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A Experiment Settings

In this section, we outline the experimental setup and hyperparameters applied
in our studies. The experiments were conducted on a server with NVIDIA A100-
40GB GPU. However, our method typically takes less than 12 GB of memory for
the scenes presented in this study, making it compatible with any GPU that has
more than this amount of memory. The ground-truth results we compared, par-
ticularly for the novel view rendering, were obtained from the ground-truth mesh
provided in the dataset, which was generated in an offline manner. Therefore,
some defects can be observed in the ground-truth results.

SGS-SLAM By default, both mapping and tracking operations are conducted
for each frame. During the tracking phase, we set the silhouette visibility thresh-
old, Tsil, to 0.99. The multi-channel optimization involves three parameters:
λD = 1.0 for depth, λC = 0.5 for colors, and λS = 0.05 for semantic loss,
with the semantic loss weight being comparatively low due to the typical nois-
iness of real-world semantic labels. Throughout the tracking, the multi-channel
Gaussian parameters remain constant, adjusting only the camera parameters
with a learning rate of 2e-3 for transition. Key-frames are initially chosen at in-
tervals of every 5 frames, then refined based on geometric and semantic criteria.
The geometric overlap threshold, η, is defined at 0.05, and the semantic mean
Intersection over Union (mIoU) threshold, Tsem, at 0.7. The maximum number
of keyframes per frame is limited to 25, considering the computation speed. The
uncertainty decay coefficient, τ scales with the length of the input frame series.
In the mapping process, the silhouette threshold Tsil is adjusted to 0.5. The
weights of photometric loss are set to λD = 1.0, λC = 0.5, and λS = 0.1. Here,
camera parameters are fixed, and Gaussian parameters are optimized, with spe-
cific learning rates for 3D position at 1e-4, color 2.5e-3, Gaussian rotation at
1e-3, logit opacity at 0.05, and log scale at 1e-3. Performance metrics of tracking
and mapping are assessed every 5 frames, with mIoU scores evaluated at the
same frequency.
⋆ These authors contributed equally to this work.



2 M. Li and S. Liu et al.

The mapping and tracking iteration steps are specific to each dataset, In the
case of the Replica dataset [7], the number of iterations for tracking and mapping
are set to 40 and 60. For the ScanNet dataset [2], tracking and mapping are set
to 120 and 40. In the enhanced ScanNet++ dataset [11], where the camera
transition is large between each frame, the tracking and mapping iterations are
adjusted to 220 and 50.

Baselines We adhere to the default configurations for each baseline as reported
in their papers. The evaluation metrics for tracking and mapping are consistent
with those applied to our method. For baselines whose implementations are not
publicly available, we present the results as reported in their papers.

B Additional Experiment Results

We provide additional quantitative analysis of camera tracking in Sec. B.1. The
visualization of semantic segmentation compared with NeRF-based method is
presented in Sec. B.2. More qualitative novel view rendering results are il-
lustrated in Sec. B.3. We compared our method with Vox-Fusion [9], NICE-
SLAM [12], Co-SLAM [8], ESLAM [4], and Point-SLAM [6] for ATE RMSE
evaluation. For 3D semantic segmentation, we visualized the comparison with
DNS-SLAM [5].

B.1 Camera Tracking

In this section, we break down the quantitative analysis on ATE RMSE [cm] on
Replica [7], ScanNet [2], and ScanNet++ [11] datasets. Tab. 1, Tab. 2, and Tab. 3
present the evaluation our SGS-SLAM against baseline models on each dataset.
Our method of estimating camera poses by directly optimizing the gradient on
dense photometric loss achieves state-of-the-art tracking performance on datasets
with high-quality RGB-D images. In particular, on the ScanNet++ dataset [11],
where there is a large camera transition between successive frames, NeRF-based
methods like ESLAM failed to track. Conversely, SGS-SLAM demonstrated ro-
bust and accurate tracking capability.
Table 1: Quantitative comparison of ATE RMSE [cm] between our method and the
baselines for each scene of the Replica dataset [7]. Our method demonstrates SOTA
performances.

Methods Avg. Room0 Room1 Room2 Office0 Office1 Office2 Office3 Office4
Vox-Fusion 3.09 1.37 4.70 1.47 8.48 2.04 2.58 1.11 2.94
NICE-SLAM 2.50 2.25 2.86 2.34 1.98 2.12 2.83 2.68 2.96
Co-SLAM 0.86 0.65 1.13 1.43 0.55 0.50 0.46 1.40 0.77
ESLAM 0.63 0.71 0.70 0.52 0.57 0.55 0.58 0.72 0.63
Point-SLAM 0.52 0.61 0.41 0.37 0.38 0.48 0.54 0.69 0.72
Ours 0.41 0.46 0.45 0.29 0.46 0.23 0.45 0.42 0.55
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Table 2: Quantitative comparison of ATE RMSE [cm] between our method and the
baselines for the selected scenes on the ScanNet dataset [2].

Methods Avg. 0000 0059 0106 0169 0181 0207
Vox-Fusion 26.90 68.84 24.18 8.41 27.28 23.30 9.41
NICE-SLAM 10.70 12.00 14.00 7.90 10.90 13.40 6.20
Co-SLAM 9.73 12.29 9.57 6.62 13.43 7.13 9.37
ESLAM 7.88 8.47 8.70 7.58 7.45 8.87 6.20
Point-SLAM 12.19 10.24 7.81 8.65 22.16 14.77 9.54
Ours 9.87 11.15 9.54 10.43 10.70 11.28 6.11

Table 3: Quantitative comparison of ATE RMSE [cm] between our method and the
baseline for the selected scenes on the ScanNet++ dataset [11].

Methods Avg. [cm]↓ 8b5caf3398 [cm]↓ b20a261fdf [cm]↓
ESLAM 170.06 185.15 156.96
Ours 1.62 0.65 2.34

B.2 Semantic Segmentation

Fig. 1: Qualitative comparison of our method and DNS-SLAM [5] for semantic seg-
mentation from the Replica dataset [7]. The visualization outcomes of DNS-SLAM [5]
are obtained from its paper. The frames of the training view are chosen based on
the results presented in DNS-SLAM. Compared to NeRF-based models, our approach
delivers segmentation results with higher accuracy.
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In this section, the outcomes of semantic segmentation on the Replica dataset
[7] are visualized and compared with DNS-SLAM [5], a NeRF-based approach.
As illustrated, our method offered accurate and detailed segmentation, whereas
DNS-SLAM faces challenges in edges due to the over-smoothing issue of NeRF.

B.3 Novel View Rendering

We present additional results of novel view rendering using our method across
the Replica [7], ScanNet [2], and ScanNet++ [11] datasets, with comparisons to
ESLAM [4]. Visualizations are provided in Fig. 2, Fig. 3, Fig. 4, and Fig. 5 with
semantic segmentation outcomes. Our method consistently delivers high-quality
rendering results for both synthesized and real-world datasets. Notably, on the
challenging real-world ScanNet++ dataset, ESLAM [4] struggled to reconstruct
the scene. By contrast, SGS-SLAM provides accurate high-fidelity scene recon-
structions along with precise segmentation outcomes. Note that the ground-truth
segmentation labels are retrieved from the ground-truth mesh at the instance
level, and therefore, our results also show instance-level segmentation.

Fig. 2: The visualization of novel view rendering between the ESLAM [4] and our
method on the Replica dataset [7]. The ground-truth novel views are captured from
meshes provided by the dataset.
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Fig. 3: The visualization of novel view rendering between the baseline and our method
using the ScanNet dataset [2]. The ground-truth novel views are captured from meshes.
SGS-SLAM exhibits rendering of high fidelity and outperforms the NeRF-based ES-
LAM [4]. In contrast to the ground-truth mesh, our method demonstrates robust map-
ping in areas where the ground-truth mesh presents holes.

Fig. 4: The visualization of 3D semantic segmentation results of SGS-SLAM, as applied
to the novel views selected in Fig. 3. Note that the rendering results exhibit minor
variations in scene objects due to the use of a modified semantic dataset from ScantNet.
For our method, the training data is processed from the filtered semantic labels using
the nyu40-class, where certain objects are not distinctly labeled and are assigned as
background (depicted in black). Furthermore, we introduce extra labels, like guitar,
bag, and basket, to enhance the quality of scene reconstruction.
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Fig. 5: The visualization of novel view rendering between the baseline and our method
using the ScanNet++ dataset [11]. The ground-truth novel views are captured from
meshes. SGS-SLAM demonstrates superior rendering quality, while ESLAM [4] suf-
fers from significant tracking errors and fails to reconstruct the map. In addition, our
method also offers accurate instance-level segmentation outcomes.

B.4 Semantic Segmentation without Ground-truth Mask

As mentioned in the limitation section, our system leverages the ground-truth 2D
semantic masks as the segmentation prior. To justify the robustness of our sys-
tem without utilizing ground-truth masks, we carried out further experiments
using the real-world ScanNet dataset [2]. For these experiments, we used the
semantic masks predicted by Lang-SAM [1], without any fine-tuning. These
masks were adapted to the simplified NYU40 categories, which involved merg-
ing similar categories like table and counter. As shown in Figure 6, segmentation
outcomes using Lang-SAM [2] show comparable or even more precise segmen-
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Fig. 6: Visualization of our segmentation results on the ScanNet dataset [2]. The re-
sults include inputting the ground-truth 2D labels and Lang-SAM [1] predicted masks
prompted by the NYU40 categories. Additionally, masks of major objects in each scene
are displayed separately beneath the RGB images.

tation than the ground-truth label captured from the mesh surface. Moreover,
SGS-SLAM demonstrates robustness against noisy labels, which are inconsistent
across frames, by employing multi-view geometry optimization. This approach
remains effective as long as the noisy labels do not dominate. This robustness
allows our system to successfully segment objects that are not recognized in the
current view by leveraging information from other better frames of different view
angles. An example of this can be seen with the wall at the right of scene0059_00
in Figure 6.

B.5 Scene Manipulation

In this section, we visualize scene manipulation results by grouping the Gaussians
using the semantic mask. As shown in Fig. 7, for object removal, we can directly
erase the Gaussians associated with the editing target, such as removing the
table while preserving all the items on it. In addition, we can group objects by
selecting their semantic masks and applying translation and rotation, such as
moving and rotating both the table and the above objects to a different place.

It is worth noting that we can observe holes left in the place when remov-
ing or transitioning the objects. Such as the hole left on the ground when we
removed the table. This is due to the explicit scene representation using 3D
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Fig. 7: The visualization of scene manipulation by grouping Gaussians via semantic
labels. SGS-SLAM allows manipulation of either individual objects or a group of items,
as illustrated by actions that include the removal of a table, as well as moving and
rotating the table together with all objects on it.

Gaussians where the unobserved geometry in the multi-views from the trajec-
tory are inevitably missing. This defect, stemming from the characteristics of
the 3D Gaussian representation, poses a challenging problem. It is identified as
an area for future research, with the potential solution through the use of 3D
geometry priors [3] or scene inpainting [10] techniques.
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