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Abstract. Recently, the transform-based low-rank tensor factorization
(t-LRTF) has emerged as a promising tool for multi-dimensional data
recovery. However, the discrete transforms along the third (i.e., tem-
poral/spectral) dimension are dominating in existing t-LRTF methods,
which hinders their performance in addressing temporal/spectral degen-
eration scenarios, e.g ., video frame interpolation and multispectral image
(MSI) spectral super-resolution. To overcome this barrier, we propose a
Functional Transform-based Low-Rank Tensor Factorization (FLRTF),
where the learnable functional transform is expressed by the implicit
neural representation with positional encodings. The continuity brought
by this function allows FLRTF to capture the smoothness of data in the
third dimension, which will benefit the recovery of temporal/spectral
degeneration problems. To examine the effectiveness of FLRTF, we es-
tablish a general FLRTF-based multi-dimensional data recovery model.
Experimental results, including video frame interpolation/extrapolation,
MSI band interpolation, and MSI spectral super-resolution tasks, sub-
stantiate that FLRTF has superior performance as compared with rep-
resentative data recovery methods.

Keywords: Functional transform · Implicit neural representation · Low-
rank tensor factorization

1 Introduction

With the development of modern imaging systems, data with multiple dimen-
sions (e.g ., color images [38,39], videos [33], multispectral images (MSIs) [4,44],
network traffic data [5], and so on) are increasingly emerging. Real-world multi-
dimensional data are naturally represented by tensors [42] as they can deliver
the underlying information of data more faithfully and accurately than vec-
tor/matrix formats. Consequently, tensor modeling technique have gained pop-
ularity in multi-dimensional data processing and representation [17,41].

Owing to the fact that multi-dimensional data often exhibit strong global
correlation [1,23], which can be mathematically represented as a low-rank prop-
erty, low-rank tensor modeling has prompted extensive research. This approach
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is pivotal for the recovery and analysis of multi-dimensional data. Distinct from
the matrix case, the concept of tensor rank is not unequivocal [11,32]. The most
well-known tensor ranks include CANDECOMP/PARAFAC (CP) rank [40,48],
Tucker rank [23, 24, 36], and tensor tubal-rank [12, 16, 50]. Additionally, recent
literature has introduced new tensor ranks based on tensor network decomposi-
tion, including the tensor train rank [7, 46], tensor ring rank [45, 47], and fully
connected tensor network rank [52, 53]. This paper specifically focuses on the
tensor tubal-rank [12,16,21].

Attributed to the beautiful algebraic property, the tensor singular value de-
composition (t-SVD) [25, 43] has garnered great interest in addressing multi-
dimensional data recovery. [20, 26]. Initially introduced by Braman et al . [2],
t-SVD allows for the decomposition of any third-order tensor into the tensor-
tensor product (t-product) of two orthogonal tensors and a f -diagonal tensor.
Based on t-SVD, a novel definition of tensor rank, termed tensor tubal-rank, has
been presented. This rank is numerically defined as number of non-zero tubes
within the f -diagonal tensor resulting from t-SVD [49]. Given that the compu-
tational complexity of minimizing the tensor tubal-rank, which is an NP-hard
problem, Zhang et al . [49] introduced the tensor nuclear norm (TNN), which
serves as a convex surrogate for the tensor tubal-rank and has been applied to
the tensor completion problem.

The choice of transform is crucial in the TNN, as it operates on the third
mode of the tensor to convert it into a low-rank representation. A few variations
of TNN employing different transforms have been explored in the literatures. For
instance, Madathil et al . [30] adopted the real-valued discrete cosine transform
instead of the original discrete Fourier transform (DFT) in the t-SVD frame-
work to mitigate the computational burden arising from complex operations.
More generally, Lu et al . [26] established a novel tensor tubal-rank through the
invertible linear transform and offered the theoretically sampling bound to guar-
antee the exact recovery. In contrast to traditional invertible transforms, Jiang
et al . [14] introduced a non-invertible framelet transform in t-SVD for adress-
ing the third-order tensor completion problem. Furthermore, Jiang and Kong
et al . [15, 20] introduced some data-driven transforms in the t-SVD framework
that exhibits superior and more adaptable expressive capabilities compared to
pre-defined transforms. In [27], Luo et al . suggested a novel TNN based on the
nonlinear transform, which is learned through a self-supervised multi-layer neu-
ral network. To reduce computational overhead and efficiently handle large scale
data, Zhou et al. [54] employed the low-tubal-rank tensor factorization (LRTF)
to preserve the low-tubal-rank property of the data and presented a new tensor
completion model. More recently, Luo et al . [29] proposed a hierarchical LRTF
for multi-dimensional data recovery, where the multilayer perceptron is used as a
nonlinear transform in the t-SVD framework. Despite these advancements, these
methods usually considers a discrete transform, which reflects sparse samples of
the spectral/temporal signature. This limitation constrains their effectiveness
and adaptability in addressing temporal/spectral degeneration scenarios, such
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Fig. 1: An illustration of the proposed FLRTF. (a) An example of the discrete
transform-based low-rank tensor factorization, e.g ., HLRTF [29]. (b) The proposed
functional transform-based low-rank tensor factorization, i.e., FLRTF. (c) Result ex-
amples on video frame interpolation task for different methods.

as video frame interpolation [3,6] and MSI spectral super-resolution [8,9,31]; an
example is shown in Fig. 1.

In this work, we propose a pioneering approach called Functional transform-
based Low-Rank Tensor Factorization (FLRTF) for multi-dimensional data re-
covery. To the best of our knowledge, this is the first attempt to employ a
functional transform along the third dimension in the t-SVD framework. More
specifically, we use the implicit neural representations with positional encod-
ings, which is expressed by a continuous coordinate-based implicit function, to
learn the functional transform. The continuity brought by this function allows
the proposed FLRTF captures the local smoothness of multi-dimensional data
in the third dimension, which is beneficial for the multi-dimensional data re-
covery, especially in the temporal/spectral degeneration scenarios. Additionally,
we employ multilayer perceptron (MLP) with the powerful approximation ca-
pability to parameterize this implicit function, enhancing FLRTF’s ability to
faithfully capture intricate details of data. To validate the efficacy of the pro-
posed FLRTF, we establish a general FLRTF-based model for multi-dimensional
data recovery. We compare the performance of discrete transform-based LRTF
methods, such as HLRTF [29] with the functional transform-based LRTF method
(i.e., the proposed FLRTF) using the Blowing Candles dataset under the video
frame interpolation task in Fig. 1. The results indicate that HLRTF [29] (i.e.,
the discrete transform-based LRTF method) demonstrates suboptimal recovery
performance. In contrast, FLRTF yields clearer spatial details and textures com-
pared to HLRTF. In addition, the proposed FLRTF enhances the performance
of HLRTF by up to 2.9 dB in terms of peak signal-to-noise ratio (PSNR), which
also indicates its superior recovery capability.

In general, the main contributions of this work can be encapsulated in the
following three aspects:
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(i) We present a pioneering functional transform-based low-rank tensor fac-
torization, termed as FLRTF. To the best of our knowledge, this is the first at-
tempt to employ a functional transform along the third dimension in the t-SVD
framework. Notably, FLRTF can simultaneously capture the local smoothness
of data in the spectral/temporal dimension and the global low-rankness. This
dual capability reveals FLRTF’s potential effectiveness in the multi-dimensional
data recovery, especially in the temporal/spectral degeneration scenarios.

(ii) We leverage the implicit neural representations with positional encod-
ings, which are parameterized by MLP, to learn the functional transform. The
continuity of this functional transform, coupled with the powerful approxima-
tion capability of MLP, allows FLRTF to continuously represent data in the
spectral/temporal dimension and effectively capture intricate details of data.

(iii) Building upon the proposed FLRTF, we formulate a general FLRTF-
based multi-dimensional data recovery model. Extensive experimental results,
including video frame synthesis, MSI band interpolation, and MSI spectral super-
resolution tasks, validate the superior performance of the proposed FLRTF
over representative multi-dimensional data recovery methods, especially in spec-
tral/temporal fidelity. This shows its wide applicability and effectiveness in var-
ious scenarios.

2 Notations

We employ calligraphic capital letters, e.g ., A, boldface capital letters, e.g ., A,
boldface lowercase letters, e.g ., a, and lowercase letters, e.g ., a, to represent
tensors, matrices, vectors, and scalars, respectively. The i-th element of a vector
a is denoted by ai. For a tensor A ∈ Rn1×n2×n3 , the i-th frontal slice is defined as
A(i) ∈ Rn1×n2 or A(:, :, i) ∈ Rn1×n2 , and the (i, j, k)-th element is represented as
ai,j,k or A(i, j, k). The Frobenius norm of A is given by ∥A∥F =

√∑
i,j,k |ai,j,k|2,

and the ℓ1-norm of A is defined by ∥A∥ℓ1 =
∑

i,j,k |ai,j,k|. The face-wise product
of A ∈ Rn1×n2×n3 and B ∈ Rn2×n4×n3 is defined as matrix products for all
frontal slices of two tensors [17], i.e., X = A△ B ∈ Rn1×n4×n3 , where the i-th
frontal slice of X is A(i) B(i) (i = 1, · · · , n3). Leveraging the face-wise product,
the t-product is established as the face-wise product of two tensors after DFT.

Definition 1. (Mode-3 unfolding and folding [19]) For a tensor A ∈ Rn1×n2×n3 ,
its mode-3 unfolding, represented as A(3) ∈ Rn3×n1n2 , is a matrix that maps ele-
ments from the tensor to the matrix such that A(3)(k, l) corresponds to A(i, j, k),
where l = (j− 1)n1 + i. The mode-3 unfolding and folding operators are denoted
by A(3) = Unfold3(A) and A = Fold3(A(3)), respectively.

Definition 2. (Tensor-matrix product [19]) The tensor-matrix product between
A ∈ Rn1×n2×n3 and F ∈ RJ×n3 is defined as A×3 F = Fold3(FUnfold3(A)).

Theorem 1. (Low-rank tensor factorization [29]) For a third-order tensor X ∈
Rn1×n2×n3 , there exist two tensors A ∈ Rn1×r×n̂3 and B ∈ Rr×n2×n̂3 , and a
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transform L : R1×1×n̂3 → R1×1×n3 such that the following equation holds:

X = (A△B)×3 L,

where L ∈ Rn3×n̂3 represents the transform matrix corresponding to L.

3 The Proposed Method

3.1 The Proposed FLRTF

Recently, the t-LRTF has emerged as a promising tool for multi-dimensional
data recovery. However, the performance of existing t-LRTF methods that con-
sider discrete transforms is unsatisfactory in addressing temporal/spectral de-
generation scenarios, e.g ., video frame interpolation and MSI spectral super-
resolution. To handle these challenging temporal/spectral degeneration scenar-
ios, we propose a pioneering functional transform-based low-rank tensor factor-
ization, which allows us to simultaneously exploit the local smoothness of data
in the third dimension and its inherent low-rankness.

Definition 3. (Functional transform-based low-rank tensor factorization) Given
a third-order tensor X ∈ Rn1×n2×n3 , we define its FLRTF representation form
by using two factor tensors A ∈ Rn1×r×n̂3 and B ∈ Rr×n2×n̂3 , and a functional
transform f(·) : Df → Rn̂3 , where Df = (0, 1] represents the definition domain.
The k-th frontal slice of X is defined as

X (:, :, k) := (A△B)×3 f(z(k)), k = 1, 2, · · · , n3,

where z = [ 1
n3

, 2
n3

, · · · , n3

n3
] represents the sampling coordinate vector.

Note that the proposed FLRTF can degrade into the classical low-rank tensor
factorization (see Theorem 1), when the definition domain Df is a discrete set
of some constants, e.g ., Df = {1, 2, · · · , n3}.

Functional transform: The functional transform is utilized to exploit the
continuity characteristic of data in the third (i.e., temporal/spectral) dimension.
In our work, we employ MLPs to parameterize the functional transform f(·) due
to its powerful universal approximation capability, which allows for more flexible
representation learning compared to predefined function transform. Specifically,
the implicit functional transform can be formulated as

fθ(x) = Hl(σ(Hl−1 · · ·σ(H1x))) : Df → Rn̂3 , (1)

where x represents the sampling coordinate of the third dimension, θ := {Hi}li=1

are learnable weights of the MLP, and σ(·) is the nonlinear activation function.
Remark. In contrast to existing t-LRTF methods, the advantage of the

proposed FLRTF is that we employs a continuous implicit neural representation
to learn a functional transform within the LRTF framework. As far as we are
aware, this is the first attempt to employ a functional transform along the third
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dimension in the t-SVD framework. The continuity brought by this functional
transform allows the proposed FLRTF to not only capture the low-rankness of
data but also the local smoothness of its third dimension, which is beneficial for
data recovery, especially in temporal/spectral degradation scenarios.

Next, we theoretically justify that the proposed FLRTF can encode the local
smoothness of data in the third dimension.

Theorem 2. Let A ∈ Rn1×r×n̂3 , B ∈ Rr×n2×n̂3 , and fθ (·) : Df → Rn̂3 be the
MLP structured as in (1) with parameters θ, where Df = (0, 1] represents the
definition domain. Suppose that

– σ(·) exhibits Lipschitz continuous with Lipschitz constant δ.
– ∥A∥ℓ1 is bounded by γ1 and ∥B∥ℓ1 is bounded by γ2.
– For any weight matrix Hi in the MLP, ∥Hi∥ℓ1 is bounded by γ3.

Define a third-order tensor X ∈ Rn1×n2×n3 that satisfies its k-th frontal slice is
given by X (:, :, k) := (A△B)×3f(z(k)), k = 1, 2, · · · , n3, where z = [ 1

n3
, 2
n3

, · · · , n3

n3
]

represents the sampling coordinate vector. Then, there exists a constant γ1γ2γ
l
3δ

l−1

n3
>

0 such that the following inequality holds:

∥X (i, j, k)−X (i, j, k − 1)∥ℓ1 ≤ γ1γ2γ
l
3δ

l−1

n3
.

where i = 1, 2, · · · , n1, j = 1, 2, · · · , n2, and k = 1, 2, · · · , n3. Please refer to the
supplementary material for the detailed proof3.

Theorem 2 implies that for the sampled tensor X , the difference between
its adjacent elements in third dimension is bounded by a constant γ1γ2γ

l
3δ

l−1

n3
.

Consequently, the proposed FLRTF implicitly and efficiently unifies the low-
rankness and smoothness. The dual capability of the proposed FLRTF reveals
its potential effectiveness in the multi-dimensional data recovery, especially in
the temporal/spectral degeneration scenarios.

3.2 FLRTF for Multi-Dimensional Data Recovery

To examine the effectiveness of the proposed FLRTF, we propose a general
FLRTF-based multi-dimensional data recovery model. Given an observed multi-
dimensional data O ∈ Rn1×n2×b, the proposed FLRTF-based multi-dimensional
data recovery model can be formulated as follows:

min
A,B,θ

ℓ(O,X ), s.t. X (:, :, k) = (A△B)×3 fθ
(
z(k)

)
, (2)

where A ∈ Rn1×r×n̂3 and B ∈ Rr×n2×n̂3 are two latent factor tensors, fθ (·) :
Df → Rn̂3 is the implicit neural representation function parameterized by the
MLP with parameters θ, z = [ 1

n3
, 2
n3

, · · · , n3

n3
] represents the sampling coordinate

3 https://wangjianli123.github.io/homepage/
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vector, and k = 1, 2, · · · , n3. ℓ(·, ·) denotes the data fidelity item that guarantees
the solution accords with degradation, which can be flexibly adjusted for different
tasks. Note that the proposed model (2) is supervised and solely requires the
observed data without a training dataset. Therefore, it can be flexibly applied
to different datasets and degradation conditions.

In this work, we first consider two temporal/spectral degeneration tasks, i.e.,
video frame synthesis and MSI band interpolation. Subsequently, we explore the
potential of the proposed FLRTF in the general spectral degradation task with
a degenerate operator, i.e., MSI spectral super-resolution. For these three tem-
poral/spectral degradation tasks, the proposed FLRTF-based multi-dimensional
data recovery model (2) can be represented in unified manner as follows:

min
A,B,θ

∥O − X ×3 W∥2F , s.t. X (:, :, k) = (A△B)×3 fθ
(
z(k)

)
, (3)

where W is a task-related weight matrix. Next, we introduce these three tasks.
• Video Frame Synthesis: Video frame synthesis (VFS) aims at construct-

ing new video frames from an existing video, which can be broadly categorized
into two types, i.e., interpolation and extrapolation. It has found wide appli-
cations in practice, such as slow-motion video creation [13] and animation pro-
duction [37]. In fact, VFS can be viewed as a tensor completion problem with
randomly frontal slice missing, the corresponding weight matrix is a square ma-
trix. The (i, j)-th element of W ∈ Rn3×n3 is defined as

wi,j =

{
1, if i ∈ Ωc and i = j,

0, otherwise.
(4)

where Ω ⊆ {1, 2, · · · , n3} represents the index set of the missing frames, and Ωc

stands for the complementation of Ω.
• MSI Band Interpolation: MSIs play an important role in various appli-

cations. However, due to hardware constraints, it is not uncommon for MSI prod-
ucts to exhibit one or more missing bands [35], which diminishes the reliability
of the information provided. MSI band interpolation/reconstruction (MBI) aims
at recovering missing bands from the observation by leveraging information from
the available bands. In fact, MBI is a tensor completion problem with randomly
frontal slice missing, the corresponding weight matrix is a square matrix. The
(i, j)-th element of W ∈ Rn3×n3 is defined as Eq. (4), where Ω ⊆ {1, 2, · · · , n3}
represents the index set of the missing bands.

• MSI Spectral Super-Resolution: MSI spectral super-resolution (MSSR)
aims at recovering multispectral imaging from its spectrally downsampled mea-
surement (e.g ., RGB images) [10], which is a crucial technique in computer
vision. For MSSR task, the observed data O ∈ Rn1×n2×3 and the corresponding
weight matrix is a spectral response functions of RGB cameras, which is provided
in advance.

In the proposed model (3), the optimization variables include factor tensors
(i.e., A and B) and the weights of the MLP. Given that the objective function
is a squared error term, which is differentiable with respect to factor tensors
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Algorithm 1 Adam-based solving algorithm of the proposed FLRTF for multi-
dimensional data recovery.

Input: Observed data O ∈ Rn1×n2×b, the task-related weight matrix W, parameters
r and n̂3;

Initialization: Initialize factor tensors A ∈ Rn1×r×n̂3 and B ∈ Rr×n2×n̂3 , and MLP
weights θ;

1: for k = 1 to kmax do
2: Compute the recovered data X ∈ Rn1×n2×n3 via X (:, :, k) = (A△B)×3fθ

(
z(k)

)
for k = 1, 2, · · · , n3;

3: Compute the loss function in model (3) for different tasks;
4: Compute the gradients w.r.t. A, B, and θ;
5: Update A, B, and θ using the Adam optimizer [18];
6: end for

Output: The recovered multi-dimensional data X .

and all MLR weights, we can employ the adaptive moment estimation (Adam)
optimizer [18] to address the model (3). Simultaneously, we set a maximum
iteration number kmax as the stopping criterion for the Adam-based solving
algorithm in our experiments. Once the optimal factor tensors and MLP weights
are obtained by solving problem (3), the recovery result X can be computed
by X (:, :, k) = (A△ B) ×3 fθ

(
z(k)

)
for k = 1, 2, . . . , n3. The pseudocode of the

Adam-based solving algorithm for FLRTF is outlined in Algorithm 1.

4 Experiments

4.1 Experimental Settings

Parameter Settings. In the proposed FLRTF, the hyperparameters include
the functional transform-based tubal-rank and the size of the factor tensors A
and B in the third dimension, i.e., r and n̂3, respectively. These parameters are
empirically chosen from the candidate sets {k}30k=1 and {kn3}6k=1, respectively,
to obtain the best performance. The learning rate for the Adam optimizer is
selected from the candidate set {0.001, 0.003, 0.005} to achieve optimal results.
The maximum number of iterations and the number of layers in the MLP are
fixed at 10000 and 5, respectively, for all tasks. For simplicity, the dimension of
each layer, except the last, of the MLP is set to 64, and the last layer is set to n̂3 in
our experiments. The nonlinear activation function selected for this study is the
sinusoidal function, i.e., σ(·) = sin(·). For comparative methods DCTNN [30],
TNN-3DTV [34], HLRTF [29], and t-CTV [42], all parameters are manually
adjusted according to the authors’ default strategies in their papers to obtain
optimal performance. For the comparison methods HRNet [51], GDNet [55],
HSACS [22], HSRnet [9], and SSDCN [9], all codes are implemented with their
recommended parameters.

Evaluation Indices. To quantitatively evaluate the overall quality of the
recovered results obtained by different methods, several quantitative evaluation



Functional Transform-based LRTF for Data Recovery 9

Table 1: The computational complexity of various methods.

Methods Computational complexity
DCTNN O(n1n2n3logn3 + n1n2n3min(n1, n2))

TNN-3DTV O(n1n2n3log(n1n2n3) + n1n2n3min(n1, n2))
HLRTF O(n1n2n̂3(m+ r) + n1n2m

2(l − 2) + n1n2n3m)
t-CTV O(n1n2n3log(n1n2n3) + n1n2n3min(n1, n2))
FLRTF O(m2(l − 2)n3 + n1n2n̂3r + n1n2n3n̂3)

indexes are used in our experiments. For video frame synthesis, we utilize the
PSNR, the structural similarity (SSIM), and the universal image quality index
(UIQI) as metrics. Higher PSNR, SSIM, and UIQI values correspond to superior
performance. For the MSI band interpolation and MSI spectral super-resolution,
we adopt the PSNR, the SSIM, and the spectral angle mapping (SAM) as eval-
uation indices. A lower SAM value corresponds to superior performance.

Experimental Platform. All experiments were conducted on the Windows
11 platform with an Intel Core i9-13900KF processor (3.00 GHz, 128 GB RAM)
and an NVIDIA RTX 4090 GPU (12 GB GPU memory). Our method is imple-
mented using PyTorch 2.0.0 with GPU calculation.

4.2 Datasets and Compared Methods

Video Frame Synthesis. VFS aims at constructing new video frames from
an existing video, which can be categorized into two primary types, i.e., inter-
polation and extrapolation. Video frame interpolation seeks to recover missing
frames between given frames, while video frame extrapolation is to generate fu-
ture frames based on historical frames. We employ four video clips from the
UCF-101 dataset4, which are widely used for VFS task, to evaluate the perfor-
mance of the proposed FLRTF in our experiments, w, i.e., Apply Eye Make-up,
Blowing Candles, Writing On Board, and Typing. The size of the top three data
is 240× 176× 3× 31 and the size of the last one data is 178× 238× 3× 31. For
video frame interpolation and extrapolation, the index set of missing frames are
set as {2, 4, · · · , 30} and {31}, respectively. To comprehensively evaluate the pro-
posed FLRTF, we compare it with four state-of-the-art multi-dimensional data
recovery methods, including DCTNN [30], TNN-3DTV [34], HLRTF [29], and t-
CTV [42]. We select DCTNN since it represents the classic transform-based TNN
method. We select HLRTF since it is the most relevant to the proposed FLRTF
among the newer methods for multi-dimensional data recovery. We select TNN-
3DTV and t-CTV since they simultaneously explore the local smoothness and
global low-rankness of data. The computational complexity of different methods
on X ∈ Rn1×n2×n3 are shown in Table 1 for comparison, where r is the rank,
n̂3 represents the size of factor tensor in the third dimension, m represents the
number of hidden units of MLP, and l represents the number of layers.

4 https://www.crcv.ucf.edu/research/data-sets/ucf101/

https://www.crcv.ucf.edu/research/data-sets/ucf101/
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DCTNN TNN-3DTV HLRTF t-CTV FLRTF GT

Fig. 2: Visualization of recovery results by different methods for video frame interpola-
tion and extrapolation tasks. From top to bottom: the 31 frame of Apply Eye Make-up,
the 31 frame of Writing On Board, the 2 frame of Blowing Candles, and the 16 frame
of Typing.

Table 2: Quantitative comparison of different methods for video frame interpolation
and extrapolation tasks. The best and second-best values are highlighted in bold and
underline, respectively.

Interpolation Apply Eye Make-up Blowing Candles Writing On Board Typing

DCTNN 13.78/0.549/0.349 18.39/0.459/0.360 21.19/0.790/0.467 20.97/0.695/0.690

TNN-3DTV 31.41/0.954/0.774 30.20/0.914/0.781 28.09/0.932/0.818 28.47/0.923/0.935

HLRTF 28.65/0.907/0.675 28.36/0.849/0.632 27.97/0.912/0.607 28.21/0.903/0.876

t-CTV 29.29/0.910/0.589 29.36/0.854/0.609 27.45/0.892/0.664 28.34/0.916/0.875

FLRTF 32.83/0.954/0.734 31.10/0.915/0.741 28.860/0.913/0.700 31.94/0.931/0.965

Extrapolation Apply Eye Make-up Blowing Candles Writing On Board Typing

DCTNN 20.19/0.749/0.486 23.03/0.697/0.450 22.74/0.806/0.523 27.13/0.873/0.784

TNN-3DTV 15.60/0.648/0.331 19.44/0.650/0.364 19.51/0.832/0.635 24.04/0.863/0.760

HLRTF 21.47/0.756/0.407 23.22/0.780/0.557 24.52/0.853/0.596 38.52/0.976/0.949

t-CTV 15.62/0.647/0.340 19.55/0.637/0.354 19.73/0.829/0.560 24.19/0.859/0.756

FLRTF 22.80/0.802/0.532 23.57/0.785/0.579 24.38/0.828/0.523 40.29/0.986/0.964

MSI Band Interpolation. MBI aims at recovering missing bands from
the observation by utilizing spectral information of the other bands. In our ex-
periments, we utilize four MSIs from the CAVE 5 dataset to evaluate the per-
formance of the proposed FLRTF, including Toy, Flowers, Jelly Beans, and

5 https://www1.cs.columbia.edu/CAVE/databases/multispectral/

https://www1.cs.columbia.edu/CAVE/databases/multispectral/
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Fig. 3: Spectral curves of the recovered results by different methods for MBI task.
From top to bottom: the results at spatial location (150, 150) in Toy, the results at
spatial location (220, 100) in Flowers, and the results at spatial location (250, 100) in
Jelly Beans, respectively.

Table 3: Quantitative comparison of different methods for MBI task. The best and
second-best values are highlighted in bold and underline, respectively.

Data Toy Flowers Pompoms Jelly Beans

DCTNN 12.13/0.431/44.54 14.58/0.336/50.31 11.86/0.109/74.39 15.24/0.181/15.24

TNN-3DTV 30.26/0.928/30.26 31.77/0.918/12.86 32.49/0.924/8.391 27.82/0.889/10.14

HLRTF 38.24/0.979/10.71 36.17/0.911/15.19 33.69/0.952/10.37 33.21/0.917/13.82

t-CTV 36.58/0.935/16.76 33.66/0.805/25.37 27.78/0.852/18.69 32.28/0.858/20.29

FLRTF 43.22/0.992/7.755 44.13/0.970/14.35 40.19/0.990/6.375 42.47/0.987/7.599

Pompoms. The original size of these datasets is 512 × 512 × 31, and we resize
them into 256× 256× 31 for our experiments. The index set of missing bands is
set as {2, 3, 5, 6, · · · , 29, 30}. Similar to VFS task, we select DCTNN [30], TNN-
3DTV [34], HLRTF [29], and t-CTV [42] as the comparing methods.

MSI Spectral Super-Resolution. MSSR aims at recovering multispec-
tral imaging from its spectrally downsampled measurement (e.g ., RGB images).
In our experiments, we conduct spectral recovery based on RGB-to-MSI map-
ping, and employ CAVE and ARAD_1K provided by New Trends in Image
Restoration and Enhancement workshop (NTIRE 20226) datasets to evaluate
the performance of the proposed FLRTF. For CAVE dataset, which covers the
wavelength range from 400 nm to 700 nm and contains 32 scenarios, we select
all MSIs as testing data. The original size of these datasets is 512×512×31 and

6 https://codalab.lisn.upsaclay.fr/competitions/721

https://codalab.lisn.upsaclay.fr/competitions/721
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HRNet GDNet HSACS HSRnet SSDCN FLRTF GT

Fig. 4: Visualization of recovery results by various methods in MSSR task. From top
to bottom: ARAD_1K_912 (R:31, G:15, and B:10) and ARAD_1K_928 (R:31, G:18,
and B:10) provided by ARAD_1K dataset, and Jelly Beans (R:31, G:15, and B:5) and
Pompoms (R:31, G:15, and B:5) provided by CAVE dataset.

Table 4: Quantitative comparison of different methods for MSSR task. The best and
second-best values are highlighted in bold and underline, respectively.

Data ARAD_1K CAVE

Method PSNR ↑ SSIM ↑ SAM ↓ PSNR ↑ SSIM ↑ SAM ↓

HRNet 26.730 0.8872 6.210 23.305 0.7551 35.335

GDNet 28.348 0.8885 8.133 26.251 0.7821 37.443

HSACS 33.269 0.9478 6.050 23.591 0.7611 35.587

HSRnet 30.762 0.9190 7.392 20.401 0.7082 37.011

SSDCN 26.318 0.8483 8.166 26.963 0.7952 38.443

FLRTF 40.600 0.9760 6.914 35.327 0.9349 27.225

we resize them into 256×256×31 for our experiments. For ARAD_1K dataset,
which covers the wavelength range from 400 nm to 700 nm and contains 1000
scenarios, we select 901 to 950 scenarios as testing data. The size of all data
is 482 × 512 × 31. To comprehensively evaluate the proposed FLRTF, we com-
pare it with five classic deep learning-based spectral super-resolution algorithms,
including HRNet [51], GDNet [55], HSACS [22], HSRnet [9], and SSDCN [9].

4.3 Experimental Results

Video Frame Synthesis. Table 2 presents the quantitative evaluation met-
rics of the recovered results achieved by different methods for video frame syn-
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thesis. Especially, we highlight the best and second-best results by bold and
underlined, respectively. Generally, TNN-3DTV achieves the second-best per-
formance for video frame interpolation, while HLRTF achieves the second-best
results for video frame extrapolation. Our proposed method, i.e., FLRTF, con-
sistently outperforms the compared methods under nearly all scenarios. This
improvement can be attributed to the functional transform that allows FLRTF
to simultaneously exploit local smoothness of multi-dimensional data in the tem-
poral/spectral dimensional and its global low-rankness.

To visually compare the recovered results, we present the results obtained
by different methods for video frame synthesis in Fig. 2. From Fig. 2, we can
observe that the proposed FLRTF achieves superior visual results compared to
other methods in both the restoration of global structure and preservation of
local details. Specifically, the recovered results obtained by TNN-3DTV and t-
CTV contain a large number of artifacts, while DCTNN and HLRTF cannot
accurately recover local details, especially in in facial regions.

MSI Band Interpolation. Quantitative evaluation metrics of the recovered
results obtained by different methods for MBI task are given in Table 3. We
can observe that the proposed FLRTF consistently outperforms the compared
methods across all datasets. More precisely, the proposed FLRTF achieves an
average PSNR gain of approximately 6 dB over the second-best methods. To
further analyze the performance of spectral curve recovery, Fig. 3 illustrates
the spectral curves at one spatial location of the recovered results by different
methods. We can observe that the spectral curves obtained by FLRTF better
approximate the original one compared to those from other methods. These
observations demonstrate the superior performance of the proposed FLRTF in
recovering spatial images and preserving spectral signatures compared to other
methods.

MSI Spectral Super-Resolution. The quantitative evaluation metrics of
recovery results achieved by various methods for MSSR task are reported in
Table 4. As we can see, the suggested FLRTF achieves the best PSNR, SSIM,
and SAM values. Fig. 4 illustrates the false-color restoration results by various
methods on ARAD_1K and CAVE datasets. From Fig. 4, we can observe that
the recovered results obtained by the proposed FLRTF exhibit clearer spatial
details and textures, and colors are closer to the original ones.

4.4 Discussions

Functional Transform vs. Discrete Transform. To validate the effective-
ness of the functional transform, we compare FLRTF with two classical dis-
crete transform-based low-rank tensor factorization methods, i.e., the discrete
Fourier transform-based LRTF (i.e., TCTF [54]) and the deep learning-based
LRTF (i.e., HLRTF [29] without parametric total variation regularization). Fig.
5 illustrates the recovery results by different methods. We can observe that
FLRTF achieves good restoration result, whereas other methods cannot recover
the missing bands. This success is attributed to the continuity introduced by
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HLRTF wo PTV TCTF FLRTF GT

Fig. 5: Visualization of recovery results by different methods for MBI task on Toy.

Table 5: The performance of different methods.

Method Apply Eye Make-up Blowing Candles Writing On Board Typing

LRTFR 31.16/0.939 29.64/0.888 28.17/0.910 30.79/0.908

FLRTF 32.83/0.954 31.10/0.915 28.86/0.913 31.94/0.931

the functional transform, which enables FLRTF to capture the local smooth-
ness of data, thereby facilitating the recovery of temporal/spectral degeneration
problems.

Comparison with LRTFR [28]. The t-SVD serves as a core building block
in the proposed FLRTF. The suggested functional transform-based low-rank
tensor factorization can break the limitation of discrete transforms and inherits
classic discrete transform-based t-SVD’s nice ability. Here, we compare the pro-
posed FLRTF with the low-rank tensor function representation (LRTFR) [28],
which introduces the functional representation into the Tucker decomposition.
The recovery results by different methods are given in Table 5. The results shown
in Table 5 demonstrate the superiority of our method over LRTFR.

5 Conclusion

In this paper, we proposed a novel approach, termed FLRTF, which is designed to
address the challenging multi-dimensional data recovery, i.e., temporal/spectral
degeneration scenarios. We theoretically justified that the proposed FLRTF can
encode the local smoothness and global low-rankness of data simultaneously.
Extensive experiments have validated the superiority of the proposed FLRTF
compared to representative data recovery methods. This work will contributes
to advancing the field of computer vision and pattern recognition.
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