilities. Table 7 shows that PGI has ex-
cellent train-from-scratch and transfer learning capabilities on the small dataset.

Table 7: PGI on small datasets (VOC).
GELAN-S YOLOv9-S GELAN-S YOLOv9-S YOLOv5-S YOLOv8-S

pretrain – – COCO COCO COCO COCO
APbox 64.4% 65.1% 73.5% 74.4% 62.4% 67.1%
APbox

50 82.6% 83.1% 89.8% 90.4% 86.6% 85.8%



14 C.-Y. Wang et al.

The Versatility of PGI in Various Tasks We extend PGI in different tasks,
including instance segmentation, panoptic segmentation, and image captioning.
In Table 8, the results prove that PGI can indeed be used in various tasks.

Table 8: PGI in various tasks.
YOLOv9 YOLOv9 Segment YOLOv9 Panoptic YOLOv9 Caption

metric APbox APbox/APmask mIoUsem/PQpan BLEU4cap

no PGI 52.5% 52.3%/42.4% 39.0%/39.4% 38.8%
with PGI 53.0% 52.9%/43.2% 39.8%/40.5% 39.1%

The Versatility of PGI in Various Architectures We extend PGI in
different training scheme and architectures, including mask-guided YOLOv9
(MG YOLOv9), light head YOLOv9 (LH YOLOv9), YOLOv9 with Transformer
(YOLOv9 TR), YOLOv9 using hybrid convolution (YOLOv9 Lite), and YOLOv9
using depth-wise convolution (YOLOv9 Light). In Table 9, the results prove that
PGI can indeed be used in various architectures.

Table 9: PGI in various models.
MG YOLOv9 LH YOLOv9 YOLOv9 TR YOLOv9 Lite YOLOv9 Light

#param. 25.3M 21.1M 14.1M 13.3M 2.5M
FLOPs 102.1G 82.5G 67.5G 66.7G 11.0G
APbox 53.3% 52.9% 53.1% 52.7% 44.1%

Training Cost of PGI Table 10 shows training time of YOLOv9-C with dif-
ferent PGI methods on RTX 6000 ada. The experimental results are shown in
Table 10. It shows that using PGI will increase the training time by 30%∼40%.

Table 10: Training cost of PGI with batch size 128 training on RTX 6000 ada.
PGI method – PFR FPN RCN LHG-RCN
min/epoch 7 8 9 11 10

6 Conclusions

In this paper, we propose to use PGI to solve the information bottleneck prob-
lem and the problem that the deep supervision mechanism is not suitable for
lightweight neural networks. We designed GELAN, a highly efficient and flex-
ible neural network for various devices. In terms of object detection, GELAN
has strong and stable performance at different computational blocks and depth
settings. It can indeed be widely expanded into a model suitable for various in-
ference devices. For the above two issues, the introduction of PGI allows both
lightweight models and deep models to achieve significant improvements in accu-
racy. The YOLOv9, designed by combining PGI and GELAN, has shown strong
competitiveness. Its excellent design allows the deep model to reduce the number
of parameters by 49% and the amount of calculations by 43% compared with
YOLOv8, but it still has a 0.6% AP improvement on MS COCO dataset.



YOLOv9 15

Acknowledgements

The authors wish to thank National Center for High-performance Computing
(NCHC) for providing computational and storage resources.

References

1. Bao, H., Dong, L., Piao, S., Wei, F.: BEiT: BERT pre-training of image transform-
ers. In: International Conference on Learning Representations (ICLR) (2022)

2. Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: YOLOv4: Optimal speed and accuracy
of object detection. arXiv preprint arXiv:2004.10934 (2020)

3. Cai, Y., Zhou, Y., Han, Q., Sun, J., Kong, X., Li, J., Zhang, X.: Reversible column
networks. In: International Conference on Learning Representations (ICLR) (2023)

4. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.:
End-to-end object detection with transformers. In: Proceedings of the European
Conference on Computer Vision (ECCV). pp. 213–229 (2020)

5. Chen, K., Lin, W., Li, J., See, J., Wang, J., Zou, J.: AP-loss for accurate one-stage
object detection. IEEE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI) 43(11), 3782–3798 (2020)

6. Chen, Y., Liu, Y., Jiang, D., Zhang, X., Dai, W., Xiong, H., Tian, Q.: SdAE: Self-
distillated masked autoencoder. In: Proceedings of the European Conference on
Computer Vision (ECCV). pp. 108–124 (2022)

7. Chen, Y., Yuan, X., Wu, R., Wang, J., Hou, Q., Cheng, M.M.: YOLO-MS: re-
thinking multi-scale representation learning for real-time object detection. arXiv
preprint arXiv:2308.05480 (2023)

8. Ding, M., Xiao, B., Codella, N., Luo, P., Wang, J., Yuan, L.: DaVIT: Dual attention
vision transformers. In: Proceedings of the European Conference on Computer
Vision (ECCV). pp. 74–92 (2022)

9. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al.: An image is worth
16x16 words: Transformers for image recognition at scale. In: International Con-
ference on Learning Representations (ICLR) (2021)

10. Feng, C., Zhong, Y., Gao, Y., Scott, M.R., Huang, W.: TOOD: Task-aligned one-
stage object detection. In: Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV). pp. 3490–3499 (2021)

11. Gao, S.H., Cheng, M.M., Zhao, K., Zhang, X.Y., Yang, M.H., Torr, P.: Res2Net:
A new multi-scale backbone architecture. IEEE Transactions on Pattern Analysis
and Machine Intelligence (TPAMI) 43(2), 652–662 (2019)

12. Ge, Z., Liu, S., Li, Z., Yoshie, O., Sun, J.: OTA: Optimal transport assignment
for object detection. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). pp. 303–312 (2021)

13. Ge, Z., Liu, S., Wang, F., Li, Z., Sun, J.: YOLOX: Exceeding YOLO series in 2021.
arXiv preprint arXiv:2107.08430 (2021)

14. Glenn, J.: YOLOv5 release v7.0. https://github.com/ultralytics/yolov5/
releases/tag/v7.0 (2022)

15. Glenn, J.: YOLOv8 release v8.1.0. https : / / github . com / ultralytics /
ultralytics/releases/tag/v8.1.0 (2024)

16. Gomez, A.N., Ren, M., Urtasun, R., Grosse, R.B.: The reversible residual network:
Backpropagation without storing activations. Advances in Neural Information Pro-
cessing Systems (NeurIPS) (2017)

https://github.com/ultralytics/yolov5/releases/tag/v7.0
https://github.com/ultralytics/yolov5/releases/tag/v7.0
https://github.com/ultralytics/ultralytics/releases/tag/v8.1.0
https://github.com/ultralytics/ultralytics/releases/tag/v8.1.0


16 C.-Y. Wang et al.

17. Gu, A., Dao, T.: Mamba: Linear-time sequence modeling with selective state
spaces. arXiv preprint arXiv:2312.00752 (2023)

18. Guo, C., Fan, B., Zhang, Q., Xiang, S., Pan, C.: AugFPN: Improving multi-scale
feature learning for object detection. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR). pp. 12595–12604 (2020)

19. Han, Q., Cai, Y., Zhang, X.: RevColV2: Exploring disentangled representations
in masked image modeling. Advances in Neural Information Processing Systems
(NeurIPS) (2023)

20. Hayder, Z., He, X., Salzmann, M.: Boundary-aware instance segmentation. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR). pp. 5696–5704 (2017)

21. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). pp. 770–778 (2016)

22. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks.
In: Proceedings of the European Conference on Computer Vision (ECCV). pp.
630–645. Springer (2016)

23. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected con-
volutional networks. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). pp. 4700–4708 (2017)

24. Huang, K.C., Wu, T.H., Su, H.T., Hsu, W.H.: MonoDTR: Monocular 3D object
detection with depth-aware transformer. In: Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR). pp. 4012–4021 (2022)

25. Huang, L., Li, W., Shen, L., Fu, H., Xiao, X., Xiao, S.: YOLOCS: Object detection
based on dense channel compression for feature spatial solidification. arXiv preprint
arXiv:2305.04170 (2023)

26. Jaegle, A., Gimeno, F., Brock, A., Vinyals, O., Zisserman, A., Carreira, J.: Per-
ceiver: General perception with iterative attention. In: International Conference on
Machine Learning (ICML). pp. 4651–4664 (2021)

27. Kenton, J.D.M.W.C., Toutanova, L.K.: BERT: Pre-training of deep bidirectional
transformers for language understanding. In: Proceedings of NAACL-HLT. vol. 1,
p. 2 (2019)

28. Lee, C.Y., Xie, S., Gallagher, P., Zhang, Z., Tu, Z.: Deeply-supervised nets. In:
Artificial Intelligence and Statistics. pp. 562–570 (2015)

29. Levinshtein, A., Sereshkeh, A.R., Derpanis, K.: DATNet: Dense auxiliary tasks
for object detection. In: Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision (WACV). pp. 1419–1427 (2020)

30. Li, C., Li, L., Geng, Y., Jiang, H., Cheng, M., Zhang, B., Ke, Z., Xu, X., Chu, X.:
YOLOv6 v3.0: A full-scale reloading. arXiv preprint arXiv:2301.05586 (2023)

31. Li, C., Li, L., Jiang, H., Weng, K., Geng, Y., Li, L., Ke, Z., Li, Q., Cheng, M.,
Nie, W., et al.: YOLOv6: A single-stage object detection framework for industrial
applications. arXiv preprint arXiv:2209.02976 (2022)

32. Li, H., Zhu, J., Jiang, X., Zhu, X., Li, H., Yuan, C., Wang, X., Qiao, Y., Wang, X.,
Wang, W., et al.: Uni-perceiver v2: A generalist model for large-scale vision and
vision-language tasks. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). pp. 2691–2700 (2023)

33. Li, S., He, C., Li, R., Zhang, L.: A dual weighting label assignment scheme for object
detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). pp. 9387–9396 (2022)



YOLOv9 17

34. Liang, T., Chu, X., Liu, Y., Wang, Y., Tang, Z., Chu, W., Chen, J., Ling, H.:
CBNet: A composite backbone network architecture for object detection. IEEE
Transactions on Image Processing (TIP) (2022)

35. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature
pyramid networks for object detection. In: Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR). pp. 2117–2125 (2017)

36. Lin, Z., Wang, Y., Zhang, J., Chu, X.: DynamicDet: A unified dynamic architecture
for object detection. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). pp. 6282–6291 (2023)

37. Liu, S., Qi, L., Qin, H., Shi, J., Jia, J.: Path aggregation network for instance
segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). pp. 8759–8768 (2018)

38. Liu, Y., Wang, Y., Wang, S., Liang, T., Zhao, Q., Tang, Z., Ling, H.: CBNet: A
novel composite backbone network architecture for object detection. In: Proceed-
ings of the AAAI Conference on Artificial Intelligence (AAAI). pp. 11653–11660
(2020)

39. Liu, Y., Tian, Y., Zhao, Y., Yu, H., Xie, L., Wang, Y., Ye, Q., Liu, Y.: Vmamba:
Visual state space model. arXiv preprint arXiv:2401.10166 (2024)

40. Liu, Z., Hu, H., Lin, Y., Yao, Z., Xie, Z., Wei, Y., Ning, J., Cao, Y., Zhang, Z., Dong,
L., et al.: Swin transformer v2: Scaling up capacity and resolution. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) (2022)

41. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin trans-
former: Hierarchical vision transformer using shifted windows. In: Proceedings of
the IEEE/CVF International Conference on Computer Vision (ICCV). pp. 10012–
10022 (2021)

42. Liu, Z., Mao, H., Wu, C.Y., Feichtenhofer, C., Darrell, T., Xie, S.: A ConvNet for
the 2020s. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). pp. 11976–11986 (2022)

43. Lv, W., Xu, S., Zhao, Y., Wang, G., Wei, J., Cui, C., Du, Y., Dang, Q., Liu,
Y.: DETRs beat YOLOs on real-time object detection. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
pp. 16965–16974 (2024)

44. Lyu, C., Zhang, W., Huang, H., Zhou, Y., Wang, Y., Liu, Y., Zhang, S., Chen,
K.: RTMDet: An empirical study of designing real-time object detectors. arXiv
preprint arXiv:2212.07784 (2022)

45. Oksuz, K., Cam, B.C., Akbas, E., Kalkan, S.: A ranking-based, balanced loss func-
tion unifying classification and localisation in object detection. Advances in Neural
Information Processing Systems (NeurIPS) 33, 15534–15545 (2020)

46. Oksuz, K., Cam, B.C., Akbas, E., Kalkan, S.: Rank & sort loss for object detec-
tion and instance segmentation. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV). pp. 3009–3018 (2021)

47. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: Unified, real-
time object detection. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). pp. 779–788 (2016)

48. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
pp. 7263–7271 (2017)

49. Redmon, J., Farhadi, A.: YOLOv3: An incremental improvement. arXiv preprint
arXiv:1804.02767 (2018)



18 C.-Y. Wang et al.

50. Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Gener-
alized intersection over union: A metric and a loss for bounding box regression.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). pp. 658–666 (2019)

51. Shen, Z., Liu, Z., Li, J., Jiang, Y.G., Chen, Y., Xue, X.: Object detection from
scratch with deep supervision. IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI) 42(2), 398–412 (2019)

52. Shridhar, M., Manuelli, L., Fox, D.: Perceiver-actor: A multi-task transformer for
robotic manipulation. In: Conference on Robot Learning (CoRL). pp. 785–799
(2023)

53. Sun, P., Jiang, Y., Xie, E., Shao, W., Yuan, Z., Wang, C., Luo, P.: What makes
for end-to-end object detection? In: International Conference on Machine Learning
(ICML). pp. 9934–9944 (2021)

54. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
pp. 1–9 (2015)

55. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the incep-
tion architecture for computer vision. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR). pp. 2818–2826 (2016)

56. Tang, Z., Cho, J., Lei, J., Bansal, M.: Perceiver-VL: Efficient vision-and-language
modeling with iterative latent attention. In: Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision (WACV). pp. 4410–4420 (2023)

57. Tian, Z., Shen, C., Chen, H., He, T.: FCOS: Fully convolutional one-stage object
detection. In: Proceedings of the IEEE/CVF International Conference on Com-
puter Vision (ICCV). pp. 9627–9636 (2019)

58. Tian, Z., Shen, C., Chen, H., He, T.: FCOS: A simple and strong anchor-free
object detector. IEEE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI) 44(4), 1922–1933 (2022)

59. Tishby, N., Zaslavsky, N.: Deep learning and the information bottleneck principle.
In: IEEE Information Theory Workshop (ITW). pp. 1–5 (2015)

60. Tu, Z., Talebi, H., Zhang, H., Yang, F., Milanfar, P., Bovik, A., Li, Y.: MaxVIT:
Multi-axis vision transformer. In: Proceedings of the European Conference on Com-
puter Vision (ECCV). pp. 459–479 (2022)

61. Wang, C., He, W., Nie, Y., Guo, J., Liu, C., Han, K., Wang, Y.: Gold-YOLO:
Efficient object detector via gather-and-distribute mechanism. Advances in Neural
Information Processing Systems (NeurIPS) (2023)

62. Wang, C.Y., Bochkovskiy, A., Liao, H.Y.M.: Scaled-YOLOv4: Scaling cross stage
partial network. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). pp. 13029–13038 (2021)

63. Wang, C.Y., Bochkovskiy, A., Liao, H.Y.M.: YOLOv7: Trainable bag-of-freebies
sets new state-of-the-art for real-time object detectors. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
pp. 7464–7475 (2023)

64. Wang, C.Y., Liao, H.Y.M., Wu, Y.H., Chen, P.Y., Hsieh, J.W., Yeh, I.H.: CSPNet:
A new backbone that can enhance learning capability of CNN. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition Work-
shops (CVPRW). pp. 390–391 (2020)

65. Wang, C.Y., Liao, H.Y.M., Yeh, I.H.: Designing network design strategies through
gradient path analysis. Journal of Information Science and Engineering (JISE)
(2023)



YOLOv9 19

66. Wang, J., Song, L., Li, Z., Sun, H., Sun, J., Zheng, N.: End-to-end object detection
with fully convolutional network. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). pp. 15849–15858 (2021)

67. Wang, L., Lee, C.Y., Tu, Z., Lazebnik, S.: Training deeper convolutional networks
with deep supervision. arXiv preprint arXiv:1505.02496 (2015)

68. Wang, W., Xie, E., Li, X., Fan, D.P., Song, K., Liang, D., Lu, T., Luo, P., Shao,
L.: Pyramid vision transformer: A versatile backbone for dense prediction with-
out convolutions. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV). pp. 568–578 (2021)

69. Wang, W., Xie, E., Li, X., Fan, D.P., Song, K., Liang, D., Lu, T., Luo, P., Shao,
L.: PVT v2: Improved baselines with pyramid vision transformer. Computational
Visual Media 8(3), 415–424 (2022)

70. Woo, S., Debnath, S., Hu, R., Chen, X., Liu, Z., Kweon, I.S., Xie, S.: ConvNeXt v2:
Co-designing and scaling convnets with masked autoencoders. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
pp. 16133–16142 (2023)

71. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transforma-
tions for deep neural networks. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). pp. 1492–1500 (2017)

72. Xie, Z., Zhang, Z., Cao, Y., Lin, Y., Bao, J., Yao, Z., Dai, Q., Hu, H.: SimMIM: A
simple framework for masked image modeling. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). pp. 9653–9663
(2022)

73. Xu, S., Wang, X., Lv, W., Chang, Q., Cui, C., Deng, K., Wang, G., Dang, Q.,
Wei, S., Du, Y., et al.: PP-YOLOE: An evolved version of YOLO. arXiv preprint
arXiv:2203.16250 (2022)

74. Xu, X., Jiang, Y., Chen, W., Huang, Y., Zhang, Y., Sun, X.: DAMO-YOLO: A
report on real-time object detection design. arXiv preprint arXiv:2211.15444 (2022)

75. Zhang, R., Qiu, H., Wang, T., Guo, Z., Cui, Z., Qiao, Y., Li, H., Gao, P.: Mon-
oDETR: Depth-guided transformer for monocular 3D object detection. In: Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision (ICCV).
pp. 9155–9166 (2023)

76. Zheng, Z., Wang, P., Liu, W., Li, J., Ye, R., Ren, D.: Distance-IoU loss: Faster
and better learning for bounding box regression. In: Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI). vol. 34, pp. 12993–13000 (2020)

77. Zhou, D., Fang, J., Song, X., Guan, C., Yin, J., Dai, Y., Yang, R.: IoU loss for
2D/3D object detection. In: International Conference on 3D Vision (3DV). pp.
85–94 (2019)

78. Zhu, B., Wang, J., Jiang, Z., Zong, F., Liu, S., Li, Z., Sun, J.: AutoAssign: Differen-
tiable label assignment for dense object detection. arXiv preprint arXiv:2007.03496
(2020)

79. Zhu, L., Liao, B., Zhang, Q., Wang, X., Liu, W., Wang, X.: Vision mamba: Efficient
visual representation learning with bidirectional state space model. arXiv preprint
arXiv:2401.09417 (2024)

80. Zhu, X., Zhu, J., Li, H., Wu, X., Li, H., Wang, X., Dai, J.: Uni-perceiver: Pre-
training unified architecture for generic perception for zero-shot and few-shot tasks.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). pp. 16804–16815 (2022)

81. Zong, Z., Song, G., Liu, Y.: DETRs with collaborative hybrid assignments training.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). pp. 6748–6758 (2023)


	YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information

