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Abstract. In medical imaging, the alignment of multi-modal images
plays a critical role in providing comprehensive information for image-
guided therapies. Despite its importance, multi-modal image registration
poses significant challenges due to the complex and often unknown spa-
tial relationships between different image modalities. To address this,
we introduce a novel unsupervised translation-based multi-modal reg-
istration method, termed Invertible Neural Network-based Registration
(INNReg). INNReg consists of an image-to-image translation network
that converts multi-modal images into mono-modal counterparts and a
registration network that uses the translated mono-modal images to align
the multi-modal images. Specifically, to ensure the preservation of geo-
metric consistency after image translation, we introduce an Invertible
Neural Network (INN) that leverages a dynamic depthwise convolution-
based local attention mechanism. Additionally, we design a novel bar-
rier loss function based on Normalized Mutual Information to impose
constraints on the registration network, which enhances the registra-
tion accuracy. The superior performance of INNReg is demonstrated
through experiments on two public multi-modal medical image datasets,
including MRI T1/T2 and MRI/CT pairs. The code is available at
https://github.com/MeggieGuo/INNReg.

Keywords: Multi-modal image registration · Invertible Neural Network
· Image translation · Barrier function

1 Introduction

Multi-modal image registration aims at aligning images from different modalities
into a common coordinate system, facilitating accurate comparison, integration,
and analysis. This process is particularly critical in the fusion of medical images
from distinct modalities such as Magnetic Resonance Imaging (MRI), Positron
Emission Tomography (PET), Computed Tomography (CT), etc. In medical
imaging, each modality presents unique insights into anatomical structures by
highlighting various physical attributes, and the fusion across modalities not only
leverages the unique strengths of each modality but also provides a more holistic
understanding of patient anatomy, significantly enhancing diagnostic accuracy
and the effectiveness of treatment strategies.

https://github.com/MeggieGuo/INNReg
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The challenge of multi-modal image registration lies in bridging the gap be-
tween distinct image characteristics inherent to each modality. Early works for
addressing this challenge mainly use supervised learning methods that rely on la-
belled data, such as ground-truth deformation fields or segmentation masks [31].
However, the applicability of these supervised learning methods is severely lim-
ited by the scarcity of annotated data due to the heavy effort required for manual
labelling. Particularly, for registration, it is difficult to acquire human-labelled
deformation fields. Due to these reasons, many research [4,7,24,25] instead focus
on unsupervised learning strategies and attempt to design proper qualitative sim-
ilarity metrics on the alignment between images from different modalities. These
methods eliminate the need for labelled data, though their performance heavily
relies on the design of similarity metrics, which can be challenging to define.

For instance, metrics like the Sum of Squared Differences (SSD) and Nor-
malized Cross-Correlation (NCC) are unsuitable for multi-modal contexts, often
resulting in suboptimal registration outcomes [3, 4]. The Modality-Independent
Neighbourhood Descriptor (MIND) focuses on local structural information and
exhibits poor performance in global alignment tasks [13]. On the other hand,
while Normalized Mutual Information (NMI) fares better in global alignment, it
struggles with local alignment tasks [25].

Recent works on multi-modal image registration have introduced a new deep
learning-based paradigm. This paradigm typically consists of a Generative Ad-
versarial Network (GAN) [17] that translates images of different modalities into
the same modality, alongside a mono-modal image registration network for align-
ing the translated images. It is noteworthy that within this paradigm, the objec-
tive is for the GAN to harmonize the style of different modalities after translation
while preserving the underlying geometry. Subsequently, the registration network
learns the deformation field and warps the image geometry accordingly. In con-
trast to the aforementioned unsupervised learning strategies reliant on similarity
metrics, translation-based registration methods offer a workaround to the chal-
lenge of devising effective metrics. However, they frequently introduce geometric
inconsistencies, leading to a notable decline in registration performance and po-
tential mode collapse when employing GANs in the translation process [1].

In this paper, we propose a novel unsupervised translation-based multi-modal
registration method, termed Invertible Neural Network-based Registration (IN-
NReg). Unlike most existing translation-based methods that rely on GANs, IN-
NReg utilizes an Invertible Neural Network (INN) as the translation network.
The invertible nature of INN facilitates the learning of modality mapping while
ensuring geometric consistency. Additionally, to enhance feature extraction dur-
ing the translation process, we augment INN with a dynamic depthwise con-
volution (DDWConv) based on a local attention scheme, which encourages the
network to focus on specific regions of the source image [12]. Furthermore, we
propose a novel barrier NMI loss function to impose constraints on the reg-
istration network, addressing the issue of low registration accuracy caused by
geometric inconsistency in the translation. To assess the effectiveness of our pro-
posed method, we conduct extensive experiments on two public multi-modal
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medical image datasets, including MRI T1/T2 and MRI/CT image pairs. Both
qualitative and quantitative analyses demonstrate the competitive performance
of our INNReg method in multi-modal registration

The main contributions of our work can be summarized as follows:

– We propose INNReg, the first multi-modal image registration method that
integrates a translation task through INN. Notably, it effectively addresses
the inherent issue of geometric inconsistency found in previous multi-modal
image registration approaches that incorporate image translation. In these
methods, the image after translation alters not only the appearance but also
the underlying geometry of the original image.

– We integrate local attention through dynamic depthwise convolution to cap-
ture fine-grained details during the translation process. This method further
ensures the preservation of geometric consistency during image translation,

– We propose a novel barrier NMI loss function to constrain the registra-
tion network, effectively circumventing the inherent limitations of NMI and
thereby improving registration accuracy.

– Through extensive experiments, we demonstrate the superior qualitative
and quantitative performance of INNReg compared to state-of-the-art multi-
modal image registration approaches.

2 Related Work

2.1 I2I Translation-based Multi-modal Image Registration

In recent years, multi-modal image registration has seen the emergence of several
unsupervised translation-based methods. These methods generally adhere to a
registration-by-translation paradigm, wherein an Image-to-Image (I2I) transla-
tion network is tasked with synthesizing images that mimic the target modality’s
appearance. This allows for the application of mono-modality similarity metrics
to multi-model registration tasks. Among unsupervised translation techniques,
cycle-consistent generative adversarial networks (CycleGAN [42]) have gained
popularity due to their ability to enforce content preservation through cycle
consistency. However, this approach often generates multiple solutions, risking
the anatomical accuracy of translated images by introducing artefacts and po-
tentially degrading the quality of multi-modal registration [22].

To avoid these challenges, various strategies have been explored beyond the
scope of CycleGAN. Qin et al. [29] leveraged image disentanglement to segre-
gate images into domain-invariant shape features and domain-specific appear-
ance features, facilitating the training of a registration network using the shape
features across modalities. However, it is challenging to clearly define and con-
strain domain-invariant and domain-specific features between different modal-
ities. Arar et al. [1] proposed a methodology aiming to make the translation
and registration steps commutative, thereby indirectly promoting the structural
consistency of the translation network. However, the reliance on a GAN-based
framework implies that structural consistency could be compromised by the dis-
criminator’s influence.
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2.2 Invertible Neural Network

Invertible Neural Network (INN) [10,11] has several advantages over GAN, which
are commonly used in conventional forward propagation methods. Firstly, GAN
often faces significant information loss, while INN only results in slight informa-
tion loss benefit from both forward and backward computations. Secondly, INN
has a significantly lower risk of mode collapse, which is a common issue in GAN
training. These advantages of INN make it particularly suited for applications
such as image fusion [40, 41], image denoising [15] and I2I translation [2]. For
example, Zhao et al. [40] utilize the INN blocks for lossless information trans-
mission in the encoder of their image fusion model. Ardizzone et al. [2] combine
an INN with an unconstrained feed-forward network for conditioning to address
the task of diverse I2I translation for natural images. Huang et al. [15] propose
a novel wavelet-inspired invertible network with redundant invertible sparsify-
ing transforms for image denoising. The reversible architecture of INNs enables
precise manipulation of latent spaces, facilitating complex generative tasks while
guaranteeing accurate reconstruction of the original input data. INNs have also
shown significant promise in enhancing image quality by establishing a direct
correlation between inputs and their high-resolution outputs. Despite these ad-
vancements, the potential of INNs in the realm of I2I translation remains un-
tapped.

2.3 Local Attention by Dynamic Depthwise Convolution

Attention mechanisms [35] are commonly-used techniques in the fields of im-
age processing [26, 39] and computer vision [14, 36] for encoding long-range de-
pendency in extracted features. In I2I translation, the integration of attention
mechanisms has emerged as a significant advancement, enabling more focused
and context-aware transformations between source and target domains. To list
a few, Tang et al. [34] proposed an Attention-Guided Generative Adversarial
Network (AGGAN) to transfer high-level semantic parts of images to obtain
high-quality images; Tang et al. [33] developed a Multi-Channel Attention Se-
lection GAN to follow external semantic guidance for I2I translation.

In vision tasks, attention usually acts as a dynamic information aggregator in
spatial and temporal domains. Specifically, the local attention mechanism forms
the keys and values in a window that the query lies in. The attention output is
the weighted aggregation of the corresponding values in the local window, where
the weights are the softmax normalisation of the dot-product between the queries
and the keys. A notable work in this category is [12], which extensively analy-
ses local attention, and establishes the connection between dynamic depthwise
convolution and local self-attention by connecting the attention weights for self-
attention and the dynamic weights for convolution. Moreover, they empirically
observe that the local attention models based on dynamic depthwise convolution
perform on par with or slightly better than previous implementations but have
lower computational complexity.
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Fig. 1: The framework of the proposed INNReg for multi-modal image registration.
In the translation process (Top), the forward transformation T translates the source
image x into the domain of y as fake_y, and the reverse transformation T−1 translates
fake_y back into the domain of x as recon_x. The registration process (Bottom) first
uses the registration network R to predict the deformation field ϕ from x and y, and
then uses ϕ and a Spatial Transform function to warp x and fake_y, resulting in x(ϕ)
and fake_y(ϕ), respectively.

3 Methodology

We propose a translation-based multi-modal registration method, referred to as
Invertible Neural Network-based Registration (INNReg). INNReg includes an
invertible I2I translation network for translating images across various modal-
ities and a deformable registration network for aligning multi-modal medical
images based on the translated images. We introduce the registration network
in Section 3.1, and describe the invertible translation network in Section 3.2.
To enhance feature extraction of the translation network, we equip it with a
dynamic depthwise convolution-based local attention scheme. The losses in the
proposed INNReg are detailed in Section 3.3. The pipeline of our method is
depicted in Figure 1. Note that the registration and translation networks are
trained jointly, while only the registration network is used in the test.

3.1 Registration Model

The registration model first employs a network R to learn the deformation field
ϕ = R(x, y) from a pair of images (x, y) with distinct modalities. The field ϕ is a
matrix of 2D vectors, where each vector indicates the displacement for aligning
individual pixels from the source image x with the structure of the target image
y. With ϕ in hand, we warp x to align with y by a spatial transform function.
The learned ϕ is domain-free, meaning that it applies to both the domain X of
the source images and Y of the target images.
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3.2 Translation Model

We aim to design a translation model in INNReg to harmonize image styles from
different modalities while preserving the crucial geometry details inherent to
each image, which is particularly vital for translation-based multi-modal image
registration methods. To achieve this, we develop the translation model based
on INN, which allows for mutual generations of features and therefore ensures a
high fidelity of information preservation between its input and output.

The INN in our translation model can be described as a function T : X → Y
mapping from the source image domain X to the target image domain Y and
consists of a stack of Invertible Blocks (InvBlocks) {Ti}ki=1. Specifically, for any
source image x, its translation via T is

fake_y = T (x) = T0 ◦ T1 ◦ T2 ◦ · · · ◦ Tk(x), (1)

and the inverse translation back to the source image domain X is

recon_x = T−1(fake_y) = T−1
k ◦ T−1

k−1 ◦ · · · ◦ T
−1
0 (fake_y), (2)

where T−1 : Y → X is the inverse of T and each T−1
i is the inverse of the

InvBlock Ti.
In our method, each InvBlock Ti is realized through an affine coupling layer

[11]. Given a D-dimensional vector m and an integer d ∈ [1, D), the layer first
splits m into two vectors m1:d and md+1:D, and then performs the additive affine
transformations:

n1:d = m1:d + F (md+1:D) (3)
nd+1:D = md+1:D ⊙ exp (H (n1:d)) +G (n1:d) (4)

where ⊙ is the Hadamard product, and F , H, and G are arbitrarily complicated
functions of m and not necessarily invertible. In our implementation, the three
functions F , H, and G are realized by a common densely connected convolutional
block, referred to as DenseBlock in [32,37]. Note that given n1:d and nd+1:D, the
inverse transformations of (3)–(4) can be computed as

md+1:D = (nd+1:D −G (n1:d))⊙ exp (−H (n1:d)) (5)
m1:d = n1:d − F (md+1:D) . (6)

Local Attention by DDWConv. To improve the feature extraction ability
of the translation model, we equip INN with a dynamic depthwise convolution
(DDWConv)-based local attention scheme. Local attention mechanisms are par-
ticularly useful in I2I translation tasks, in the sense that they can help the model
refine the details in the generated output by focusing on specific regions of the
input image.

Unlike existing local attention schemes that are mainly designed based on
feature aggregation modules with Key, Query, and Value, we adapt DDWConv
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to realize local attention. The recent work [12] points out that to yield excel-
lent performance, local attention schemes should satisfy three principles: sparse
connectivity, weight sharing, and dynamic weighting. These characteristics also
exist in dynamic depthwise convolution in CNN, and compared to common lo-
cal attention realizations, the computational cost of using DDWConv is often
lower. Inspired by this, we realize local attention by DDWConv. To illustrate
DDWConv, we first introduce depthwise convolution:

DepthwiseConv(i,j) =

P,Q∑
p,q

W(p,q) · x(i+p,j+q), (7)

where (i, j) is a coordinate, P and Q are the height and width of x, respectively,
W represents weight, and x is an input feature map. In DDWConv, the weight W
in (7) is learned dynamically by aggregating multiple convolution kernels πkWk,
k = 1, . . . ,K:

W (x) =

K∑
k=1

πk(x)Wk. (8)

Note that different from the (static) depthwise convolution in which W is
fixed, the weight W (x) in DDWConv varies for each input feature map x. Due
to this feature, DDWConv suits the input’s characteristics and, therefore, can
potentially extract more relevant and discriminative features from the input
data, which further leads to the superior performance of local attention in feature
extraction. A sketch of the DDWConv-based local attention scheme is provided
in Fig. 2.

Fig. 2: DDWConv-based local attention.

3.3 Loss Functions

The proposed INNReg is trained in an end-to-end manner. The total loss function
consists of four components, including a pixel-wise reconstruction loss, a barrier
NMI registration loss, an INN cross-translation loss, and an additional smooth
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loss. During the training, we use the barrier NMI registration loss to constrain the
registration network, the INN cross-translation loss to optimize the translation
network, the pixel-wise reconstruction loss to jointly optimize the registration
network and the translation network to generate outputs that closely match the
target image, and the smooth loss to preserve the smoothness of the predicted
deformation field.

Pixel-wise Reconstruction Loss. The pixel-wise reconstruction loss is the
key to the success of the translation-based methods in handling multi-modal
registration problems. In our method, it is the ℓ1-reconstruction loss between
the generated results (i.e., fake_y(ϕ)) and the target image y:

Lrecon (T,R) = ∥fake_y (ϕ)− y∥1 , (9)

where T and R are the translation and the registration network, respectively.
The use of the loss (9) enforces fake_y(ϕ) to approximate the target image y.

Barrier NMI Registration Loss. The barrier NMI registration loss is pro-
posed to improve the accuracy of the registration network. In the translation-
based multi-modal registration methods, the deformation in the translation net-
work often deteriorates the accuracy of the registration network. Our idea of
addressing this issue is to constrain the similarity between the warped source
image and the target image.

In our method, we adopt the widely used Normalized Mutual Information
(NMI) to measure the similarity between two images by quantifying their mutual
information of intensity values. The NMI metric between the warped source
image x(ϕ) and the target image y can be expressed as

INMI (y, x(ϕ)) =
H (y) +H (x(ϕ))

M (y, x(ϕ))
, (10)

where H (y) and H (x(ϕ)) denote the marginal entropies of the source and the
target image, respectively, and M (y, x(ϕ)) is the mutual information between
x(ϕ) and y. Although NMI can also be used as a loss function in DL models
for multi-modal image registration, it comes with certain disadvantages [28]. In
particular, they cannot effectively capture complex or nonlinear relationships
in multi-modal data, potentially limiting the performance of the multi-modal
registration network.

Based on NMI, we propose the following barrier loss function:

Lbarrier(INMI, b) = − log(b− INMI), (11)

where b is a manually set threshold. The barrier function value tends to infinity
when INMI approaches b and, therefore, adding the barrier loss to the total
loss rigorously guarantees INMI < b. This property helps to avoid the accuracy
degradation of the registration network caused by deformation in the translation
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network. To see this, note that if a severe deformation occurs in the translation
network, then the registration network will generate an inaccurate deformation
field, which further leads to a huge barrier loss. Additionally, since the barrier
function value changes slowly when INMI is not too close to the threshold b, the
influence of this barrier loss diminishes, ensuring that the limitations of NMI do
not significantly impact the registration outcome.

INN Cross-Translation Loss. One major challenge in I2I translation tasks
is the requirement of paired images. For unpaired data, previous methods typ-
ically employ the GAN loss for translation tasks [5, 23], but it often results in
mode collapse. In this method, we introduce an INN cross-translation loss as a
constraint of our translation model, which takes the following form:

LINN(T ) = ∥recon_x− x∥1 (12)

where x is the source image, T is the INN translation network, and recon_x =
T−1 ◦T (x) with T−1 being the reverse transformation of T . The reversibility of
INN ensures that the translation process using (12) is coherent and maintains the
critical attributes of the original images, even in the absence of paired training
samples. An intuitive explanation is that the INN cross-translation loss preserves
the content of the image and only changes the domain-specific attributes.

Smooth Loss. In deformable registration, the deformation field often suffers
from the issue of over-distortion, which makes it hard to establish a precise match
between two unaligned images. To prevent over-distortion, we use a smooth loss
to restrict the gradients of the predicted deformation field ϕ:

Lsmooth =
1

N

∑
p

∥∇ϕ(p)∥22, (13)

where each p is a pixel in ϕ and N represents the total number of pixels.

Total Loss. With the above four loss functions, the total loss function for
training takes the following form:

LTotal = λαLrecon + λβLbarrier + λγLINN + λδLsmooth (14)

where λα, λβ , λγ and λδ are the weights to each loss term. The purpose of this
loss is to improve the multi-modal registration performance by letting the trans-
lation network focus on the modality mapping and the registration network on
geometry warping.

4 Experiments

4.1 Experimental Settings

Datasets. We evaluate the registration performance of our INNReg method on
two publicly accessible multi-modal medical image datasets, including a T1/T2
weighted MRI image dataset and an MRI/CT image dataset.
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Table 1: The multi-modal image registration results on T1/T2 and MRI/CT dataset.
The best and the second best results are marked in bold and by asterisk*, respectively.

Methods VM Arar et al. RegGAN Chen et al. INNReg(Ours)

T1/T2

SSIM(%)↑ 89.414 83.813 89.971* 89.386 90.555
NCC(%)↑ 98.03 95.309 98.238 98.889* 98.746
Dice(%)↑ 86.984* 83.296 84.643 81.274 87.117
HD95↓ 128.318 101.806 100.660 104.473 101.371*

smooth(%)↓ 0.238 0.007 0.232 5.303 0.101*

MRI/CT
SSIM(%)↑ 54.74 64.791 71.637* 63.308 73.067
NCC(%)↑ 55.903 83.776 88.716* 80.455 89.889

smooth(%)↓ 74.815 0.006 0.767 9.113 0.179*

The T1/T2 dataset is from the Brain Tumour Segmentation (BraTS) 2023
Challenge [18] containing segmentation labels and is widely used for medical
image registration [23,38]. The labels delineated three clinical tumour regions of
interest (ROIs) within the brain and were approved by expert neuroradiologists.
The dataset consists of 60 scan pairs with labels, where each scan is a 3D volume
of 240 × 240 × 155. In our experiments, we randomly divide the 60 pairs into
54/6 for training/testing, and in each volume, we extract the middle 50 slices as
our input, where each slice is a 2D image of the size 240× 240.

The MRI/CT dataset is from Harward [19], and in our experiment, we use
920 image pairs for training and 92 for testing. Since the multi-modal image
pairs in the aforementioned two datasets are all aligned, we need to synthetically
generate unaligned images from them to train the network. Specifically, we adopt
the B-spline transformation method used in [8,21] to generate unaligned T1/T2
weighted MRI and MRI/CT pairs. All images used in the experiments are resized
as 192× 192.

Implementation Details. The implementation of our code uses PyTorch 3.9.0
[27], and the experiments were conducted on a single Nvidia A100 GPU. We
use the Adam optimizer [20] on a mini-batch of size 3 with the initial learn-
ing rate lr = 0.0002 and the momentum parameters β1 = 0.5 and β2 = 0.999.
We train our model for 200 epochs and activate linear learning rate decay af-
ter every 20 epochs. We implement the registration network by U-NET [30]
with residual connections in the encoder and output paths. The number of INN
blocks in the translation model is 8. In the total loss function, the parameters
λα, λβ , λγ and λδ are asigned as 1, 1, 0.1, and 10, respectively. The boundary b
in the barrier NMI loss is set to 5.

Comparison Methods. To demonstrate the superiority of the proposed IN-
NReg method, we compare it with four widely-used multi-modal image registra-
tion methods, including the classical deep learning-based method Voxelmorph [3]
and three translation-based methods: Arar et al. [1], RegGAN [22], and Chen et
al. [6]. In Voxelmorph, we use the local cross-correlation as the similarity loss.
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Fig. 3: Visualization results of INNReg against other four methods on T1/T2 images.
The first row shows the warped source image x(ϕ), and the second displays the corre-
sponding deformation field ϕ. The last row exhibits the warped segmentation mask of
the source image.

For a fair comparison, all comparison methods are re-trained using the same
training dataset as ours.

Evaluation Metrics. We evaluate the registration performance in terms of
image similarity, mask similarity, and diffeomorphism. A higher image and mask
similarity and a smoother diffeomorphism indicate higher registration accuracy.
To measure image similarity, we adopt two standard metrics, including Struc-
tural Similarity (SSIM) and Normalized Correlation Coefficient (NCC), where
higher SSIM and NCC indicate higher similarity in image level. Our quantita-
tive metrics for measuring mask similarity include the Dice score [9] and the 95%
maximum Hausdorff distance (HD95) [16], which measure the degree of overlap
between two regions. The higher Dice score and HD95 depict a higher mask
similarity. We measure diffeomorphism by the smoothness of the deformation
field ϕ, which can be quantified by the determinant of its Jacobian matrix Jϕ.
Specifically, we count the percentage of the pixels p in each image such that
|Jϕ(p)| ≤ 0, and a smaller percentage implies higher smoothness of the defor-
mation field, which further causes smoother diffeomorphism.

4.2 Results on T1/T2 Dataset

The quantitative registration results on the T1/T2 datasets are summarized in
Table 1. Based on these results, we compare the proposed INNReg network with
four other methods in terms of five evaluation metrics. From Table 1, we observe
that among all the five evaluation metrics, INNReg achieves the best in terms
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Fig. 4: Visualization results of INNReg against the other three translation-based meth-
ods on T1/T2 images. The first row shows the warped source T1 image x(ϕ), and the
second shows the translated results fake_y. The last row displays the reconstructed
results fake_y(ϕ).

of three of them (SSIM, NCC, Dice) and the second best in the remaining two
(HD95, smooth). Note that although Arar et al. achieves the best smoothness, it
is caused by the deformation that occurs in its translation network rather than
the anticipated registration network, leading to a negligible deformation field.
Consequently, INNReg outperforms the other comparison methods.

Fig. 3 visualizes the multi-modal image registration results on the T1/T2
dataset. Specifically, it illustrates an instance of the warped source image, the
corresponding deformation fields, and the warped source segmentation mask.
By comparing the warped source images and the target image, we observe that
INNReg achieves superior alignment between the source and target images. Fur-
thermore, INNReg generates a smooth deformation field and the most accurate
mask movement towards the target.

Fig. 4 displays not only the final warped image but also the intermediate
results, which include the translated image (fake_y in Fig. 1) and the recon-
struction result (fake_y(ϕ) in Fig. 1). From Fig. 4, we find a promising reason
for the excellent registration performance of INNReg over the other translation-
based methods – both Arar et al and RegGAN exhibit significant deformation in
the translated results, which notably impacts registration accuracy; The method
proposed by Chen et al. does not have this issue but the quality of the translated
image is unsatisfactory. Compared to these three methods, the translated image
generated by our INNReg avoids both issues, and the superior translation results
further lead to high-quality registration results.
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Fig. 5: Visualization results of INNReg against the other three translation-based meth-
ods on MRI/CT images. The first row depicts the warped source MRI image x(ϕ), and
the second shows the translated results fake_y. The last row shows the reconstructed
results fake_y(ϕ).

4.3 Results on MRI/CT Dataset

We also evaluate the effectiveness of the proposed INNReg on MRI/CT im-
ages. Due to the absence of segmentation masks, our evaluation focuses on the
image similarity metrics SSIM and NCC, and the diffeomorphism of the defor-
mation field. The quantitative results are displayed in Table 1 and reveal that
our method surpasses other compared methods in terms of SSIM and NCC.
The smoothness of INNReg is inferior only to Arar et al., due to the negligible
deformation in the translation process of Arar et al. as previously discussed.

Fig. 5 visualizes the warped source image, the translated image, and the
reconstructed image in the experiments. It shows that INNReg achieves high-
accuracy image registration on the MRI/CT image pairs. Additionally, we ob-
serve that our translation result remains highly geometry consistent with the
source image, and the reconstructed image closely resembles the target image.

4.4 Ablation Study

In this subsection, we perform a series of ablation experiments to examine the im-
pact of the INN cross-translation loss, the barrier NMI loss, and the DDWConv-
based local attention on the registration accuracy of the proposed INNReg. These
experiments are conducted using T1/T2 images, and the results are summarised
in Table 2, in which the Base model refers to the version of INNReg stripped
of the INN cross-translation loss, the barrier NMI loss, and DDWConv-based
local attention. We evaluate the effectiveness of each component by comparing
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Table 2: Ablation experiment results on T1/T2 images. Bold indicates the best value.

Methods SSIM(%)↑ NCC(%)↑ Dice(%)↑ HD95↓ smooth(%)↓
Base(A) 87.621 98.192 83.026 139.55722 0.128

A+Cross translation(B) 88.201 98.379 83.469 139.01316 0.115
AB+NMI(C) 86.191 97.829 82.153 137.67901 0.135

AB+Barrier NMI(D) 90.84 98.726 86.84 136.84976 0.095
ABD+Attention(Ours) 90.555 98.746 87.117 101.37179 0.100

the performance of the models with and without it. From Table 2, we make
the following observations: First, the cross-translation and the barrier NMI loss
enhance the registration results in all five metrics; Second, the barrier NMI loss
is much more effective compared to NMI in terms of all the metrics; Third, al-
though the DDWConv-based attention slightly deteriorates SSIM and smooth,
it significantly improves the segmentation metrics, including Dice and HD95.

5 Conclusion

In this study, we introduced INNReg, an innovative unsupervised translation-
based method for multi-modal image registration. Central to our approach is
the exploitation of the Invertible Neural Network’s (INN) reversible nature, en-
abling precise modality mapping and geometric consistency in I2I translation.
By integrating a dynamic depthwise convolution-based local attention mecha-
nism, our method effectively enhances feature extraction during the translation
process. Furthermore, we proposed a novel barrier NMI loss function to rigor-
ously constrain the registration process, which avoids the accuracy degradation
of the registration network caused by severe deformation in the translation net-
work. The efficiency and rationality of INNReg were validated across two public
multi-modal medical image datasets, including T1/T2 MRI and MRI/CT image
pairs. The experiment results demonstrated that INNReg well preserves geome-
try in translation and achieves high registration accuracy. In the future, we will
explore further potentials of INNReg in multi-modal image translation tasks.
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