
(Supplementary Material)
Domain Reduction Strategy

for Non-Line-of-Sight Imaging

In this supplementary material, we first provide additional discussion and
comparison with FFT-based methods in Section A. Then, we provide additional
details of the proposed method in Section B, additional comparisons with more
baseline methods in Section D, reconstruction time of our method in Section C,
and additional evaluations and analysis in Section E.

A Comparison with FFT-based Methods

A.1 FFT-based Methods and Optimization

We would like to demonstrate that the goal of our work is not to achieve the
fastest reconstruction speed. Instead, this work aims to identify efficiency bottle-
necks inherent in previous optimization-based methods, particularly stemming
from computations related to empty regions. Consequently, our domain reduc-
tion achieves substantial efficiency improvement (see Table 2 of the main paper),
while inheriting the general applicability of the optimization framework.

While FFT-based methods benefit from computational efficiency based on
the convolutional theorem or Stolt’s method, several assumptions have to be
made to achieve this, e.g . dense scanning points, planar relay walls, or ignor-
ing surface normals. Some approximations could relax certain assumptions, but
at the cost of sacrificing performance. In contrast, optimization-based methods
are more generally applicable to various scenarios, with the potential for con-
tinuous modeling, joint optimization of noise parameters, arbitrary BRDF [8],
and sparse samplings [5, 9]. Our domain reduction effectively addresses compu-
tational burdens of optimization frameworks, paving the way to unleash their
full potential.

A.2 Analysis on Sparse Sampling

Reconstructing high-resolution volumes from undersampled sparse measurements
is an ill-posed problem. Previous FFT-based methods require measurements to
have the same resolution with the target volumes. One may apply interpolation
techniques to upsample the measurements to the desired resolution, as com-
mented by R3. However, this inevitably introduces approximation errors between
upsampled and actual measurements. Therefore, solutions of all methods exhibit
approximation errors, which become larger as scanning patterns become sparser.
Optimization-based methods are capable of finding solutions with minimal er-
rors through iterative minimization procedures. This is further demonstrated in
the following paragraphs.
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Fig. 7: Additional comparisons with FFT-based methods, which employs the bicubic
interpolation as an additional technique to upsample the input transients to 128× 128
scanning resolution.

Results on 32 × 32 with bicubic interpolation. For more precise compar-
isons, we deliver the results of FFT-based methods, using the additional bicubic
interpolation technique. These results are obtained by first applying the bicu-
bic interpolation to upsample the transients to the 128× 128 spatial resolution,
and then applying the FFT-based methods to the upsampled transients. As
shown in Fig. 7, the additional bicubic interpolation improves the results of 3D
convolution-based methods [6, 10], while the results of FK and Phasor field are
less affected by the interpolation technique. Nevertheless, LCT and DLCT still
produces blurry outputs, incorrect albedo values (see results of Bunny), and in-
accurate fine details of the objects (e.g ., the ear of Bunny, the face of Serapis, the
head of Dragon). Contrary to these methods, our method reconstructs hidden
volumes directly from 32 × 32 transients, reconstructing high-quality volumes
with fine details, while being robust to the effects of noise.

Results on 16×16 sampling. We also present the results of FFT-based meth-
ods on the 16× 16 sparsely sampled measurements, which are upsampled to the
lateral resolution of the target volumes by filling unsampled pixels with zero. As
shown in Fig. 8 (a), approximation errors caused by the upsampling become evi-
dently larger as scanning patterns become sparser, leading to unfavorable results
of the FFT-based methods. On the other hand, our optimization-based frame-
work successfully reconstructs clean shapes of the objects with many details in
these challenging scenarios.
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Fig. 8: (a) Results on 16 × 16 samplings, upsampled to 128 × 128 by filling unsam-
pled pixels with zero. FFT-based methods produce unfavorable results with artifacts
regardless of the upsampling techniques. (b) Results on 256×256 transients of ZNLOS
Bunny.

Results on 256 × 256 measurements. Finally, we deliver the results on
256× 256 measurements of ZNLOS [2] Bunny in Fig. 8 (b). As can be seen, all
methods produce compelling results with sufficient scan points and sufficiently
long scanning time.

B Method Details

B.1 Reconstruction Objective

Combining the noise parameters and the L1 regularization, the objective of our
reconstruction pipeline can be described as

L(ρ,n) = ||(T + d)− τgt||2 + α||ρ||1, (8)

where T is the rendered transients, τgt is the ground truth measurements, and d
is the noise parameter defined for each histogram. We set α to 0.8 for real-world
scenes and 0.001 for synthetic measurements.

B.2 Additional Implementation Detail

In this section, we provide detailed explanations of our implementations for the
future reproducibility. For albedo variables, we apply the ELU [1] activation
function to suppress the negative albedo values. We set the orthogonal direction
from the hidden objects to the relay wall as (0, 0,−1). With n = (nx, ny, nz)
representing the surface normal, points of the hidden objects which have positive
nz values (backfaces of the objects) are not visible from the measurements. To
ensure negative nz values, we apply the tanh to the variables and add (0, 0,−1)



4 F. Author et al.

Table 5: The ratio of active regions and the reconstruction time of all instances. The
reconstruction time is measured using a single commercial RTX 3090 GPU. While the
reconstruction time varies across the instances, our method typically takes about a
minute to reconstruct 128× 128 hidden volumes.

Scene num. iter active ratio recon. time

Statue 1,000 0.9 % 25 s
Dragon 1,000 2.6 % 65 s
Bunny 1,000 3.0 % 54 s
Serapis 1,000 8.2 % 130 s

Bunny (non-confocal) 1,000 3.3 % 91 s
NT (non-planar) 1,000 0.4 % 70 s

to obtain the surface normal vector. This process results in a range (−1, 1) for
nx and ny, and a range (−2, 0) for nz. Finally, we normalize the surface normal
to make it as a unit vector.

Throughout all experiments, our method takes transients with 32× 32 scan-
ning points and reconstructs hidden volumes with a 128 × 128 × 333 resolu-
tion, where the last is the resolution along z-axis. The standard deviation of
the Gaussian kernel used in the soft domain reduction is set to 3. We empiri-
cally observe that slightly reducing the threshold of the domain reduction under
the non-confocal setups yield better reconstruction quality. Therefore, we set
the threshold to 5% for the confocal measurements and 3% for the non-confocal
measurements. To report the results of fast Fourier transform (FFT)-based meth-
ods, we upsample spatial resolution of their outputs with bicubic interpolation
to make 128 × 128 resolution. To measure the quantitative results of ZNLOS
Bunny, we upsample the spatial resolution of results to 256×256, matching that
of the ground truth. By analyzing the last 10% transient histograms along t-axis
of the real-world measurements, we empirically set b to 0.05 and λ to 0.06 for the
noise regularization. These values are slightly reduced for reconstructing retro-
reflective targets (b = 0.004, λ = 0.0012), which usually have higher maximum
intensity values. To report the results of NeTF [8], we use the original source
code provided by the authors, and train this model for 192 epochs with 2 stage
training as in the original work. The training of NeTF takes more than 2 days
in our environment. The optimization process of our method for revealing the
albedo and surface normal of a single scene takes 1k iterations, which require
about a minute using a single commercial RTX 3090 GPU.

C Reconstruction Time

We deliver the reconstruction time and the ratio of active regions for reconstruct-
ing all scenes in Table 5. Although the reconstruction time could vary according
to characteristics of the scenes, i.e. remaining domain at each step, our method
demonstrates its efficiency across all instances, typically taking about a minute
to reconstructing 128 × 128 output volumes. Considering both reconstruction
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Fig. 9: Additional comparisons including LCT, Phasor(FFT-based), FBP with a Lapla-
cian filter (Lap.), FBP with a Laplacian-of-Gaussian filter (LoG), and Phasor field with
wavelengths λ = 2∆p where ∆p is the sampling distance.

time and scanning time required for the high-resolution outputs, our method
can serve as an efficient and effective solution for reconstructing high-resolution
volumes with 32× 32 scanning points.

D Additional Comparison

To clearly demonstrate the effectiveness of our method, we provide comparisons
with additional baseline methods. These include back-projection (BP) based
methods that do not utilize Fourier transform and thus do not suffer from the
lateral resolution issues, LCT [6], and the fast differentiable renderer [7].

D.1 Confocal Imaging Result

We report the results of LCT, Phasor with FFT, FBP with a Laplacian filter
(Lap.) and a Laplacian of Gaussian (LoG) filter. We also deliver the results of
Phasor with the wavelength λ = 4∆p, while the results of Phasor in the main
paper are with the wavelength λ = 2∆p.

As reported in Fig. 9, our method clearly outperforms all other baseline
methods, producing clearer results and successfully recovering fine details. The
results of LCT are of low resolution, making it difficult to discern the details of
the object. The results of Phasor with FFT fails to reconstruct specific parts,
such as the bunny’s ear. The results of FBP contain streak artifacts and noise,
which often make the hidden objects difficult to be identified.
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Fig. 10: (a) Reconstruction results of normal maps. We compare the results with
DLCT [10] and the fast differentiable renderer proposed by Plack et al . [7] (denoted
as Fast diff.). (b) Reconstruction results with non-planar relay walls. We additionally
compare the results with Phasor field with a BP solver, using the wavelengths λ = 2∆p

and λ = 4∆p, where ∆p is the sampling distance.

D.2 Surface Normal

We compare the reconstruction results of surface normals with the fast differen-
tiable renderer [7]. The differentiable renderer, proposed by Plack et al ., recon-
structs colors and surface geometry of the hidden objects through the differen-
tiable rendering pipeline. As demonstrated in Fig. 10 (a), our method achieves
compelling results in surface normal reconstruction, whereas other baselines,
DLCT [10] and Plack et al . [7], only reconstruct coarse structures of the sur-
faces with artifacts, or lack several parts and details of the objects.

D.3 Non-Planar Relay Wall Result

We additionally provide comparisons of non-planar relay wall results, with Pha-
sor field with a BP solver. We report the results of Phasor field with two different
wavelengths, namely λ = 2∆p and λ = 4∆p. As shown in Fig. 10 (b), our method
delivers cleanest shapes of the “NT" instance, while other methods produce noisy
results where the shapes of the instance are difficult to identify.
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Fig. 11: Results at several step during the optimization.
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Fig. 12: Error map visualizations of the reconstructed depth maps on ZNLOS [2]
Bunny.

E Additional Evaluation

We provide more evaluation results to clearly demonstrate the effectiveness of our
method. First, we report the results at several steps during the optimization to
illustrate that most details of the hidden objects can be reconstructed in the early
stages of our optimization process. Second, we present error map visualizations of
the reconstructed depth maps on ZNLOS [2] Bunny. Then we provide additional
analysis and ablation study for a deeper understanding of our method.

E.1 Results at Different Steps

In Fig. 11, we report the results at several steps (100, 300, 500, 700, 900 steps)
during the optimization process. As can be seen, our method already recovers
almost all shapes of the objects at 500th iteration, and finer details are gradu-
ally revealed as the iteration progresses. While our method can reconstruct the
satisfying outputs at the early stage, we continue the optimization process for
high-fidelity results.

E.2 Depth Map Visualization

We provide visualizations of error maps of reconstructed depth maps in Fig. 12.
While most of the baseline methods suffer from artifacts or missing details of
the objects, our method delivers the accurately reconstructed depth maps while
recovering most of the parts of the objects.
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Fig. 13: Surface reconstruction results. We compare the reconstructed surfaces with
DLCT [10].
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Fig. 14: Ablation results on the continuous point sampling. We deliver the results with
the continuous (denoted as cont.) and the fixed point (denoted as fixed) sampling.

E.3 Surface Reconstruction

We provide surface reconstruction results of our method and DLCT [10] in
Fig. 13. Following [10], we obtain the reconstructed surfaces using the Pois-
son reconstruction method [3]. As evident, our method successfully reconstructs
detailed surfaces using only 32× 32 scanning points, whereas DLCT yields only
coarse shapes of the objects, making it difficult to identify many details.

E.4 Additional Analysis

Ablation on continuous points sampling. We deliver the ablation results on
the continuous points sampling in Fig. 14. Here, we compare our method, using
the continuous grid-based random sampling, with the model using a fixed point
sampling, which samples the center of each voxel. As can be seen, the fixed point
sampling often produces inaccurate results at some part of the objects (see the
circled part in Fig. 14), while the continuous sampling exhibits more accurate
results in both synthetic and real-world datasets.

Results with various exposure time. To further validate the robustness of
our method to noise, we present the results on the confocal real-world measure-
ments with various exposure time. We use the 32×32 measurements with 28.1 s,
56.4 s, 168.8 s total exposure time, which correspond to 30, 60, 180 minute total
exposure time of the original measurements. As shown in Fig. 15, our method
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Fig. 15: Results on the confocal real-world measurements [4] with various exposure
time. We use the measurements with 28.1 s, 56.4 s, 168.8 s total exposure time, which
correspond to 30, 60, 180 minute total exposure time of the original measurements.

exhibits more clean and sharp outputs compare to DLCT [10], showing high-
quality results even with 28.1 s total exposure time.
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