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Fig. 1: Quick look at our study. We propose a high-quality EI generation framework
HiEI and experimentally demonstrate that EIs generated by HiEI can effectively defend
against attacks from deep vision models [15,23,24,31,35].

Abstract. Emerging images (EIs) are a type of stylized image that con-
sists of discrete speckles with irregular shapes and sizes, colored only in
black and white. EIs have significant applications that can contribute to
the study of perceptual organization in cognitive psychology and serve
as a CAPTCHA mechanism. However, generating high-quality EIs from
natural images faces the following challenges: 1) color quantization–how
to minimize perceptual loss when reducing the color space of a nat-
ural image to 1-bit; 2) perceived difficulty adjustment–how to adjust
the perceived difficulty for object detection and recognition. This paper
proposes a universal framework HiEI to generate high-quality EIs from
natural images, which contains three modules: the human-centered color
quantification module (TTNet), the perceived difficulty control (PDC)
module, and the template vectorization (TV) module. TTNet and PDC
modules are specifically designed to address the aforementioned chal-
lenges. Experimental results show that compared to the existing EI gen-
eration methods, HiEI can generate EIs with superior content and style
quality while offering more flexibility in controlling perceived difficulty.

⋆ Corresponding author.
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In particular, we experimently demonstrate that EIs generated by HiEI
can effectively defend against attacks from deep network-based visual
models, confirming their viability as a CAPTCHA mechanism.

Keywords: Emerging image · CAPTCHA · Color quantization

1 Introduction

Emerging images (EIs), also known as Mooney images in the field of cognitive
science [3,17,27], are a type of stylized image composed of discrete speckles with
irregular shapes and sizes, featuring only black and white colors [30]. When cer-
tain speckles are appropriately organized together, humans can perceive meaning
objects in EIs. For example, we can perceive a dalmatian dog from the classical
EI (Dalmatian dog) depicted in the first row of Fig. 1.

The distinctive form endows them with significant application value. Due to
the limited and fragmented visual cues in EIs, the human visual system relies
on an iterative process of bottom-up perceptual organization and top-down ac-
tive adjustment to perceive contents in EIs [5, 32, 38]. Therefore, EIs are often
used to assist researches related to perceptual organization and closed-loop in-
formation processing mechanisms in cognitive psychology [9,17,25]. In addition,
considering the differences in capabilities between visual models and the human
visual system, EIs also serve as a CAPTCHA mechanism in the field of web secu-
rity [2,11,26,30,34,37,41]. However, these related studies only demonstrated the
effectiveness of EI-CAPTCHA defense against traditional vision models. There-
fore, it is a valuable topic to explore whether EIs are effective in defending against
vision models based on deep networks.

Generating high-quality EIs from natural images is crucial for above-mentioned
research. Mitra et al. [30] proposed a scheme to generate EIs based on three-
dimensional object templates in a simulated environment. It relies on a template
library and only generates EIs with limited content. Yang et al. [41] introduced
an approach to generate EIs from natural images. It utilizes superpixels as ren-
dering primitives and edges as cues, but its generated results exhibit significant
stylistic differences from EIs. Generative models [42] can be utilized for the task
of stylized image generation, but they typically require a substantial amount
of high-quality training data. In addition, universal style transfer (UST) mod-
els struggle to balance style loss and content loss when generating images with
specific styles [6, 18,21,29].

There are two main challenges, low-bit color quantization and perceived dif-
ficulty adjustment, in generating high-quality EIs from natural images. In com-
parison to the 24-bit full color space of natural images, EIs have only 1-bit. We
first need to perform color quantization on the natural image. However, existing
color quantization methods perform poorly in low-bit color spaces. In addition,
the applications of EIs span across various fields such as psychology and web
security. Especially in the cognitive psychology research, researchers need to
present test images with different perceived difficulty levels to participants.
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In this paper, we propose HiEI, a universal framework for generating high-
quality EIs from natural images. In particular, we employ this framework to ex-
plore an interesting problem: the potential of EIs as a CAPTCHA mechanism.
HiEI consists of three components: human-centered color quantization module
(TTNet), perceived difficulty control (PDC) module, and template vectorization
(TV) module. TTNet learns to preserve rich visual cues in a limited color space
by minimizing perceptual loss, producing human-centered color quantization re-
sults. Subsequently, the results are fed to the PDC module, where three pa-
rameters are set to quantitatively adjust the perceived difficulty and output the
rendering templates. Finally, the TV module utilize Bézier curves to reconstruct
the shape of the speckles in the rendering template, relizing the vectorization of
the EIs.

The main contributions are summarized as follows:

– We propose HiEI, a universal framework for generating high-quality EIs
from natural images. HiEI offer users the flexibility to control the perceived
difficulty of the generated EIs, enhancing its practical applicability.

– We present a human-centered color quantization model TTNet to minimize
the perceptual loss by preserving essential visual cues. Experimental results
demonstrate that TTNet can perform better than other methods especially
in the low-bit color space.

– We experimentally demonstrate that EIs generated by HiEI can effectively
defend against attacks from the visual models based on deep networks, con-
firming its feasibility as a CAPTCHA scheme. In experiments, EIs signifi-
cantly reduce the performance of multiple deep networks on tasks of object
detection and image classification.

2 Related Work

Color quantization. MedianCut [16] proposed by Heckbert et al. is the first
color quantization algorithm. The main idea is to recursively sort the pixels by
color space and divide it along the median. Many variations exists of MedianCut
algorithm, such as Center-cut [22]. Octree algorithm [13] proposed by Gervautz
et al. is the first agglomerative color quantization algorithm and is based on
the octree, a tree data structure in which each internal node has eight children.
The popularity algorithm first builds a coarse color histogram of the input image
using bit-cutting and then takes the set of most frequent colors in this histogram
as the color palette. Hou et al. proposed a deep network-based color quantization
model, ColorCNN [19], to minimize the accuracy loss by preserving the essential
structur for deep networks. It demonstrates a higher classification accuracy than
human-centered methods.

Universal style transfer. Style transfer models are often used for image
generation in specific styles and has two inputs: a style image and a content
image, using the style pattern of the former to render the latter. Recent years
have seen the rise of end-to-end style transfer models, with Gatys et al. [12]
being among the pioneers who used CNNs for this task. These models can be
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classified into three categories according to their evolutionary development: 1)
models that can only render one style [12]; 2) models that can render multiple
styles [7]; 3) Universal style transfer (UST) models that can render arbitrary
styles [6, 18, 20, 21, 29, 43]. UST models are particularly useful when training
samples are scarce. In the experimental section, we will compare the generated
results of our HiEI with UST models.

3 Methodology

This section presents the proposed framework HiEI for generating high-quality
EIs from natural images. It first describes the overall flow of HiEI, and then
presents the implementations of three components: TTNet, the PDC module,
and the TV module.

Perceived difficulty control (PDC)

scale primitive

Template 
vectorization (TV)

auto-encoder

Human-center 
color quantization (TTNet)

two-tone image

TTNet

recognition

             

saliency
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Fig. 2: Overview of HiEI. It consists of three modules, TTNet, PDC module, and TV
module. TTNet is responsible for extracing the key visual content in 1-bit color space
from the given natural image. The PDC module quantitatively adjusts the perceived
difficulty of the rendering template through two parameters α and β. The TV module
vectorizes the rendering templates.

3.1 Overview

Fig. 2 depicts the overall processing pipeline of HiEI. Given a natural image,
HiEI first uses TTNet to reduce the color space of the image to 1-bit (the two-
tone image) with the minimal perceptual. Subsequently, the PDC module ex-
tracts speckles from the two-tone image as the semantic primitive to controll
the perceived difficulty. It further divides the two-tone image into patches (scale
primitive). The division is made with approximately equal areas, using the edges
from the two-tone images as the constraint. The PDC module controls object
recognition difficulty by adjusting the proportion of patches using the parameter
α. The parameter β is used to adjust the density contrast of patches between the
foreground and the background, thus controlling object saliency. The TV module
processes the output from the PDC module and produces two complementary
rendering templates T+ and T−. It then employs Bézier curves to smoothly fit
the contour of speckles in T+ and T− to generate a pair of vectorized EIs.
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3.2 Human-centered color quantization

TTNet architecture. Inspired by the work of Hou et al. [19], we design the
color quantization model TTNet as illustrated in Fig. 3. The first component
is a U-net [33] auto-encoder that can extract abundant semantic information
from the natural image I. The extracted information are fed into the linear
convolutional layer to generate the softmax probability map PM with s-channel,
where s is the size of the color space. The corresponding set of values of pixel
(x, y) in PM represents the contribution ratio of the pixel’s color RGB values
to the s colors. TTNet creates the color palette CP using PM . The RGB value
of each quantized color is the weighted average of all pixels. The i-th quantized
color in CP is defined as

CPi =

∑
(x,y) I(x, y) · PM(x, y, i)∑

(x,y) PM(x, y, i)
. (1)

Next, we use CP to map the pixels in I from the 24-bit full color space to
the quantized color space (e.g., 1-bit). The quantized image Ī is computed as

Ī =

s∑
i=1

CP (i) · PM(i), (2)

where PM(i) is used as the intensity of expression over entire quantized image
Ī.

auto-encoder

A
lign

er
(fix)

output layers

all pixels

weighted average

Fig. 3: Architecture of TTNet. It consists of U-net auto-encoder, output layer, and
aligner. The U-net auto-encoder extracts semantic information from natural images,
and then the output layer designs the color palette and creates the quantizated image.
Finally, the aligner enables TTNet to reduce the content difference between the quan-
tizated image and the natural image.

Finally, we apply a pre-trained VGG19 ercoder [35] to serve as a fixed image
content aligner. It takes the natural image I and the quantized image Ī as inputs
and then outputs their content features Ic and Īc. During the training process,
TTNet will optimize the color quantization results by learning to reduce the
difference between Ic and Īc.

Loss function. The human visual system perceives images by leveraging
multiple cues, including color, texture, luminance, and edges. However, color
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quantification also leads to the loss of other visual cues, influencing the percep-
tion of the quantized image. To minimize the perceptual loss, we need to design a
loss function that enables TTNet to preserve other visual cues when performing
the color quantization. Here, the loss function is defined as

L =
∥∥Īc − Ic

∥∥
2
, (3)

where Ic and Īc are defined as

Ic =
1

Nl

Nl∑
i=1

Φi(I), Īc =
1

Nl

Nl∑
i=1

Φi(Ī). (4)

Φi(·) denotes the features extracted from the i-th layer in the pre-trained
VGG19, and Nl is the total number of network layers used for calculating content
features. Fig. 4 depicts the visualized feature maps extracted from the first five
layers of the pre-trained VGG19. With the increasing depth of the network, there
is an expansion in the scale of the receptive field, which consequently results in
a more significant loss of local content details. Here, we set Nl = 5. We also
conduct an experimental analysis to assess the impact of varying Nl settings on
results of color quantization in supplementary materials.

𝑁!
1 2 3 4 5

Fig. 4: Explanation of parameter Nl setting in the loss function of TTNet.

3.3 Perceived difficulty control (PDC)

The PDC module is designed to quantitatively adjust the the perceived difficulty
of generated results, influencing the perception of humans on EIs. The challenge
of PDC is how to quantify the perceived difficulty of EI, as the perceived dif-
ficulty is vague and subjective. Inspired by the psychological experiments on
the perception of EI conducted by Li et al. [25], we split the perceptual process
into two parts (object detection and object recognition) and take two different
control primitives to quantify the perceived difficulty.

Control primitives. We utilize the image matting model GFM [28] to sep-
arate the foreground If and the background Ib of I. Next, we obtain a set of
speckles E by extracting the four-connected regions from the two-tone image.
Subsequently, we take the edge information contained in the two-tone image as
the constraint to divide I into a set of patches with approximately equal areas [1],
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denoted as A. The speckle and the patch will serve as the semantic primitive
and the scale primitive, respectively. We use If and Ib to divide E into Ef and
Eb within the foreground and background regions, respectively.

Recognition control. Humans use surface information (color, texture, lumi-
nance) and shape for object recognition [39]. Early object recognition theory [4]
prioritizes shape over surface information. However, this perspective falls short
in elucidating the distinction in recognizing animals with similar forms, such as
horses and zebras. The limitation becomes evident when the shape of a zebra is
presented in isolation, leading observers to erroneously identify it as a horse. The
“shape + surface” theory [36] suggests that the importance of shape and surface
information depends on structural differences between objects. Before adjusting
the perceived difficulty, we need to determine which cues are more critical for
recognizing foreground objects.

Two representative examples shown in Fig. 5. The edges within the fore-
ground region play a role in this process. We first frame the foreground object
with a bounding box and divide it into M ∗N grids, and then count the num-
ber K of grids that contain edges. If K

M∗N ≥ ω (e.g., ω = 0.4), the texture is
more important in object recognition (Case 1); otherwise, the shape (Case 2).
We set the parameter α to adjust the proportion of key discriminative cues. For
Case 1, we keep the α-proportion patches randomly selected from each speckle
in Ef = {ef1 , ..., efn}. For example, we randomly select m ∗ α patches from the
i-th speckle efi = {a1, ..., am}. For Case 2, we perform α-proportion sampling
on each speckle that contains the contours of the object.

Fig. 5: Illustration of two representative cases. The edges are used to determine which
cues (texture and shape) are more critical for recognizing the foreground object.

Saliency control. After the process of the recognition control, the updated
set of speckles located within the foreground is denoted as Eα

f = {eαf1 , ..., e
α
fn
},

and the density of patches within the foreground If is defined as

Df =

∑n
i=1 Num(eαfi)

Area(If )
, (5)

where Num(·) is the function to obtain the number of elements in a speckle,
and Area(·) is the function to calculate the area of a region. To control the
saliency of the object, We set the parameter β to adjust the contrast of patch
density between the foreground and the background. The patch density of the
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background Db is calculated as

Db = Df · β. (6)

The number of patches originally contained in the background Eb = {eb1 , ..., ebk}
is

∑k
i=1 Num(ebi).Theoretically, the number of patches contained in the back-

ground should be Db ·Area(Ib). If Db ·Area(Ib) >
∑k

i=1 Num(ebi), then we need
to add some speckles to the background. We do not generate speckles but select
some ones from the speckles contained in the foreground object. We sort the
speckles in Eb in descending order based on the number of patch, and randomly
place speckles of the sorted Eb in empty areas of the background. Finally, the
updated set of speckles in background is denoted as Eβ

b .
Rendering templates. After setting the parameters α and β, we obtain a

binary image. Inspired by Rubin vase [14], we obtain two complementary render-
ing templates T+ and T− by inversing the color of the binary image. Although
two rendering templates contain the same edge information, variations in color
significantly influence the figure-groud segregation process. Therefore, observers
will have different difficulties in perceiving the target object from the EIs gen-
erated using these two templates.

3.4 Template vectorization (TV)

The distortion problem occurs when the user zooms in on a rendering template
obtained based on a low-resolution natural image, influencing the perceptual
quality of the observer. In HiEI, we solve the template distortion problem by
vectorization. The method is the same for both rendering templates. Here, we
take the template T+ with α = 1 and β = 0 shown in Fig. 6(a) to explain this
process. For each speckle (e.g., the one in Fig. 6(b)) in Eα

f

⋃
Eβ

b , we replace it
with its patches shown in Fig. 6(c) and then extract the contour shown in Fig.
6(d). Next, we calculate the contour curvature. As shown in Fig. 6(e), we select
two pixels, p0 and p1, on the contour from each side of the current position
pc(xc, yc), and define the approximate curvature of pc as len(p0,p1)/dis(p0,p1),
where len(p0,p1) is the length of the contour segment between p0 and p1, and
dis(p0,p1) is the distance between them. We then obtain the sampled contour
pixels shown in Fig. 6(f) based on the normalized curvature. Finally, we fit these
sampled pixels using Bézier curves to obtain the vectorized sepckle shown in Fig.
6(g).

4 Experiment

4.1 Experiment setup

Settings. In HiEI, TTNet is implemented in Python with PyTorch and is trained
on a Linux server with NVIDIA 3090 GPU. The rests are implemented in MAT-
LAB 2021a on a machine with Intel Core i5-3470 CPU @ 3.20 GHz and 16 GB



Abbreviated paper title 9

         

         

           

(a) (b) (d) (f) (g) (c) (e) 

Fig. 6: Explaination for the process of template vectorization. (a) rendering template
T+; (b) an example of spckle in T+; (c) patches contained in (b); (d) contour of (c); (e)
approximate curvature; (f) sample pixels based on curvatures; (g) vectorized speckle.

of main memory. We adjust the perceived difficulty of generated results by pa-
rameters α, β and rendering templates T including T+ and T−. Here, we use
HiEI(α,β,T ) to denote HiEI with different settings. In Table 1, we take some
examples to explain the meanings of the notations related to these three param-
eters.

Table 1: Meanings of notations realted to parameters α, β and T in the following
experiments.

Parameter Notation Meaning

α, β
1 set parameter to 1

{0, 0.5, 1} set parameter to 0, 0.5, 1 in order
[0, 1] randomly set it to a value within [0, 1]

T
+ only use the template T+

− only use the template T−
+/− randomly use a template T+ or T−

Datasets. We conduct experiments on the following three publicly available
datasets. Animal 2K [28] is used in image matting and consists of 2,000 high-
resolution images, with 1,800 images in the training set and 200 images in the test
set. PASCAL VOC2012 [10] is a classical dataset for multiple computer vision
tasks such as image classification, object detection, and image segmentation.
It contains 20 classes of objects with a total of 11,530 images. STL-10 [8] is a
dataset for the tasks of image classification. It has 10 classes of object images
with 96 × 96 low resolution, 500 training images and 800 test images for each
class.

4.2 Comparison with other EI generation methods

We compare HiEI with two existing EI generation methods: ArtThres [40] and
EdgeEI [41], and five state-of-the-art UST models: AdaConv [6], WCT [29],
AdaIN [21], QuantArt [20], InST [43]. AdaConv transfers the global statistics
and spatial structure of the style image to the content image. WCT model uses
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a whitening and coloring transformation to align the second-order statistics of
content and style features. The core of AdaIN is an adaptive instance normal-
ization layer, which aligns the mean and variance of content image features with
those of style image features. QuantArt aims to generate the stylized image with
high visual-fidelity by pushing the latent representation of the generated artwork
toward the centroids of the real artwork distribution with vector quantization.
InST is a diffusion-based method. Its key idea is to learn the artistic style directly
from a single painting and then guide the synthesis.

Fig. 7: Qualitative comparison of generated EIs between our HiEI and other seven
methods including five state-of-the-art UST models and two original EI generation
methods.

We observed color differences from the generated results in Fig. 7. The results
of ArtThres, EdgeEI, and HiEI are binary images, but those of UST models
are colorful or gray images. To fairly compare these methods, we first utilized
TTNet to reduce the color space of results to 1-bit. Fig. 8 depicts the qualitative
comparison between the binarized results of five UST models and the results of
ArtThres, EdgeEI, and HiEI. ‘+bw’ denotes the binarization operation on results
of UST models. Given the distinctions in the perception processes of humans
and deep neural networks, we further conduct experiments to quantitatively
evaluate these binary results based on the deep neural network and the human,
respectively.

Natural image AdaConv+bw WCT+bw AdaIN+bw QuantArt+bw InST+bw HiEIEdgeEIArtThres

Fig. 8: Qualitative comparison between the binarized results of five UST models and
the results of ArtThres, EdgeEI, and HiEI.
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Evaluation based on deep network. The algorithm of stylized image gen-
eration has two inputs: a style image and a content image, using the style pattern
of the former to render the latter. Following studies [21,29], we use two metrics
including the content loss and the style loss to evaluate the generated results.
The content loss denotes the difference between the generated result and the
content image and the style loss is the difference between the generated result
and the style image Dalmatian Dog. The pre-trained VGG19 is used to extract
features from the generated result at 256×256 resolution, and then we calculate
the content loss and style loss. Table 2 lists the quantitative comparison results.
HiEI exhibits significantly lower content loss and style loss than other meth-
ods. We find that although the generated results of HiEI(1,0,+) and HiEI(1,0,−)

have the same edge information, HiEI(1,0,−) is slightly lower in content loss and
style loss than HiEI(1,0,+). This is attributed to the exchange of foreground and
background colors, which amplifies the loss of luminance features in EIs.

Table 2: Quantitative comparisons between the binarized results of five UST models
and the results of ArtThres, EdgeEI and HiEI.

Methods AdaConv WCT AdaIN QuantArt InST ArtThres EdgeEI HiEI(1,0,+) HiEI(1,0,−)

Content loss 1.16 1.34 1.28 1.39 1.46 1.29 1.36 1.02 1.05
Style loss 0.28 0.74 0.82 0.68 0.31 0.59 0.78 0.19 0.24

User study. We recruited 100 participants in the study (mean age = 22.8
years; 50 female). The participants come from the School of Computer Science,
School of Psychology, School of Life Sciences, and School of Mathematics. None
of the participants had visual cognitive impairment. We prepared the style image
Dalmatian Dog, 100 natural images from the Animal 2K dataset and 100 natural
images from the PASCAL VOC2012, and their corresponding binary results as
shown in Fig. 8. We presented subjects with the style image and one content
image at a time, as well as seven generated results with a randomly disrupted
order. The participants were required to complete the following two tasks. 1)
Content preference: please select the one that is closest to the natural image in
content. 2) Style preference: please select the one that is closest to the Dalma-
tian Dog in style. Finally, we collect 40,000 feedbacks from subjects, and the
statistical results are listed in Table 3. HiEI outperforms the other UST models
in terms of both the style preference and the content preference.

4.3 Feasibility of EI-CAPTCHA

Image-based CAPTCHA uses vision tasks to determine whether the current user
is a human or a malicious program. For example, in famous Google reCAPTCHA
v2, the task related to object detection is “select all squares containing some
parts of an object”, and the task related to image classification is “select all
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Table 3: Statistical results of the user study.

Methods AdaConv WCT AdaIN QuantArt InST ArtThres EdgeEI HiEI(1,0,+/−)

Content preference 4.27% 0.14% 1.33% 2.65% 0.03% 0.48 1.16% 89.94%
Style preference 5.42% 13.15% 6.85% 16.57% 3.53% 2.81% 2.96% 48.71%

images containing a specific class of objects”. Inspired by these two CAPTCHA
tasks, we explored the feasibility of EI-CAPTCHA by conducting the following
experiments on EIs generated by HiEI.

Object detection on EIs. Object detection methods can be broadly classi-
fied into traditional and end-to-end approaches. Traditional approaches usually
rely on manually extracted features, including edges and color. Fig. 9 displays
the performance of Edge Boxes [44], a classical traditional method, on natural
images and EIs. The detection result marked with the yellow frame in Fig. 9(a)
indicates that Edge Boxes can successfully detect the dog in the natural image.
However, the result in Fig. 9(b) demonstrates that it fails to detect the object
in the EI. In Fig. 9(c), the edge extraction results of the EI are fragmented. It
is difficult to separate the object edges from the noise.

(a) (b) (c)

Fig. 9: Edge Boxes fails to detect the object in the EI. (a) Detection result on the
natural image. (b) Detection result on the EI. (c) Edges of the EI in (b).

In the past decade, end-to-end deep visual models have become the main-
stream in object detection. YOLO, a classical one-stage detection model, has
performed impressive results on the task of object deteciton, and it is also used
in the Google reCAPTCHA v2 solver. In this experiment, we test the ability
of YOLO v8 [31] to detect objects on EIs. We firstly generate the correspond-
ing emerging-style PASCAL VOC2012, denoted as PASCALEI. For each natu-
ral image in the training set, we use HiEI(1,{0,0.5,1},+/−) to generate its three
EIs with different perceived difficulty. For each image in the test set, we use
HiEI(1,[0,1],+/−) to generate its EI. We use the officially available pre-trained
YOLO v8, and then fine-tune it on PASCAL VOC2012 and PASCALEI, respec-
tively. For training stage, we use a batch size of 16 and train the model for 300
epochs with an initial learning rate of 0.01.

The image in PSACAL contains one or more objects and we select the one
with the largest area as the target object. In the final detection result, if the
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IoU (Intersection over Union) is greater than 0.6 between the bounding box
and the ground truth of the target object, and the recognition result is correct,
then YOLO successfully solves this sample. Table 4 lists the success rate of
YOLO in solving this task. YOLONI and YOLOEI refer to the models fine-
tune on PASCAL and PASCALEI, respectively. On the test set (testvalEI) of
PASCALEI, YOLONI performs significantly worse compared to its performance
on the original test set (testval) of PASCAL. Despite a slight improvement in the
performance of YOLOEI on testvalEI, its accuracy remains low at 29.1%. We also
conduct tests to evaluate human performance on EIs. We randomly select 100
images from both testval and testvalEI for participants to find the target objects.
Participants are required to mark the target object with only one wireframe on
a task image. We use the same criteria as YOLO to judge these results, and the
success rate of human reached 89%. We conclude that EIs can effectively defend
against the attacks from the deep network-based CAPTCHA solver with little
influence on human vision.

Table 4: Performance of YOLO on object detection with the PASCAL and the
PASCALEI.

Data YOLONI YOLOEI Human

testval 0.709 - 1
testvalEI 0.103 0.291 0.89

Image classification on EIs. We employ AlexNet [24], VGG19 [35] and
Resnet34 [15] as the task networks for the image classification. The accuracy
of the top-1 classification was used to evaluate their classification performance.
We first used HiEI({0.5,1},0,+/−) to generate the EIs on STL-10 dataset, denoted
as STL-10EI. We trained these three networks using the training set of STL-10,
and then fine-tuned them on the train set of STL-10EI. The results in Table 5
demonstrate that these three task networks exhibit poor classification perfor-
mance even after being fine-tuned on EIs. We conclude, from the substantial
performance disparities observed between deep neural networks and humans in
the tasks of object detection and image classification, that EIs can serve as a
CAPTCHA for distinguishing between humans and bots.

4.4 Ablation study

In this section, we conduct the ablation studies to justify the effectiveness of
three modules in HiEI. Due to space constraints, the ablation experiments for
the PDC and TV modules are presented in the supplementary materials.

TTNet. To demonstrate the effectiveness of TTNet, we replaced it with three
other representative color quantization methods (i.e., OcTree [13], MedianCut
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Table 5: Performance of three task networks (AlexNet, VGG19, Resnet34) on the task
of image classification with the STL-10 and the STL-10EI.

Datasets AlexNet VGG19 Resnet34

STL-10 0.759 0.691 0.878
STL-10EI 0.237 0.205 0.265

[16], and ColorCNN [19]) to provide two-tone images for HiEI. We conducted
this experiment on 200 natural images in the test set of Animal 2K dataset. A
qualitative comparison of four EIs generated with the same image is shown in
Fig. 10(a). The EI generated using TTNet is closest to the natural images from
the visual perception. Fig. 10(b) shows the results of quantitative evaluation
based on content loss. TTNet enables HiEI to achieve lower content loss. In
addition, we also set different sizes of color quantization space to test TTNet
in supplementary materials. The experimental results demonstrate that TTNet
exhibit superior results to the other three methods.

Natural image MedianCut ColorCNN TTNetOcTree

(a) (b)
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Fig. 10: (a) Qualitative comparison of EIs generate by HiEI combining four differ-
ent color quantization methods. (b) Quantitative evaluation of EIs generated by HiEI
equipped with these four methods.

5 Conclusion

In this paper, we proposed a universal framework, HiEI, to generate high-quality
EIs from natural images. HiEI is equipped with the human-centred colour quan-
tization module, the perceived difficulty control module, and the template vec-
torization module. These three modules not only enable HiEI to improve the
quality of generated EIs, but also enhance its practicality. Based on the EIs gen-
erated by HiEI, we validated the feasibility of the EI-CAPTCHA on two vision
tasks, object detection and image classification. Experimental results demon-
strate that EIs generated by HiEI can significantly weaken the detection and
classification performance of deep network-based visual models.
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