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Abstract. WiFi-based human pose estimation (HPE) has emerged as a
promising alternative to conventional vision-based techniques, yet faces
the high computational cost hindering its widespread adoption. This pa-
per introduces a novel HPE-Li approach that harnesses multi-modal sen-
sors (e.g. camera and WiFi) to generate accurate 3D skeletal in HPE.
We then develop an efficient deep neural network to process raw WiFi
signals. Our model incorporates a distinctive multi-branch convolutional
neural network (CNN) empowered by a selective kernel attention (SKA)
mechanism. Unlike standard CNNs with fixed receptive fields, the SKA
mechanism is capable of dynamically adjusting kernel sizes according
to input data characteristics, enhancing adaptability without increasing
complexity. Extensive experiments conducted on two MM-Fi and WiPose
datasets underscore the superiority of our method over state-of-the-art
approaches, while ensuring minimal computational overhead, rendering
it highly suitable for large-scale scenarios.

Keywords: Attention, convolution neural network, human pose estima-
tion, selective kernel, wireless sensing.

1 Introduction

Human activity monitoring-enabled methods primarily rely on video-based sen-
sors and wearable devices [27], showcasing high accuracy in activity identification
but facing several obstacles in the practical deployment [2]. The discomfort of
wearing devices during vigorous activity, alongside limitations inherent to cam-
era systems such as fixed angles, occlusions, glare interference and low-light
conditions, poses significant barriers. Other concerns regarding personal privacy
further impede the widespread adoption of traditional methods in monitoring
human tasks.

Multi-modal sensors for HPE tasks have been developed to overcome the lim-
itations of traditional sensors. Although radio frequency (RF)-based solutions
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Fig. 1: An example of implementing a human pose estimation application using com-
mercial WiFi in the indoor environment.

have seen extensive adoption [52–54], their potential applications are restricted
by hardware constraints, such as the need for a meticulously assembled and syn-
chronized 16+4 T-shaped antenna array, and RF signal limitations, such as the
use of frequency modulated continuous wave with a wide signal bandwidth of 1.78
GHz. In contrast, the WiFi-based approach has recently emerged as a promis-
ing alternative by leveraging the widespread nature of WiFi signals in practical
environments. This approach offers a non-intrusive, privacy-aware solution that
mitigates the inherent limitations of traditional methods. The interaction be-
tween WiFi signals and the hierarchical structure of the human suggests the
feasibility of extracting pose features from diverse WiFi channel state informa-
tion (CSI) [5], thus enabling HPE tasks. Once WiFi-based approaches achieve
reliable performance, they could find widespread implementation in indoor ap-
plications, as depicted in Fig. 1.

However, the implementation of WiFi-based HPE encounters several chal-
lenges. In particular, WiFi CSI data often lacks the necessary detail for fine-
grained tasks, leading to compromised accuracy in pose estimation due to the in-
tertwining of human motions with environmental factors. Moreover, WiFi signals
carry unique fingerprints of both the environment and individuals, making the
trained models less effective in other contexts. Additionally, synthesized skeleton
movements must mirror natural human movement patterns, requiring continu-
ity and smoothness. Recent research has focused on addressing these challenges
through various approaches [20, 32, 41, 44, 55, 56]. The resolution and character-
istics of WiFi CSI signals are enhanced by utilizing the multi-antenna technique
or increasing the number of subcarriers [41,50,56]. Meanwhile, deep neural net-
works, particularly convolutional neural networks (CNNs) with fixed kernels,
are developed to capture local features [20, 32, 41, 44] or combined with trans-
former [39] to obtain global information [55, 56]. However, existing approaches
often face a trade-off between performance and computational cost. For instance,
the work in [56] is shown to achieve good accuracy but requires high computa-
tional complexity (e.g. 26.42 million parameters), whereas [9] exhibits low com-
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plexity yet with unreliable performance. These challenges naturally give rise to a
question: Is it possible to achieve better performance for WiFi-based HPE tasks,
while still guaranteeing a very low computational complexity?

Our answer is “Yes,” by designing a novel multi-model network, namely HPE-
Li, to generate the lightweight and efficient human pose estimation from WiFi
CSI signals. Inspired by the teacher-student network concept [28], the proposed
model comprises two distinct networks: a pre-trained teacher network specialized
in pose estimation from RGB images and a student network tasked with making
pose predictions from raw WiFi signals under the teacher network’s supervision.
The student network employs dual selective kernel sub-networks (DSKNet) to
efficiently learn key characteristics from WiFi CSI signals without increasing
complexity. Within DSKNet, we introduce a novel convolutional architecture,
called DSKConv, which incorporates a selective kernel attention (SKA) mech-
anism to dynamically learn diverse features from multiple kernels across both
frequency and channel domains, rather than solely from the channel domain as
in regular selective kernel (SK) convolution [25]. Unlike basic CNN, DSKConv
adaptively selects optimal kernel sizes for each input through a three-step pro-
cess: i) generating multiple paths with different kernel sizes, ii) consolidating
multiscale features, and iii) using an attention mechanism to determine selec-
tion weights.

In summary, the main contributions of the paper are three-fold:

1. We introduce a novel HPE-Li system that integrates multi-modal sensors
(e.g. Camera and WiFi) to accurately generate the skeleton-based HPE from
WiFi CSI signals.

2. We propose DSKNet sub-networks to effectively process WiFi CSI signals
for HPE tasks. DSKNet employs multi-view feature extraction from signals
received by each antenna, enabling a comprehensive understanding of human
posture through the fusion of information from all antennas.

3. We develop a novel DSKConv architecture, which is seamlessly integrated
into DSKNet. This architecture serves as a versatile block capable of sub-
stituting standard convolutional layers in various models. DSKConv dynam-
ically learns diverse features from multiple kernels without imposing addi-
tional computational costs.

Extensive experiments are conducted on two challenging datasets to demonstrate
the effectiveness of HPE-Li. Results confirm the adaptive adjustment of kernel
sizes by DSKConv to achieve multiscale features from input data. Compara-
tive analysis showcases the superior accuracy of the HPE-Li model compared
to existing approaches, all while maintaining much less complexity. Moreover,
experimental results indicate a significant improvement of DSKConv over the
state-of-the-art (SOTA) variant CNNs utilizing fixed-size kernels, with only a
minimal increase in memory and computational requirements. The source code
is available at here for research purposes.

https://github.com/Toandinh1/ECCV24_Li-HPE
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2 Related Work

HPE task: In the field of computer vision (CV), HPE from 2D images has been
extensively studied thanks to powerful deep learning techniques and increasingly
annotated datasets produced by regular cameras [4,6,10–12,14,17,30,31,46] and
specialized equipment [33, 51]. However, vision-based approaches face several
challenges such as poor lighting, occlusion, blurry images and privacy concerns.
Despite attempts to address privacy concerns with light-based methods [23,24],
these methods struggle in low-light conditions or with obstacles. Although Li-
DAR has been shown to provide high person detection capabilities [26, 45], its
cost and power limitations warrant the exploration of alternative, more accessible
solutions for daily and household use. The proposed WiFi-based approach over-
comes these limitations by ensuring privacy protection and operability regardless
of lighting or occlusion. RF-based approaches have emerged as the promising
solution to overcome the aforementioned challenges. In particular, RFCapture
in [1] can outline human bodies even through walls, while RFPose in [52] and
its 3D variant [54] can extract 2D and 3D skeletons from RF signals with the
aid of visual data. However, these methods often require advanced hardware and
signal conditions, limiting their practical applications.

WiFi-based HPE: In recent years, WiFi-based sensing methods have attracted
significant attention, mainly relying on received signal strength (RSS) and chan-
nel state information (CSI). Exploiting the ubiquitous presence of WiFi and
the widespread use of smart devices in various environments, Zou et al. [57]
introduced an indoor localization system based on RSS, providing a feasible
alternative to traditional global positioning systems (GPS). Conversely, WiFi
CSI holds promise for enhancing daily activities like activity recognition and
health monitoring. However, extracting high-quality data from raw WiFi signals
poses a significant challenge compared to other sensing methods. Moreover, the
absence of standardized WiFi CSI setup protocols and the scarcity of publicly
available datasets, primarily due to cost constraints, impede the comparison and
enhancement of HPE tasks. WiPose [20] achieved a good performance in terms
of the 3D human pose estimation using dedicated antenna setups and VICON,
albeit at a high cost. WiSPPN [41] employed standard WiFi devices with 30
subcarriers, albeit sacrificing pose resolution. Notably, MetaFi++ [56] utilized
widely available WiFi devices for HPE to improve the HPE performance. How-
ever, the high computational complexity of its WPFormer network hinders its
real-time application. In this work, we showcase the effectiveness of the proposed
HPE-Li on three critical factors: accessible, high-performance WiFi systems and
lightweight neural network models.

Variants of CNN: The success of CNNs in the CV field has spurred researchers
to explore diverse CNN variations, in which the utilization of multi-branch con-
volution is highlighted as a key aspect [3]. Expanding on this concept, high-
way networks were introduced in [34] to incorporate bypassing paths to gat-
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Fig. 2: The proposed DSKConv with two branches consists of the channel-wise selective
kernel attention (CwSKA) mechanism (Sec. 3.1) and the frequency-wise selective kernel
attention (FwSKA) mechanism (Sec. 3.2).

ing units that facilitate the training of deep networks with hundreds of layers.
ResNet [15] adopted a similar bypassing path strategy to preserve original in-
formation. Building upon this, BlockDrop [49] introduced additional identical
paths for significant transformations. In contrast, InceptionNet [36–38] devel-
oped a new approach by amalgamating multiple branches with customized kernel
filters, resulting in the extraction of richer and more diverse features. In a re-
cent advancement, attention mechanisms have been seamlessly integrated within
convolutional layers. This approach allows the intelligent merging of information
from multiple kernels and enable the creation of effective receptive fields with
varying sizes within fusion layers [7, 19, 25, 43, 48]. In this work, rather than di-
rectly utilizing multi-branch convolution, we develop a novel convolutional archi-
tecture by incorporating a SKA mechanism to effectively learn diverse features
from multiple kernels in both frequency and channel domains with a very low
complexity.

3 The Proposed HPE-Li Method

We now discuss the CwSKA mechanism employed in traditional SK convolution
[25] and then present the proposed convolution, which integrates both CwSKA
and FwSKA to harness channel and frequency domains. Next, we provide insights
into the network architecture and learning objectives of the proposed model.

3.1 Traditional SK Convolution

Let us start by presenting the operation CwSKA mechanism of traditional SK
convolution, as illustrated in Fig. 2. The traditional SK convolution is expressed
as follows. For a given X ∈ RC′×F ′×T ′

, with C ′, F ′ and T ′ being the number
of channels, height in the frequency domain and width in the time domain, re-
spectively, let the transform Fki

: X → Uki
∈ RC×F×T be the function that

splits the input feature map X into N branches. Each transformation consists
of a sequence of efficiently grouped convolutions [22, 25], that has a pre-defined
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kernel size, denoted as {ki}Ni=1, batch normalization (BN) [18] and ReLU activa-
tion [13]. The group number G introduced in AlexNet [21] divides model param-
eters and computational load into G parts to better utilize the GPU resource.
The SK convolution integrates the grouped convolution and dilated convolution
into branches with larger kernel sizes to reduce model overheads [8, 25, 47]. The
dilation factor D expands the receptive field, allowing for a broader view of
convolutional networks. The dilated convolution offers lower model complexity
while capturing more contextual information and achieving faster runtime.

Incorporating various levels of information into the subsequent stage involves
merging N branches through an element-wise summation, i.e. U =

∑N
i=1 Uki .

Subsequently, the 2D global average pooling (GAP) operation encapsulates the
global information into the channel-wise feature vector sc ∈ RC , GAPchan, as
follows:

sc = GAPchan(U) =
1

H ×W

H∑
h=1

W∑
w=1

U(h,w). (1)

Subsequently, a fully connected (FC) layer is used to generate a more compact
feature map zc ∈ Rd×1, which enables the model to perform the SK operation
efficiently. During the dimension reduction, the value of d is controlled by a
reduction ratio r. The compact feature map zc and the reduction ratio r can be
computed as

zc = FC(sc) = ReLU(β(Wsc)) (2)

where β refers to the BN operation, W ∈ RC×d denotes the weight matrix of
a FC layer and d is the dimension of zc; Herein, d = C/r with r represents the
reduction ratio of the compact feature map zc.

The SK convolution then applies a soft attention mechanism for the com-
pact feature map zc passed down from the previous layer, which can guide
the model to adaptively extract multiscale information across the channel axis
[7, 25, 42]. The softmax attention can focus on the important branches and
play a key role in the adaptive kernel selection. The soft attention weights
aki ≜ [aki,1, · · · , aki,C ]

T ∈ RC are calculated via a softmax function fs as

aki,j = fs(Zc) =
exp(Aki,jzc)∑N
l=1 exp(Akl,jzc)

(3)

where Aki,j ∈ Rd is the j-th row of Aki = [AT
ki,1

, · · · , AT
ki,C

]T ∈ RC×d. Finally,
the output features map Vc ∈ RC×H×W is computed as the weighted summation
over the different branches:

Vcj =
∑N

i=1
aki,jUki,j , with

∑N

i=1
aki,j = 1 (4)

where Vcj and Uki,j ∈ RH×W are the j-th components of Vc and Uki
, respec-

tively.
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Fig. 3: The teacher-student network: 1) The CV model acts as the teacher network
to produce ground truth from the camera images, and 2) the proposed model (in the
dashed rectangle) serves as the student network to predict human pose under the
monitoring of the teacher network, as discussed in Sec. 3.3.

3.2 Dual SK Convolution (DSKConv)

We notice that the conventional SK method is not tailored to HPE tasks since
each frame of WiFi-CSI data is also present in both frequency and channel do-
mains (i.e. representing pose information from one specific viewpoint). As a
result, the channel-wise recalibration is comprehensively captured. Thus, we in-
troduce an SK convolution-based approach specifically designed to process raw
WiFi signals. The proposed DSKConv employs both CwSKA and FwSKA mech-
anisms to obtain the adaptive kernel in both channel and frequency domains, as
shown in Fig. 2. FwSKA utilizes the CwSKA technique similarly, but with a dis-
tinction: sf represents a frequency-wise feature vector instead of a channel-wise
feature vector, which is obtained from the transformation, GAPfreq, as

sf = GAPfreq(U) =
1

C × T

∑C

c=1

∑T

t=1
U(c, t). (5)

The compact feature zf , attention weight a and output feature map Vf are
derived in the same manner with CwSKA. This combination ensures that the
different channels and the characteristics of distinctive frequencies are considered
when selecting the suitable kernel size for convolution. Finally, we concatenate
the output features Vfi and Vci at the i-th branches to generate the output
feature O as

O =
∑N

i=1
Vci +

∑N

i=1
Vfi . (6)

The resulting feature O contains crucial information extracted from both fre-
quency and channel domains, aligning well with the inherent characteristics of
WiFi CSI data.

3.3 Network Architecture

The teacher-student network architecture [28] is illustrated in Fig. 3. This archi-
tecture consists of two separate networks: a pre-trained teacher network for pose
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estimation from RGB images and a student network to generate pose predictions
from raw WiFi signals under the guidance of the teacher network. The teacher
network utilizes a computer vision model to obtain 2D key points of frames from
the multi-views, such as HRNet-w48 [35, 50]. The 2D key points serve as the
ground truth y to estimate human poses from various modalities, including co-
ordinates of pixels (a, b) written as y = {(ai, bi)|i ∈ [1, · · · , P ]} with P being
the number of key points. The student network primarily consists of a stack of
repeated sub-networks, so-called “DSKNet”, to construct the feature transfor-
mation network. The features obtained from DSKNet are finally fed into the
decoder module to generate key points prediction ŷ = {(âi, b̂i)|i ∈ [1, · · · , P ]} of
the human body.

DSKConv relies on three essential hyperparameters to dictate the final con-
figuration of SK convolutions. Precisely, the number of branches N decides the
variety of kernels, the group number G controls the cardinality of each branch,
and the reduction ratio (r) impacts the number of parameters in (2). We elabo-
rate on the impact of these parameters in Sec. 4.3.

3.4 Learning Objective

We consider the mean-squared error (MSE) between the prediction ŷ and ground
truth y generated by the visual pose estimation model as the loss function, which
is given as:

LMSE = ∥ŷ − y∥22. (7)

Rather than employing the pose adjacency matrix [41], we have found that
utilizing the MSE loss function yields better performance. This phenomenon
is attributed to the granularity of CSI data. Both MM-Fi and WiPose datasets
contain abundant subcarriers of CSI data for each antenna pair, resulting in
higher-resolution data. As a result, the task can be successfully processed without
necessitating a more complex loss function design.

4 Experiment Results

All experiments are conducted on a computer with an Intel 13-core i9-13900k
CPU (3 GHz) and a GeForce RTX 4070. Network models are trained for 50
epochs using the stochastic gradient descent with momentum (SGDM) algo-
rithm, employing a batch size of 32, a learning rate of 0.001, and a momentum
of 0.9.

4.1 Dataset and Evaluation Metrics

We evaluate the performance of the HPE-Li framework on two challenging
datasets (MM-Fi [50], WiPose [55]). These are briefly provided in Table 1 with
more detailed descriptions below.
MM-Fi [50] includes 17 skeleton points of pose annotations from the camera
sensor and WiFi CSI data, collected from 40 human subjects with 27 action
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Table 1: Detail of MM-Fi and WiPose datasets.

Dataset Activity×Subject Tx×Rx×Subcarrier×Time Frequency Packets Training Testing
MM-Fi 27 × 40 1 × 3 × 314 × 10 5 GHz 320K 70% 30%
WiPose 12 × 12 3 × 3 × 30 × 5 5 GHz 166K 70% 30%

categories over 14 daily activities and 13 rehabilitation exercises. In addition,
MM-Fi utilizes three protocols aligned with the benchmark setup presented in
[50]. Specifically, Protocol 1 (P1) involves 14 daily activities performed freely in
space, such as picking up objects and raising arms. Protocol 2 (P2) comprises
13 activities conducted in a fixed location, such as limb extension. Protocol 3
(P3) includes all 27 aforementioned activities. Each protocol employs two data
splitting strategies: i) Setting 1 (S1-Random Split) randomly divides all video
samples into training and testing sets with a ratio of 3:1, and ii) Setting 2 (S2-
Cross-Subject Split) splits the data by subject, allocating 32 subjects for training
and 8 for testing.

WiPose [55] comprises 166k packets, featuring pose annotations with 18 skele-
ton points and WiFi CSI of 12 different actions (i.e. wave, walk, throw, run,
push, pull, jump, crouch, circle, sit down, stand up and bend) performed by 12
volunteers. All WiPose’s data are randomly split into training and testing sets.

To evaluate pose estimation, we consider three key performance metrics,
which are the Percentage of Correct Keypoints (PCK), Mean Per Joint Position
Error (MPJPE), and Procrustes Analysis MPJPE (PA-MPJPE) in millimeters.
The PCK metric evaluates the accuracy of predicted keypoints by calculating the
percentage of keypoints correctly localized within a predefined threshold a from
their ground truth positions, denoted as PCKa. The MPJPE metric calculates
the Euclidean distance between the predicted joint positions and ground truth
positions, while PA-MPJPE is actually the MPJPE after aligning the predicted
results to the ground truth through a procrustes transformation.
Benchmarks: To showcase the effectiveness of HPE-Li, we conduct a com-
prehensive comparison with several SOTA models. We will mainly consider
MetaFi++ [56] and PerUnet [55], which are shown to achieve the best perfor-
mance on MM-Fi and WiPose datasets. Additionally, we extend the comparison
to include results from previously well-established methods for the HPE task,
such as Wi-Pose [20], Wi-Mose [44], WiLDAR [9] and WiSPPN [41].

4.2 Results and Discussion

Results on MM-Fi: We begin by evaluating the proposed HPE-Li’s perfor-
mance in the P3-S1 scenario using PCKa for each body part. As shown in
Table 2, HPE-Li demonstrates reliable overall pose estimation, achieving an av-
erage score of 85.12% at PCK50. Notably, the accuracy of these particular body
joints remains around 50% even under more stringent conditions at PCK20.
These insights stem from analyzing MM-Fi activities, focusing primarily on up-
per body movement, posing challenges, particularly for intense hand movements.
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Table 2: The PCK of effectiveness for
each body part on MM-Fi with P3-S1.

Keypoint PCK20 PCK30 PCK40 PCK50↑
Bot Torso 70.25 84.25 90.61 94.08
L.Hip 69.01 83.04 89.84 93.61
L.Knee 67.98 82.81 89.87 93.62
L.Foot 61.19 81.25 89.38 93.51
R.Hip 59.79 83.88 90.36 93.96
R.Knee 66.86 81.84 89.33 93.81
R.Foot 58.95 77.71 86.72 91.56
Center Torso 66.45 81.56 88.41 92.23
Upper Torso 54.52 75.86 85.21 90.09
Neck Base 46.41 69.25 81.61 87.44
Center Head 46.02 68.86 84.59 87.57
R.Shoulder 55.58 75.75 85.33 90.42
R.Elbow 34.67 54.41 67.56 76.44
R.Hand 5.08 14.34 29.59 46.83
L.Shoulder 55.27 75.42 85.13 90.37
L.Elbow 35.23 55.37 68.38 76.97
L.hand 5.03 14.12 30.21 48.97

Average 52.07 68.22 78.18 85.12

Table 3: The PCK effectiveness for each
body part on WiPose.

Keypoint PCK5 PCK10 PCK20 PCK50↑
Nose 93.75 96.87 96.87 96.87
Neck 90.62 93.75 96.87 96.87
R.Shoulder 90.62 96.87 96.87 96.87
R.Elbow 68.75 90.62 96.87 96.87
R.Wrist 71.87 84.37 96.87 96.87
L.Shoulder 81.25 90.62 96.87 96.87
L.Elbow 46.87 71.87 81.25 96.87
L.Wrist 56.25 71.87 78.12 90.62
R.Hip 68.75 93.75 96.87 100.00
R.Knee 71.87 93.75 100.00 100.00
R.ankle 75.00 84.37 96.87 96.87
L.Hip 50.00 78.12 87.50 100.00
L.Knee 59.37 75.00 93.75 100.00
L.ankle 71.87 84.37 93.75 93.75
R.Eye 96.87 96.87 96.87 96.87
L.Eye 43.75 59.37 78.12 93.75
R.Ear 93.75 96.87 96.87 96.87
L.Ear 25.00 25.00 28.12 50.00
Average 69.79 82.46 89.41 94.27

Table 4: The PCKa performance with different protocols and settings on the MM-Fi
dataset: Best in bold and second best in underlined.

Protocol Setting 1 Setting 2
PCK20 PCK30 PCK40 PCK50 ↑ PCK20 PCK30 PCK40 PCK50 ↑

1 51.08 68.12 78.12 84.41 36.42 56.91 70.51 79.59
2 40.59 61.27 74.89 83.59 34.17 55.07 70.23 80.34
3 52.07 68.22 78.18 85.12 38.45 59.15 72.92 81.57

Table 5: The MPJPE and PA-MPJPE results of HPE-Li with different protocols and
settings on the MM-Fi dataset: Best in bold and second best in underlined.

P Seting 1 Seting 2
Packet Training Testing MPJPE↓ PA-MPJPE↓ Packet Training Testing MPJPE↓ PA-MPJPE↓

1 166K 116K 50K 152.71 94.39 166K 133K 33K 189.16 93.22
2 154K 108K 46K 164.42 89.18 154K 123K 31K 190.98 89.18
3 320K 224K 96K 149.43 92.52 320K 256K 64K 182.24 93.16

In Tables 4 and 5, we further present comprehensive results, including PCKa,
MPJPE, and PA-MPJPE metrics across various protocols. Analyzing Table 5,
our approach achieves optimal performance in P3-S1 and weakest in P2-S2.
HPE-Li demonstrates impressive outcomes in P3-S1 with MPJPE at 149.43
mm, while exceeding by 89.18 mm in favorable PA-MPJPE results on P2-S2.
These findings highlight the significant impact of protocol configurations on the
HPE-Li’s performance.

Results on WiPose: We proceed to evaluate the effectiveness of HPE-Li on
WiPose, focusing on individual body parts. Results given in Table 3 demonstrate
remarkable performance in overall pose estimation, with HPE-Li achieving no-
table average scores of 94.27% for PCK50. Notably, even under stricter criteria
such as PCK5 and PCK10, HPE-Li maintains commendable accuracy levels of
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Table 6: Performance comparison between different schemes on both MM-Fi P3-S1
and WiPose datasets (M: Million, G: Giga).

MM-Fi
PCK20 PCK30 PCK40 PCK50↑ MPJPE↓ PA-MPJPE↓ Params & FLOPs

Wi-Pose 48.55 65.06 75.58 82.441 158.21 97.72 5.34M & 84.31G
Wi-Mose 48.67 66.58 77.34 83.87 155.76 95.35 36.20M & 245.64G
WiLDAR 44.12 62.58 72.64 79.26 170.38 115.64 1.63M & 4.91G
WiSPPN 45.41 63.21 74.08 80.97 166.59 110.03 26.78M & 159.81G
PerUnet 50.12 67.34 77.59 83.56 154.66 98.67 34.51M & 168.52G

MetaFi++ 45.46 64.44 75.13 81.75 164.45 106.31 26.42M & 507.89G
HPE-Li 52.07 68.22 78.18 85.12 149.43 92.52 1.66M & 2.42G

WiPose
PCK5 PCK10 PCK20 PCK50↑ MPJPE↓ PA-MPJPE↓ Params & FLOPs

Wi-Pose 46.23 62.78 74.21 85.69 34.36 40.12 6.76M & 38.49G
Wi-Mose 54.65 66.74 77.12 88.54 26.48 31.19 35.75M & 116.47G
WiLDAR 36.26 54.38 72.16 84.32 55.63 62.60 1.63M & 4.90G
WiSPPN 52.95 64.16 75.46 86.26 30.37 36.42 26.33M & 75.81G
PerUnet 63.07 71.77 79.50 88.74 17.12 22.64 33.85M & 167.51G

MetaFi++ 53.64 66.72 76.68 88.62 28.62 33.72 25.58M & 502.32G
HPE-Li 69.79 82.46 89.41 94.27 15.85 19.21 3.49M & 5.18G

approximately 69.79% and 82.46%, respectively, underscoring its robust perfor-
mance on specific body joints. This achievement surpasses that of MM-Fi, at-
tributed to differences in raw signal acquisition methodologies between the two
datasets. The WiPose system, with its simpler setup and lower-intensity human
activities, yields more reliable accuracy in HPE tasks compared to MM-Fi.

Comparison with SOTA: Table 6 provides a comparison between HPE-Li
and existing HPE approaches. Our method primarily focuses on relative pose
accuracy, and it significantly outperforms the SOTA approaches for all evalua-
tion criteria, particularly excelling in the low PCKa as well as in MPJPE and
PA-MPJPE metrics. These superior results are achieved with remarkably low
computational costs. Notably, PerUnet also achieves good performance on both
datasets, but with the cost of high complexity, (e.g. approximately 34M parame-
ters). Conversely, our method on MM-Fi dataset has a similar level of complexity
with WiLDAR, known as the most lightweight model in human recognition tasks
(e.g. about 1.6M parameters). However, HPE-Li demonstrates superior perfor-
mance, requiring only half the number of FLOPs compared to WiLDAR.

Qualitative Results: In Fig. 4, we present qualitative results to show visual-
izations of human skeletons in diverse environments from the MM-Fi dataset.
Specifically, we focus on generating 2D poses and then transforming them into
3D poses by adding a constant vector as the third dimension. Our method con-
sistently and reliably generates human poses across daily activities and rehabil-
itation exercises.

4.3 Ablation Study

To evaluate the role of each component in HPE-Li, we now conduct ablation
experiments on the MM-Fi dataset.
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Ground Truth Predict

Fig. 4: Visualization of the human pose landmarks generated by the vision model (red)
and WiFi model (blue) on the MM-Fi P3-S1 dataset.

Table 7: Comparison of the DSKNet
with other selective attention mecha-
nisms on the MM-Fi P3-S2 dataset.

General Models MPJPE↓ Params FLOPs
CNN+CNN 236.59 1.545M 2.256G
CNN+SENet 224.73 2.138M 20.434G
CNN+DConv 218.92 1.759M 4.277G
CNN+FDConv 210.23 1.814M 4.319G
CNN+SKConv 210.45 1.607M 2.376G

CNN+DSKConv 182.62 1.668M 2.427G

Table 8: Results of the DSKNet with different
group numbers and dilation rate on the MM-
Fi P3-S1 dataset.

Model Setting MPJPE↓ Params FLOPs Kernel
3×3,D=1,G=32 150.57 1.668M 2.426G 3×3
3×3,D=1,G=64 151.35 1.669M 2.427G 3×3
3×3,D=1,G=128 150.97 1.701M 2.429G 3×3
3×3,D=2,G=32 149.43 1.668M 2.426G 5×5
5×5,D=1,G=32 149.71 1.669M 2.429G 5×5
3×3,D=3,G=32 151.08 1.668M 2.426G 7×7

Impact of DSKConv: We conduct a comparative analysis using models that
combine standard CNNs with CNNs incorporating attention mechanisms in
cross-subject settings P3-S2. This analysis accounts for differences in frequency
information among individuals in the same posture, aiming to demonstrate the
ability of these variant CNNs to handle fluctuations in information frequency
and signal strength. As seen from Table 7, HPE-Li encompasses various mod-
els, including the regular CNN, SENet [16], dynamic convolution (DConv) [7],
frequency dynamic convolution (FDConv) [29] and traditional SK convolution
(SKConv) [25], which server as benchmarks. SENet calculates kernel attention
using global feature information through GAP and two FC layers with softmax
activation. In contrast, DConv and FDConv compute attention across multiple
kernels of the same size. Performance comparisons consistently demonstrate that
SKConv outperforms SENet. However, SKConv exclusively evaluates attention
in the channel domain, potentially leading to the loss of critical information.
Consequently, DSKConv achieves superior performance compared to SKConv,
surpassing 28 mm in the MPJPE metric. Furthermore, a comparison involv-
ing DSKConv, DConv and FDConv on MM-Fi reveals that DSKConv achieves
more favorable results due to its adaptive receptive field size and diverse fea-
ture extraction, outperforming DConv by 36 mm and FDConv by 28 mm in the
MPJPE metric. This confirms its ability to perceive contextual information in
the frequency and channel domains, thereby facilitating accurate human pose
generation.
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Table 9: Performance of the DSKNet with
different branches on the MM-Fi P3-S1
dataset.

Model Settings MPJPE↓ PCK20↑ Params
K1 152.67 50.28 1.62M
K2 152.43 50.85 1.62M
K3 152.89 50.15 1.62M

K1 + K2 149.49 51.82 1.63M
K1 + K3 149.54 51.76 1.63M
K2 + K3 149.56 51.42 1.63M

K1 + K2 + K3 149.48 51.92 1.65M
K1 + K2 + K3 + K4 149.43 52.07 1.67M

K1 + K2 + K3 + K4 + K5 150.21 51.54 1.69M

Table 10: Performance of the
DSKNet with different reduction
ratios on the MM-Fi P3-S1
dataset.

r MPJPE↓ PCK20↑ Params FLOPs
1 151.85 51.62 1.676M 2.438G
4 151.65 51.74 1.674M 2.437G
8 151.03 51.85 1.673M 2.435G
16 150.16 51.89 1.671M 2.431G
32 149.43 52.07 1.668M 2.427G
64 150.32 41.96 1.664M 2.423G
96 151.68 51.73 1.663M 2.421G

Impact of Dilation and Group: We assess the impact of parameters in the
DSKConv block by varying the dilation D and group G values. In Table 8, the
term “kernel” denotes the approximate kernel size derived from dilated convo-
lution. The best result, achieving an MPJPE metric of 149.43 mm, is obtained
with 3×3 kernel, D = 2, and G = 32. The second-best result is 149.71 mm with
5× 5 kernel, D = 1, and G = 32. These findings highlight the advantage of em-
ploying different kernel sizes to facilitate the aggregation of multiscale features.
Furthermore, the results also suggest that utilizing the same kernel size in both
branches may compromise outcomes. Comparing the two optimal configurations,
namely the 5× 5 kernel, D = 1 and the 3× 3 kernel, D = 2, the latter exhibits
slightly lower model complexity. Despite sharing the same receptive field, the
smaller kernel with various dilations demonstrates significant performance and
model complexity compared to the larger kernel without dilation.

Impact of Number Branches: We show the impact of the number of branches
by incorporating two or more kernels (e.g. larger than 3× 3). Due to limitations
in the search space, we focus on a scenario with five branches, employing kernel
sizes of K1 (3× 3), K2 (5× 5), K3 (7× 7), K4 (9× 9) and K5 (11× 11). Dilated
convolution is employed for larger kernels, where G is set to 32. Table 9 illustrates
that performance initially increases and then decreases with an increase in the
number of branches, N . The one-branch case (N = 1) yields the poorest results.
Through the utilization of multiple kernels, the spatial kernel achieves favorable
outcomes by adaptively selecting among various branches. The optimal outcome
is 149.43 mm with N = 4, while the second-best result is 149.48 mm associated
with N = 3. The performance gap from N = 3 to N = 4 is negligible. When
N = 5 the accuracy quickly decreases to 150.21 mm. To strike a balance between
accuracy and performance, the case with N = 3 is preferable. Additionally, the
dimension of the compact feature map (i.e. Eq. (2)) can be modified by r. Results
in Table 10, with different r values, N = 4 and G = 32, show that accuracy does
not monotonically decrease with an increase in r. The optimal performance is
observed at r = 32 to balance between accuracy and overfitting due to channel
interdependencies during training.
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Fig. 5: Impact of noise on the proposed HPE-Li model with MM-Fi P3-S1 dataset.

4.4 Limitation

WiFi signals are susceptible to noise, interference, and multipath propagation,
resulting in signal strength and quality fluctuations. To evaluate its impact, we
consider two common types of noise: Additive white Gaussian noise (AWGN)
characterized by a zero-mean and variance of σ2

e and Salt and Pepper Noise
(SPN) with a noise level of η. These noises emulate the natural randomness
encountered in real-world scenarios. To tackle this limitation, we integrate two
denoising methods, namely Uniform and Median filters, into HPE-Li without
changing the network architecture. The MPJPE accuracy of HPE-Li is depicted
in Fig. 5a. As seen, the MPJPE accuracy is decreased when increasing σ2

e and η.
However, the results remain reliable when employing filter methods, as illustrated
in Fig. 5b. Future endeavors will focus on developing a robust model, possibly
incorporating a stacked autoencoder [40].

5 Conclusions

We have introduced HPE-Li, a multi-model network designed to predict human
pose landmarks by interpreting raw WiFi signals. Our method has attained state-
of-the-art accuracy while upholding a lightweight model architecture, boasting
significantly fewer parameters compared to its counterparts in the literature.
Through validation on the MM-Fi and WiPose datasets, we have demonstrated
the robustness and generalizability of HPE-Li across diverse and challenging
scenarios. These achievements pave the way for the practical deployment of our
application, aimed at enhancing the daily lives of individuals.
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