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Fig. 1: CRM generates high-fidelity textured mesh from single image in 10 seconds.

Abstract. Feed-forward 3D generative models like the Large Recon-
struction Model (LRM) [18] have demonstrated exceptional generation
speed. However, the transformer-based methods do not leverage the ge-
ometric priors of the triplane component in their architecture, often
leading to sub-optimal quality given the limited size of 3D data and
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slow training. In this work, we present the Convolutional Reconstruction
Model (CRM), a high-fidelity feed-forward single image-to-3D generative
model. Recognizing the limitations posed by sparse 3D data, we highlight
the necessity of integrating geometric priors into network design. CRM
builds on the key observation that the visualization of triplane exhibits
spatial correspondence of six orthographic images. First, it generates
six orthographic view images from a single input image, then feeds these
images into a convolutional U-Net, leveraging its strong pixel-level align-
ment capabilities and significant bandwidth to create a high-resolution
triplane. CRM further employs Flexicubes as geometric representation,
facilitating direct end-to-end optimization on textured meshes. Overall,
our model delivers a high-fidelity textured mesh from an image in just
10 seconds, without any test-time optimization.
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1 Introduction

In recent years, generative models have witnessed significant advancements,
largely attributed to the fast growth in data size. Transformers [56], in partic-
ular, have achieved high-performance results across various domains including
language [3], image [1, 38] and video generation [2]. However, the domain of 3D
generation presents unique challenges. Unlike the abundance of other modal’s
data, 3D data is comparatively scarce. The creation of 3D data requires special-
ized expertise and considerable time, leading to a situation where the largest 3D
datasets, namely Objaverse [12, 13], only contain millions of 3D content, much
smaller than image datasets like Laion [46] which contains 5 billion images.

Despite this, recent developments have introduced some transformer-based
methods [18, 21, 60, 64, 71] like LRM [18] for creating 3D content from single
or multi-view images in a feed-forward manner. Among these models, the tri-
plane has emerged as a popular component due to its efficiency in generat-
ing high-resolution 3D results with minimal memory cost. However, reliance on
transformer-based networks for generating triplane patches has not utilized the
geometric priors inherent to the triplane concept, leading to sub-optimal results
in terms of quality and fidelity, and long training time.

To address the above challenges, this paper presents a new Convolutional Re-
construction Model (CRM) with high generation quality as well as fast training.
Given the limited amount of 3D contents, CRM builds on a key hypothesis that
it is beneficial to explore geometric priors in architecture design. Namely, we
observe from the visualization of triplane [5, 6, 48] that triplane exhibits spatial
correspondence of input six orthographic images, as shown in Fig. 2. The silhou-
ette and texture of the input images have a natural alignment with the triplane
structure. This motivates us to (1) use six orthographic images as input images
to reconstruct 3D contents, which align well as the triplane feature, instead of
other arbitrarily chosen poses; (2) use a U-Net convolutional network to map the
input images to a rolled-out triplane by exploring the strong pixel-level alignment
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between the input and output. Furthermore, the significant bandwidth capacity
of our U-Net enables a direct transformation of the six orthographic images into
the triplane, yielding highly detailed outcomes. Besides, we also add Canonical
Coordinate Map (CCM) to the reconstruction network, a novel addition that
enriches the model’s understanding of spatial relations and geometry.

For the task of 3D generation from a single image, as the six orthographic
images and CCMs are not directly available, we train a multi-view diffusion
model conditioned on the input image to generate the six orthographic images
and another diffusion model to generate the CCMs conditioned on the generated
six orthographic images. Both diffusion models are trained on a filtered version
of the Objaverse dataset [13]. To further enhance quality and robustness, we
implement training improvements for the multi-view diffusion models, including
Zero-SNR [26], random resizing, and contour augmentation.

Finally, as directly optimizing high-quality textured meshes is challenging, we
adopt Flexicubes [47] as the geometry representation to falicitate gradient-based
mesh optimization. This is unlike previous works [18,71] that use alternative 3D
representation like NeRF [36] or Gaussian Splatting [19]. Such methods often
involve extra procedure steps to obtain textured meshes [52], although they can
produce detailed visualizations. With our designs, we are able to train CRM with
textured mesh as the final output in an end-to-end manner, and our approach
has a more straightforward inference pipeline and better mesh quality. Overall,
our method can generate high-fidelity textured mesh within 10 seconds, as shown
in Fig. 1.

2 Related Works

2.1 Score Distillation for 3D Generation

DreamFusion [39] proposes a technique called Score Distillation Sampling (SDS)
(also known as Score Jacobian Chaining [57]). It utilizes large scale image diffu-
sion models [44,45] to iteratively refine 3D models to align with specific prompts
or images. Thus it can generate 3D content without training on 3D dataset. Along
this line, ProlificDreamer [63] proposes Variational Score Distillation (VSD),
a principled variational framework which greatly mitigates the over-saturation
problems in SDS and improves the diversity. Zero123 [30], MVDream [49], Image-
Dream [59] and many others [22,41,42] further improve the results and mitigate
the multi-face problems using diffusion models fine-tuned on 3D data. [33,40] ex-
plore amortized score distillation. Many other works [7–9,11,20,23–25,27,51,53,
55,62,65,70] improve the results a lot, in either speed or quality. However, meth-
ods based on score distillation usually take from minutes to hours to generate
single object, which is computationally expensive.

2.2 3D Generation with Sparse View Reconstruction

Several approaches aim to generate multi-view consistent images and then create
3D contents using sparse views reconstruction. For example, SyncDreamer [31]
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Fig. 2: One of our key motivation is that the triplane shares a strong spatial alignment
with the input six orthographic images. (a) The six orthographic images of a input
shape. (b) The six orthographic CCMs. (c) The triplane (mean value of all channels)
output by our U-Net, which spatially aligns with the input images. (d) The textured
mesh output by our convolutional reconstruction model.

generates multi-view consistent images and then uses NeuS [58] for reconstruc-
tion. Wonder3D [32] improves the results with cross-domain diffusion. Direct2.5 [34]
improves the results with 2.5D diffusion. However, one common issue of these
methods is that they need test-time optimization for reconstruction with sparse
views, which may lead to extra computing and compromise the final quality

2.3 Feed-forward 3D Generative Models

Some works try to generate 3D objects using a feed forward model [4, 10, 15,
16, 66, 69]. Feed-forward methods demonstrate significantly faster generation
speeds compared to the two types of methods mentioned above. Recently there
are some works trained on larger 3D dataset Objaverse [13]. One-2-3-45 [29]
generates multi-view images and then feed the images into a network to get
the 3D object. LRM series [18, 21, 60, 64] improve the quality of generated re-
sults with a transformer-based architecture. TGS [71] and LGM [52] use Gaus-
sian Splatting [19] as the geometry representation. There are also many other
works [28, 35, 54, 68] that improve the results with different techniques. Despite
these advancements, there remains room for improvement in the network ar-
chitecture or geometry representation. Our approach utilizes a network with a
strategically designed architecture and an end-to-end training approach produc-
ing meshes directly as the final output.
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Fig. 3: Overall pipeline of our method. The input image is fed into a multi-view image
diffusion model to generate six orthographic images. Then another diffusion model
is used to generate the CCMs conditioned on the six images. The six images along
with the CCMs are send into CRM to reconstruct the final textured mesh. The whole
inference process takes around 10 seconds on an A800 GPU. *The 4 seconds includes
the U-Net forward (less than 0.1s), querying surface points for UV texture and file I/O.

3 Method

In this section, we illustrate the detailed design of our method (shown in Fig. 3).
Given a single input image, our model first utilizes multi-view diffusion models
(Sec. 3.1) to generate six orthographic images and the canonical coordinates
maps (CCMs). Then we develop our convolutional reconstruction model
(CRM, Sec. 3.2) to reconstruct 3D textured mesh from the images and CCMs.

3.1 Multi-view Diffusion Model

We first explain the design of the multi-view diffusion model to generate six
orthographic view images from a single input image. Instead of training from
scratch, which is typically extremely expensive, we initialize the diffusion mod-
els using the checkpoint of ImageDream [59], a high-performance diffusion model
for the task of multi-view images generation from a single image. The original
ImageDream supports 4 views generation. We expand it to include 6 views by
adding two more perspectives (up and down). We use another diffusion model
which is conditioned on the generated six views to generate the canonical coordi-
nate map. The conditional RGB image is concatenated with the noisy canonical
coordinate map. It is also initialized from ImageDream checkpoint. Both the
diffusion models are fine-tuned on the Objaverse [13] dataset.

To further improve the quality and robustness of our results, we introduce
several enhancements: (1) Zero-SNR Training. We use the zero-SNR trick as
mentioned in [26]. This can alleviate the problem resulting from the discrepancy
between the initial Gaussian noise during sampling and the noisiest training
sample. (2) Random Resizing. A naive implementation would make the model
tends to generate objects that occupy the entire image. To mitigate this, we
randomly resize the objects when training. (3) Contour Augmentation. We
find that the model tends to predict the backview color largely relying on the
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contour of the input view. To make the model insensitive to the contour, we
randomly change the contour color during training.

3.2 Convolutional Reconstruction Model

We now move to introduce the detailed architecture of the convolutional recon-
struction model (CRM). As outlined in Fig. 4, given the input six images and
CCMs, a convolutional U-Net is used to map the input images along with the
CCMs to a rolled-out triplane. Then the rolled-out triplane is reshaped into the
triplane. Small multi-layer perceptions (MLPs) are used to decode the triplane
features into SDF values, texture color and Flexicubes parameters. Lastly, these
values are used to get texture mesh by dual marching cubes. Below, we explain
the key components of CRM in detail.

Triplane Representation We choose triplane as the 3D representation, be-
cause it can achieve high resolution 3D results with 2D computation consump-
tion. It projects each query grid cell to axis-aligned orthogonal planes (xy, xz,
and yz planes) and then aggregates the feature from each planes. Then the fea-
ture is decoded by 3 tiny MLPs with 2 hidden layers to get the SDF values along
with deformation, color and Flexicubes weights, respectively. Further, to avoid
the unnecessary entanglements of different planes, we use rolled-out triplane [61].

Canonical Coordinates Map (CCM) We also add CCM as input [22], which
contains extra geometry information. This is different from previous works, which
typically use pure RGB images as the input to predict the 3D object [18]. Using
pure RGB images make it extremely hard to predict the correct geometry, and
sometime the geometry degrades (details in Sec. 4.3). Formally, CCM is the
coordinates of each point in canonical space. It contains 3 channels whose values
are within [0, 1], representing the coordinates in the canonical space.

UNet-based Convolutional Network Our key insight is that the triplane is
spatially aligned with the input six orthographic images and CCMs, as shown in
Fig. 2. To match the rolled-out triplane, the six images and CCMs are arranged in
a similar way. We render the six images and CCMs at a resolution of 256× 256.
They are split into two groups, with each group holding three images. These
images in the four groups are then combined to create four larger images, each
with a resolution of 256× 768, allowing for spatial alignment. By concatenating
these four groups, we form a 12-channel input. Next, a convolutional U-Net
processes this input to produce the output triplane.

Compared to transformer-based methods [18, 21, 64, 71], our U-shape design
has a larger bandwidth in preserving the input information, leading to highly
detailed triplane features and finally elaborate textured meshes. Moreover, the
convolutional network fully utilizes the geometry prior of the spatial correspon-
dance of triplanes and input six orthograhic images, which greatly fasten the
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Fig. 4: Architecture along with training pipeline of CRM. We render the 3D mesh
into six orthographic images and CCMs. Then the images and CCMs are concatenated
and fed into the U-Net. The output triplane is decoded by small MLP networks to
form the feature grid of Flexicubes, then textured mesh is get by dual marching cubes.
During training, we render the color images, depth maps and masks from GT mesh
and reconstructed mesh for supervision.

convergence and stabilize the training. Our model can get reasonable recon-
struction results at very early stage of training (around 20 minutes of training
from scratch). Also, our model can be trained with a much smaller batch size
32 (compared to transformer-based LRM that uses a batch size of 1024), which
makes that all of our experiments can be conducted on an 8-GPU-cards ma-
chine. The overall training cost of our reconstruction model is only 1/8 than
LRM. More details are shown in the experiments (see Sec. 4.1).

Flexicubes Geometry Previous generic 3D generation methods mostly adopt
NeRF [36] or Gaussian splatting [19] as the geometry representation, which re-
lies on extra procedures like Marching Cubes (MC) to extract the iso-surface,
suffering from topological ambiguities and struggling to represent high-fidelity
geometric details. In this work, we use Flexicubes [47] as our geometry repre-
sentation. It can get meshes from the features on the grid by dual marching
cubes [37] during training. The features include SDF values, deformation and
weights. The texture is obtained by querying the color at the surface. Flexicubes
enables us to train our reconstruction model with textured mesh as the final
output in an end-to-end manner.

Loss Function Finally, to train our CRM model, we use a combination of MSE
loss LMSE and LPIPS loss [67] LLPIPS for the rendered images for texture, similar
as LRM [18]. To further enhance the geometry, we also include the depth map
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Fig. 5: Qualitative comparison with baselines. Our models generates high-fidelity re-
sults with better geometry and texture.

and mask for supervision [16]. The overall loss function is

L = LMSE(x,x
GT) + λLPIPSLLPIPS(x,x

GT)

+ λdepthLMSE(xdepth,x
GT
depth) + λmaskLMSE(xmask,x

GT
mask) + λregLreg,

(1)

where x, xdepth and xsil represent the RGB image, depth map and mask rendered
from the reconstruction textured mesh, respectively. And xGT, xGT

depth and xGT
mask

are rendered from the ground truth textured mesh. Lreg is the mesh-quality
regularizers introduced in Flexicubes [47]. λLPIPS, λdepth, λmask and λreg are the
coefficients that balance each loss.

4 Experiments

4.1 Experimental Setting

Dataset We filter the Objaverse [13] dataset, removing scene-level objects and
low quality meshes, and get around 376k valid high quality objects as the train-
ing set. We reuse the rendered images from SyncDreamer [31] which contain
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16 images per shape at the resolution of 256 × 256, and additionally render 6
orthographic images and CCM with the same lighting and resolution.

Network Architecture The reconstruction model contains around 300M pa-
rameters. The U-Net contains [64, 128, 128, 256, 256, 512, 512] channels, with at-
tention blocks at resolution [32, 16, 8]. We set the Flexicubes grid size as 80.

Implementation Details The reconstruction model was trained on 8 NVIDIA
A800 80GB GPU cards for 6 days with 110k iterations. The model was trained
with batch size 32 (32 shapes per iteration). At each iteration, we randomly
sampled 8 views among the total 16 images for each shape for supervision. We
used the Adam optimizer with learning rate 1e−4. The coefficients that balancing
each loss were set as λLPIPS = 0.1, λdepth = 0.5, λmask = 0.5 and λreg = 0.005.
To enhance robustness against minor inconsistency in the generated multi-view
images, we introduced small Gaussian noise to the inputs in both training and
inference.

The diffusion models for both six orthographic images and CCMs were trained
on 8 NVIDIA A800 80GB GPU cards for 2 days with 10k iterations. The gradi-
ent accumulation is set as 12 steps, yielding a total batch size of 1536. We used
the Adam optimizer with learning rate 5e− 5. During sampling both diffusions
were sampled with 50 steps using DDIM [50].

4.2 Comparison with baselines

Qualitative Results To validate the effectiveness of our method, we qualita-
tively compare our results with previous works including Wonder3d [32], Sync-
Dreamer [31], Magic123 [41], One-2-3-45 [29] and OpenLRM [17]. Since LRM [18]
is not open-sourced, we use OpenLRM [17], an open-sourced implementation of
LRM for comparisons. For the other baselines, we use their official codes and
checkpoints. As for the input images for testing, we choose two from GSO [14]
dataset, one downloaded from web and one generated by text-to-image diffusion
model. The results are shown in Fig. 5. It can be seen from the figure that our
method generates 3D textured meshes with better texture and geometry than
all other baselines. This is because our reconstruction model fully utilizes the
spatial alignment of input six orthographic images and output triplane. Also,
our model can generate with only 10 seconds, much faster than most of the
baselines. Our method is trained in an end-to-end manner with textured mesh
as final output, thus avoiding a time-consuming post-processing for converting
to mesh as in [52].

Additionally, we visualize the generated meshes comparing to the previous
work LRM [18] and a concurrent work LGM [52]. Since LRM is not open-sourced,
we use the meshes from their project page. The results are shown in Fig. 6. It
can be seen from the figure that our results have better texture. Our method
also has smoother geometry than LRM and better geometry details than LGM.

In Fig. 7, we show more results of the high-fidelity textured meshes generated
from single image by our method.



10 Z. Wang et al.

Fig. 6: Qualitative comparison with LRM [18] and LGM [52]. Our models generates
high-fidelity results with detailed texture and smooth geometry.

Quantitative Results In line with previous studies [32], we evaluate our
method using the Google Scanned Objects (GSO) dataset [14] which is not
included in our training dataset. We randomly choose 30 shapes and render a
single image with size of 256 × 256 as input for evaluation. To ensure the gen-
erated mesh accurately aligned with the ground truth mesh, we carefully adjust
their pose and scale them to fit within the [−0.5, 0.5] box. For mesh geometry
evaluation, we report Chamfer Distance (CD), Volumn IoU and F-Score (with a
threshold of 0.05, following One-2-3-45 [29]), which measure the geometry simi-
larity between the reconstructed mesh and ground truth mesh. The results are
shown in Table 1. It can be seen from the table that our method outperforms all
of the baselines, which demonstrates the effectiveness of our method for geometry
quality.

Furthermore, for evaluating mesh texture, we render 24 images at 512 ×
512 resolution at elevation angles of 0, 15, and 30 degrees, for the generated
meshes and ground-truth meshes respectively. For each elevation, the 8 images
are evenly distributed around a full 360-degree rotation. Then we assessed them
using several metrics: PSNR, SSIM, LPIPS and Clip-Similarity, which measure
the resemblance in appearance between the reconstructed mesh and the original
ground truth mesh. The results are shown in Table 2. It shows that the generated
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Fig. 7: More Results of the generated results of our method from a single image.

textured meshes by our model surpass those of all baselines in appearance, which
demonstrates the effectiveness of our method for texture quality.

Additionally, we carry out experiments to evaluate the effectiveness of our
single image to multi-view diffusion models. We use PSNR, SSIM, and LPIPS
to measure the similarity between the generated multi-view images and ground
truth multi-view images. For this analysis, we use four views of the generated
images (left, right, front, back) from each model under comparison, setting the
background color to grey (value 128). We compare with SyncDreamer [31] and
Wonder3D [32]. The outcomes of this evaluation are documented in Table 3. It
can be seen from the table that our method outperforms all the baselines.

4.3 Ablation Study and Analysis

Reconstruction Results on Early Training Stage An advantage of our
CRM is that it is easy to train. In fact, we find that CRM starts to show reason-
able results at very early stage of training. The results are shown in Fig. 8. The
results are good even with barely 280 iterations (only 20 minutes of training).
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Table 1: Quantitative comparison for the geometry quality between our method and
baselines for single image to 3D textured mesh generation. We report the metrics of
Chamfer Distance, Volumn IoU and F-score on GSO dataset.

Method Chamfer Dist.↓ Vol. IoU↑ F-Sco. (%)↑

One-2-3-45 [29] 0.0172 0.4463 72.19
SyncDreamer [31] 0.0140 0.3900 75.74
Wonder3D [32] 0.0186 0.4398 76.75
Magic123 [41] 0.0188 0.3714 60.66
TGS [71] 0.0172 0.2982 65.17
OpenLRM [17,18] 0.0168 0.3774 63.22
LGM [52] 0.0117 0.4685 68.69
Ours 0.0094 0.6131 79.38

Table 2: Quantitative comparison for the texture quality between our method and
baselines for single image to 3D textured mesh generation. We report the metric of
PSNR, SSIM, LPIPS and Clip [43]-Similarity on GSO dataset.

Method PSNR↑ SSIM↑ LPIPS↓ Clip-Sim↑

One-2-3-45 [29] 13.93 0.8084 0.2625 79.83
SyncDreamer [31] 14.00 0.8165 0.2591 82.76
Wonder3D [32] 13.31 0.8121 0.2554 83.70
Magic123 [41] 12.69 0.7984 0.2442 85.16
OpenLRM [17,18] 14.30 0.8294 0.2276 84.20
LGM [71] 13.28 0.7946 0.2560 85.20
Ours 16.22 0.8381 0.2143 87.55

We conjecture that the fast convergence results from the strong geometry prior
in our architecture design.

Training Time of CRM In Fig. 9 we compare the training cost between our
method (reconstruction model only) and two baselines, LRM [18] and LGM [52].
We measure the training cost by the training days multiplying the amount of
used NVIDIA A100/A800 GPU cards. It can be seen that our model takes much
smaller training time than the two baselines. This is because our model utilizes
the spatial correspondence between input six orthographic images/CCMs and
triplanes, which serves as a strong prior that makes the training easier.

Importance of Input CCM We examine the importance of the CCMs that
are concatenated to the input images. To compare, we train a reconstruction
model that takes only the six RGB images as input, without CCMs. The results
are shown in Fig. 10. It can be seen that the results of the geometry degrade
a lot without CCM input. This is because CCM provides important geometry
information for the model, especially when the geometry is complex.
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Table 3: Quantitative comparison between our method and baselines for novel view
synthesis of the multi-view diffusion model. We report the metric of PSNR, SSIM and
LPIPS on GSO dataset.

Method PSNR↑ SSIM↑ LPIPS↓

SyncDreamer [31] 20.30 0.7804 0.2932
Wonder3D [32] 23.76 0.8127 0.2210
Ours 29.36 0.8721 0.1354

(d) Ground Truth

Mesh

(a) 0 iters

(Initialization)

(b) 280 iters

(~ 20 min training)

(c) 4k iters

(~ 5 hours training)

Fig. 8: Reconstruction results on un-
seen samples during early stage of
training.

Fig. 9: Training cost comparison. Our
model require much less computation
cost than other baselines.

(b) w/ CCM Input (c) Ground Truth Mesh(a) w/o CCM Input

Fig. 10: The CCM concatenated to the input images is beneficial for our model. (a)
Without providing CCM, the model outputs a geometry which is reasonable, but not
very good. (b) The shape reconstructed using our full model with CCM input, with a
much better geometry. (c) Ground truth mesh rendered from the same pose.

Design of Multi-view Diffusion Here we examine the effectiveness of the de-
sign of the multi-view diffusion models. Starting from the baseline that naively
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Table 4: Ablation study on the design of multi-view diffusion on novel view synthesis.
We report the metrics of PSNR, SSIM and LPIPS on GSO dataset.

Method PSNR ↑ SSIM ↑ LPIPS↓

ImageDream (6 view) 28.99 0.8565 0.1497
+ Zero-SNR 29.13 0.8598 0.1498
+ Random Resizing 29.36 0.8721 0.1354
+ Contour Augmentation 28.92 0.8681 0.1444

Fig. 11: Demonstration of contour augmentation. (a) Given an input image, (b) off-the-
shelf segmentation model sometimes provides imperfect results. (c) Without contour
augmentation, the predicted backview color is sensitive to the contour. (d) With con-
tour augmentation, the model predicts reasonable result. (e) We demonstrate how we
augment the input image during training.

fine-tunes the pre-trained ImageDream model with 2 additional views, we se-
quentially add the the proposed techniques on the training. We examine the
results on a subset of GSO, comparing the similarity of the generated novel view
images with the ground truth images using PSNR, SSIM and LPIPS metrics.
The results are shown in table 4. It can be seen that both the Zero-SNR trick
and random resizing are beneficial. Note that the contour augmentation does
not improve the quantitative metrics. However, we find that this trick makes the
model more robust to in the wild input images (Fig. 11).

5 Conclusion

In this work, we present a convolutional reconstruction model (CRM) for creating
high-quality 3D models from a single image. Our approach effectively utilizes
the spatial relationship between input images and the output triplane, leading
to improved textured meshes, with significantly less training cost compared to
previous transformer-based methods [18]. The model operates on an end-to-end
training basis, directly outputting textured meshes. Overall, our method can
produce detailed textured meshes in just 10 seconds.

Potential Negative Impact. Similar to many other generated models, our
CRM may be used to generate malicious or fake 3D contents, which may need
additional caution.
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