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Abstract. Scalable annotation approaches are crucial for constructing
extensive 3D-text datasets, facilitating a broader range of applications.
However, existing methods sometimes lead to the generation of halluci-
nated captions, compromising caption quality. This paper explores the
issue of hallucination in 3D object captioning, with a focus on Cap3D [35]
method, which renders 3D objects into 2D views for captioning using pre-
trained models. We pinpoint a major challenge: certain rendered views
of 3D objects are atypical, deviating from the training data of stan-
dard image captioning models and causing hallucinations. To tackle this,
we present DiffuRank, a method that leverages a pre-trained text-to-3D
model to assess the alignment between 3D objects and their 2D ren-
dered views, where the view with high alignment closely represent the
object’s characteristics. By ranking all rendered views and feeding the
top-ranked ones into GPT4-Vision, we enhance the accuracy and detail of
captions, enabling the correction of 200k captions in the Cap3D dataset
and extending it to 1 million captions across the entire Objaverse dataset
and a portion of the Objaverse-XL high-quality subset. Additionally, our
dataset includes 20 rendered images per caption, providing both intrinsic
and extrinsic camera details, depth data, and masks, resulting in a total
of 60 million PNG images. Beyond datasets, we showcase the adaptabil-
ity of DiffuRank by applying it to pre-trained text-to-image models for a
Visual Question Answering task, where it outperforms the CLIP model.

1 Introduction

Recent advancements in generative models have shown remarkable performance
in both image [2,50] and video [4] domains, driven by the availability of extensive
captioned datasets. Despite these successes, extending generative modeling to 3D
domains has been challenging due to the scarcity of high-quality 3D-text pairs.
This gap has been partially bridged by Cap3D [35], which generates captions for
3D objects by rendering them into 2D images and employing image-based cap-
tioning models, further refined by Large Language Models (LLMs) to synthesize
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BLIP2
(1-view)

a green baseball ball

...an amorphous creature with one eye, 
a partially visible set of sharp teeth...

A minimalist-style interior room featuring a sofa, low 
table, shelving with books, and a standalone cabinet.

Ours
(6-views)

Monochromatic 3D model of a room interior featuring a two-
door cabinet, a central coffee table, a bed with pillows, a side 
chair, a trash bin, and a wall-mounted bookshelf with books, 
all rendered in grayscale with solid and shaded surfaces 
suggesting lighting effects.

A turquoise-colored 3D character with 
stylized feline features, prominent eyes, 
whimsical pink facial markings, and 
zipper-like teeth detail.

GPT4-Vision 
(28-views)

a sculpture of a 
monkey's head 

a fish swimming 
in the water

a green monster 
with big eyes

A 3D sculpture of a gorilla's head with 
realistic texturing in shades of gray and 
brown, featuring detailed facial attributes, 
expressive eyes, and a distinctly modeled 
facial structure.

...with dynamic, fluid-like distortions altering  

... appears to be made of a smooth material.

Cap3D
(8-views)

3D sculpture of an orangutan head with a 
hat, accompanied by a pelican and a fish.

... a mix of a frog, teddy bear, and monster 
with big eyes and red or pink eyes.

a black and white image 
of a room with furniture

a black and white 
image of a cube

a small room featuring a bed, desk with computer, 
chair, bookshelf, and bathroom sink.

GPT4-Vision 
(1-view)

a baseball a stylized figure 
looks like a cat ... 

a folded piece of fabric, 
possibly a black garment

... a couch, coffee table, 
and possibly a television a bird in mid-flight a representation of 

an orangutan's face

Fig. 1: DiffuRank enhances caption accuracy and reduces hallucinations by prioritizing
key rendered views (green box), contrasting the atypical views (red box) that cause
errors. Surprisingly, using fewer views (6 vs. 28) not only saves computational resources
but also may yield more accurate and detailed outcomes (the middle example) by
countering the uncertainty caused by excessive views.

captions. Cap3D has contributed 660k captions for the Objaverse dataset [13],
facilitating developments in Text-to-3D [23,65], Image-to-3D [64,68], robot sim-
ulator [61] and learning [46], and the pre-training of 3D LLMs [43,63,70].

Despite the utility of Cap3D, our analysis reveals that a significant portion
of Cap3D captions includes inaccurate and hallucinated information, potentially
compromising model training [57]. Upon inspection, we found that the key is the
rendered view: as Cap3D adheres to the Objaverse’s default orientation for 3D
objects, it positions the rendering cameras horizontally based on heuristic hy-
perparameters. Some of the renderings are hard to distinguish even for humans,
which existing captioning models cannot handle [24]. Consequently, when these
challenging views are included, even advanced captioning models like GPT4-
Vision [1] may generate erroneous information, as illustrated in Figure 1.

To address this, we introduce DiffuRank, an approach for ranking rendered
views with pre-trained diffusion models. By leveraging a pre-trained text-to-3D
diffusion model [20], DiffuRank evaluates the alignment between the captions
of each view and the corresponding 3D object’s information. The underlying
premise is that captions generated from rendered views that closely match the
object’s 3D information will exhibit a higher alignment, indicating these views
are more representative of the object. Consequently, DiffuRank promotes the
preferable views (Figure 2) for captioning as those that better reflect the true
essence of the 3D objects, leading to more accurate and truthful captions.

Specifically, we first employ image-based captioning models to caption all
candidate rendered views, and then perform multiple iterations over diffusion
model objective to obtain average score estimation for all captions conditional
on the same 3D object feature, Gaussian noise, and timestamps. This score
gauges the alignment between the captions and the corresponding 3D object
feature. Following this, we rank the views based on their scores and forward
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Fig. 2: The left row features the top-6 views as ranked by DiffuRank, while the right
row displays the bottom-6. Comparative analysis shows that the top-6 views generally
uncover more characteristics of the object compared to the bottom-6. This finding
underscores DiffuRank’s capability to identify views that more accurately represent the
features of the 3D object. More randomly sampled results are included in Appendix B.5.

the top-N rendered views to GPT4-Vision for the final caption generation. Our
evaluations through human studies indicate that captions produced with Diffu-
Rank, in conjunction with GPT4-Vision, are of significantly higher quality and
exhibit fewer inaccuracies compared to those generated by Cap3D. Moreover,
our captions are usually richer in detail and fewer hallucinations when using
only 6 rendered views than those produced using GPT4-Vision alone across all
28 rendered views or views selected based on default object orientations.

We extend DiffuRank to the 2D domain, demonstrating its effectiveness in the
challenging Visual Question Answering task [59] when combined with text-to-2D
diffusion models [49], and surpassing the zero-shot performance of CLIP [48].

Our contributions are as follows:

– We identify and alleviate the systematic hallucinations in Cap3D captions,
revising approximately 200k entries with the help of DiffuRank and GPT4-
Vision. The corrected captions consistently improve the finetuned perfor-
mance of text-to-3D models (Point·E, Shap·E); note that Shap·E models
fine-tuned with Cap3D captions show decreased performance.

– We extend the Cap3D caption dataset [35] from 660k to 1M across the entire
Objaverse [13] and a portion of the Objavere-XL high-quality subset [12].
Each caption is complemented with point clouds containing 16,384 colorful
points and 20 rendered images, including camera, depth, and MatAlpha
details. This results in a total of 1 million point clouds and 60 million PNG
images. All data is released under the ODC-By 1.0 license and is available
at https://huggingface.co/datasets/tiange/Cap3D.

– We proposed DiffuRank which shown ability to model the alignment between
3D object and its 2D rendered views via a pre-trained Text-to-3D model and
a captioning model. Additionally, we extend DiffuRank to 2D domain, and
demonstrate DiffuRank beats CLIP on the VQA task [59] with the help of
a pre-trained text-to-2D diffusion model [49].

https://huggingface.co/datasets/tiange/Cap3D
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2 Related Work

2.1 3D-Text

Recent advancements introduced by Objaverse have significantly enriched the
field of 3D object research. By integrating a comprehensive set of 3D objects
with descriptive captions from Cap3D, a wide array of 3D applications has
been enabled. These include Text-to-3D methods [17, 23, 25, 37, 65], Image-to-
3D conversion techniques [64, 68], enhancements in robot learning [46, 61], the
pre-training of 3D language models [8, 27, 47, 63, 70], and the development of
language models capable of processing diverse modalities [5, 16,43].

Despite these advancements, we identified issues with hallucination contents
in the captions provided by Cap3D. This discovery aligns with findings from
concurrent research [21,32,57], pinpointing inaccuracies in Cap3D captions. Our
investigation reveals that the root cause of these inaccuracies is attributed to
atypical rendered views, which lead to failures in captioning models. These fail-
ures are exacerbated as text summarization models (GPT4) are unable to rectify
these errors. To address this challenge, we introduce DiffuRank that selects ren-
dered views capturing the essential characteristics of 3D objects. Furthermore,
we utilize the recent advancements in vision-language models, specifically GPT4-
Vision, to provide holistic captions for 3D objects. We release our dataset under
ODC-By 1.0 license to enable research and commercial usage, and hope facilitate
related 3D-Text research [6,7,9,10,14,19,23,25,26,29,30,33,34,36,38,41,45,51,
53,53,56,60,62,64,66,72].

2.2 Diffusion Model

Our proposed DiffuRank leverages denoising diffusion objective [18, 54, 55] to
model the alignment between the input and output modalities. By using pre-
trained text-to-3D [20, 41] and text-to-2D [2, 44, 50] diffusion models, we can
model the alignment between given 3D object/image for a set of possible cap-
tions (text descriptions) as detailed in Section 3.2. In our listed algorithm 1, we
adopt the objects L3D = Ex0∼q(x0),ϵ∼N (0,I),t∼U [1,T ] ∥xθ (xt, t)− x0∥22 as used in
Shap·E [20], where x0 is data sampled from data distribution q(x0), ϵ is Gaus-
sian noise, and t is timestamp. We also adopt the alternative but equivalent
objective, L2D = Ex0∼q(x0),ϵ∼N (0,I),t∼U [1,T ] ∥ϵ− ϵθ (xt, t)∥22, when we adopt the
text-to-2D model, stable-diffusion, in Section 5.3.

DiffuRank is related to score sampling distillation proposed in [45], while
we do not compute gradients but sampling loss to accumulate scores estima-
tion for ranking. Our findings also relate to works which leverage pre-trained
diffusion models for downstream tasks, such as image classification [22, 39], se-
mantic segmentation [69], visual grounding [31], depth prediction [52, 67], and
other low-level computer vision tasks [15].

When applying our method to the 2D domain, we discovered that our algo-
rithm aligns closely with the insights of the approach presented in [22]. Conse-
quently, our method can be considered an expansion of the findings from [22],
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Captioning

Captioning

Captioning

[a torn piece of orange fruit]

[a tiger with a red nose]

[a teddy bear with a red nose]
DiffuRank with a 

Pre-trained Text-to-
3D Diffusion Model

Cap3D: a torn piece of orange fruit, a 
teddy bear with a red nose, and a toy 
tiger with a red nose.

Input 3D Object

Summarization over 
all texts via LLM

VLM

Ours: Abstract melted wax-like form in 
shades of orange and yellow with 
features resembling a cartoon tiger face 
printed on its surface, including eyes, 
stripes, and a red nose.

Fig. 3: Methods overview. Both Cap3D and our method render input 3D objects into
multiple views for caption generation (green steps). However, while Cap3D consolidates
these captions into a final description (blue steps), our method employs a pre-trained
text-to-3D diffusion model to identify views that better match the input object’s char-
acteristics. These selected views are then processed by a Vision-Language Model (VLM)
for captioning (orange steps).

extending its applicability from 2D classification to broader domains and tasks,
including the use of a pre-trained text-to-3D diffusion model and a 2D-image-
based captioning model to estimate the alignment between 3D objects and their
2D rendered views, as well as the application of a pre-trained text-to-2D diffusion
model to solve Visual Question Answering tasks.

3 Method

In this section, we analyze the issues with atypical rendered views leading to
hallucinations in Cap3D captions, motivating our proposed DiffuRank, a ap-
proach for selecting informative rendered views with 3D priors learned from a
diffusion model. We then detail DiffuRank’s formulation and describe our novel
3D captioning framework that integrates GPT4-Vision.

3.1 Issues in Cap3D

Firstly, we revisit the Cap3D pipeline, which unfolds across four stages. Initially,
it renders a set of 2D views for each 3D object. Subsequently, image captioning is
applied to generate preliminary descriptions (5 captions for each image). Then,
the CLIP model is utilized in the third stage to select the best-aligned caption
for each image, filtering out inaccuracies. The process culminates with an LLM
synthesizing captions from various perspectives into a comprehensive caption.

However, the captioning of rendered views (the combined second and third
stages) for given 3D objects can falter with atypical views, producing captions
that diverge significantly from the actual 3D object. In the worst-case scenarios,
each rendering view might correspond to an incorrect object, leading to com-
pounded errors when these captions are summarized by GPT4. One example is
shown in Figure 3. Since GPT4 operates solely on text, it cannot correct these
inaccuracies, resulting in captions riddled with hallucinated details.
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Due to the versatility of 3D object geometries, determining which rendered
views best reflect a 3D object’s characteristics is non-trivial. While measuring
the geometric properties of 3D objects and computing their principal directions
is feasible, positioning the camera orthogonally, as shown in the bottom-left ex-
ample of Figure 2, is often suboptimal. Hence, we propose DiffuRank, which
learns 3D priors from data to filter preferable rendered views by leveraging a
pre-trained text-to-3D model. Our experiments demonstrate that DiffuRank ef-
ficiently enhances caption quality and reduces hallucinations with fewer render-
ings compared to using all available views.

3.2 DiffuRank Formulation

DiffuRank leverages a pre-trained text-to-3D diffusion model Dtext−to−3D to
rank rendered views based on their alignment with both captions and the cor-
responding 3D information.

For a given 3D object O, assuming a set of candidate captions ci and the pre-
trained model Dtext−to−3D, the training objective of this pre-trained diffusion
model is predicting a 3D object O based on a text description c, i.e., modeling
the score function ∇O,cp(O|c) of the data distribution p(Oi|c). Specially, the
diffusion model aims to minimize

Lc = ∥Dtext−to−3D(Ot|c)−O0∥

based on a text description c, where the noised input Ot =
√
ᾱtO +

√
1− ᾱtϵ,

for timestamp t, and randomly sampled Gaussian noises ϵ ∼ N (0, I), with ᾱ
being a hyper-parameters defined by the noise schedule [18]. Our tuition here is
simple: a caption closely aligned with the given 3D object in terms of charac-
teristics (e.g. structure, colors, textures, etc), should aid the diffusion model in
making accurate predictions starting from the same noised input Ot

i , resulting in
a lower score matching loss. By sampling multiple sets of tj , ϵj for the same set
of captions ci, we can measure the alignment Cor(O, ci) between the 3D object
and captions via the average loss.

Initially, we generate candidate captions for O by rendering it into multi-
ple views Ii and generating captions cji with a captioning model Dcap. This
captioning procedure aims to maximize the joint likelihood of the model distri-
bution p(cji , Ii) over the image Ii and generated captions cji . Thus, we estimate
the alignment between the 3D object and all captions of the same rendering
Cor(O,Ejc

j
i ), which is proportional to Cor(O,Ejp(c

j
i , Ii)) ∝ Cor(O, Ii). Then,

we write down the whole pipeline in Algorithm 1.
Specifically, we adopted shap-E as the text-to-3D diffusion model in our pa-

per, and the above Oi should be Eencoder(Oi), where Eencoder is the encoder
(transmitter in [20]) to extract feature embeddings from given 3D object.

Furthermore, DiffuRank’s application is not confined to 3D captioning; be-
cause it is a general framework for measuring the alignment between two modal-
ities received and output by a diffusion model. It can be seamlessly extended to
other domains, such as 2D images. In section 5.3, we show an example where we
apply DiffuRank to perform 2D VQA and beat CLIP model [48].
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Algorithm 1 DiffuRank for modeling the alignments between 3D object and
its rendered views
Require: Given 3D object O, pre-trained text-to-3D model Dtext-to-3D, captioning

model Dcap

# 1. rendered views {Ii}i=1,··· ,M for O with rendering program (e.g., Blender).
# 2. Generate candidate captions for O.
for each view Ii of O do

Generate captions {cji}j=1,··· ,N with captioning model Dcap.
end for
# 3. Compute average alignment scores
for k ← 1 to num_samples do

Sample timestamp tk ∼ Uniform(0, 1).
Sample noise ϵk ∼ N (0, I).

end for
for each rendering view Ii do

for k ← 1 to num_samples do
Compute noised input Otk =

√
ᾱtkO0 +

√
1− ᾱtkϵk.

for j ← 1 to N do
Compute loss L

c
j
i ,k

= ∥Dtext-to-3D(Otk |c
j
i )−O0∥.

end for
end for
Compute average loss for all captions of Ii, Cor(Ii,O) = −Ej,kLc

j
i ,k

.
end for
return Top-P({Cor(Ii,O)}i=1,··· ,M )

3.3 New 3D Captioning Framework

With the proposed DiffuRank, we establish a new 3D captioning pipeline, as
shown in Figure 3. For given 3D object, we render it into 28 images, which
are then captioned into 5 descriptions using an image-based captioning model.
Following captioning, DiffuRank ranks the rendered views using a pre-trained
text-to-3D model. This ranking enables the selection of the Top-6 rendered views
for processing by a vision-language model, resulting in holistic captions that
describe structure, form, color, and texture, with enhanced accuracy and detail.

To elaborate, our methodology integrates two distinct rendering strategies,
as illustrated in Figure 4. The first strategy, derived from Cap3D [35], renders
objects into 8 views against a uniform grey background, arranged horizontally
around the object’s default orientation, with Blender ray-tracing render engine
‘CYCLES’. Concurrently, we apply a second technique from Shap·E [20], where
20 views are generated through randomized sampling after object normalization,
set against a transparent background, with Blender real-time engine ‘EEVEE’.
These 20 views, created following the Shap·E methodology, are instrumental in
forming Shap·E latent codes, i.e. Eencoder(Oi) in Section 3.2. Altogether, this
approach results in 28 distinct views for each object. Additionally, as grey and
transparent backgrounds may accentuate or obscure details variably across ob-
jects, we observed that DiffuRank adeptly selects the views with the proper
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Ours
(6-views)

abstract white geometric model 
resembling a stylized dragon head with 
pointed ears and faceted surfaces.

Monochromatic 3D model of an industrial cannon-type 
machine with various components including a cylindrical 
barrel, a control box with buttons, and assorted 
geometric shapes that appear to be ammunition or parts 
scattered nearby, all positioned on a circular base.

Cap3D
(8-views)

a 3d model of a small wheeled machine with
a box on it.

a white 3d model of a head, resembling 
a dragon, wolf, and bull.

Fig. 4: We utilized both grey background + ray-tracing render engine (left images)
and transparent background + real-time render engine (right images) for rendering,
discovering that the effectiveness of each varies. We noticed DiffuRank can select the
views with the appropriate rendering that highlight object features.

background that most effectively highlight object features, without manual in-
tervention. Some examples are included in Appendix B.

Following this, the captioning model, BLIP2 [24], is employed to generate
five captions for each view. These captions, alongside the pre-trained text-to-
3D diffusion model, Shap·E [20], and the previously derived 3D latent code
Eencoder(Oi), undergo analysis in the DiffuRank process, as detailed in Algo-
rithm 1. Subsequent to DiffuRank, the six views that demonstrate the highest
alignment scores are chosen to input into GPT4-Vision for caption generation.

4 Dataset

This section details our process for correcting the Cap3D captions, expanding the
dataset with high-quality 3D objects from Objaverse-XL, and ethical filtering.
More detailed hyper-parameters and comparisons are included in Appendix B.

4.1 Correction of Cap3D Captions

As Cap3D contains a lot of good quality captions, our first objective is to iden-
tify erroneous Cap3D captions, which might contain incorrect information or
hallucinations. We tried three strategies as outlines the below.

Image-Text Alignment Method: We discovered that utilizing the maxi-
mum and average CLIP scores effectively filters out inaccurate captions. Most of
erroneous captions, like those depicted in Figure 1, described improbable com-
binations of objects (e.g., “a mix of a frog, teddy bear, and monster" or “an
orangutan accompanied by a pelican and a fish") in scenarios where only one
entity was present in the given 3D object. Such discrepancies arise when dif-
ferent views of the same 3D object receive varied entity captions from BLIP2,
which GPT4 then erroneously combines, shown in Figure 3. To detect this kind
of case, we computed both the average and maximum CLIP scores between the
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Fig. 5: Mean and Max clip score distribution for Cap3D captions and their 8 rendering
images. Selected thresholds are the two red dash lines via our annotated validation set.

final caption and all eight rendered views used in Cap3D. A validation set of
∼ 7k objects with inaccurate captions was annotated and used to determine two
thresholds (mean & max as shown in Figure 5), with the goal of encompassing all
objects in this set. We then use the two selected thresholds to filter out ∼ 167k
possible issued objects out of a total of 660k.

Image-Based Method: Approximately 10k renderings in Cap3D dataset
were identified as having all-grey images, likely due to rendering issues within the
Cap3D process. We addressed this by re-rendering these objects and updating
their captions with descriptions generated by our method (Section 3.3).

Text-Based Method: Attempting to identify errors solely based on cap-
tions proved challenging due to the diverse and complex nature of objects within
Objaverse, making it difficult to detect hallucinations based on text alone. This
complexity arises because some 3D objects genuinely comprise multiple or un-
usual components. Despite this, we developed a technique for identifying the
misuse of terms related to “image" and “rendering", as these are directly associ-
ated with the rendering process rather than the 3D objects themselves. Through
this method, we identified approximately 23,000 objects requiring correction.

4.2 Dataset Expansion and Ethical Filtering

Our expansion includes adopting the remaining objects of Objaverse, where
Cap3D did not include, and high-quality 3D objects from Objaverse-XL’s cu-
rated subset (Section 4.1 of [12], selected through human evaluation and heuris-
tics from a pool of 10 million objects. This extension enhances the diversity and
quality of our dataset.

Moreover, we apply ethical filtering to both the rendered images and gener-
ated captions to remove potentially NSFW content and identifiable human faces,
following Cap3D’s protocol. We also leverage GPT4-Vision’s internal detection
capabilities for identifying images with potential ethical issues. It returns ‘con-
tent_policy_violation’ once their model detection the image possibly against
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Fig. 6: Number of words in caption.

Human Cap3D Ours

Unigrams 2,876 2,767 5,600
Bigrams 11,374 12,293 29,521
Trigrams 16,535 23,062 52,457

Fig. 7: Number of n-grams for
captions generated by differ-
ent methods.

their safety policy. These comprehensive measures have allowed us to detect a
list of ∼ 35k objects.

We compared caption length and n-grams [3] of captions among Human,
Cap3D, and our captions in a 5k common set. As shown in Figure 6, our captions
usually contain longer length indicating more details than Cap3D and human-
authored captions. Table 7 demonstrates we have the largest vocabulary size.

5 Experiments

In this section, we compare our captions against Cap3D captions and human-
authored captions in terms of quality and hallucination degrees through human
studies. We also ablate our methods to verify the effectiveness of the proposed
DiffuRank. Then, we compare text-to-3D models finetuned on Cap3D and our
updated Captions on the same set to measure the improvements of caption align-
ment at scale. Finally, we further verify the effectiveness of our propose Diffu-
Rank by examining it on a VQA task. For the sake of space, we list quantitative
results here and include qualitative comparisons in Appendix B and C.

5.1 Captioning Evaluation

Settings. We first evaluate the quality of captions generated by our method.
Our captioning process involves selecting the top 6 captions out of a total of
28, as determined by DiffuPick, and then feeding these captions into GPT4-
Vision (for further details, see Section 4). We evaluate the generated captions by
comparing them to those produced by Cap3D, as well as to the human-authored
captions that Cap3D provides. Our goal is to determine whether our method can
produce captions of higher quality and with fewer inaccuracies or hallucinations.

Furthermore, we conduct ablation studies to assess the effectiveness of an-
other component of our method, DiffuRank. We compare various approaches to
highlight the benefits of DiffuRank: (1) Allviews 28-views: using all 28 ren-
dered views as input to GPT4-Vision (details in Section 3.3), (2) Horizontal
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Table 1: Objaverse Captions Evaluations. All A/B testing represents captions
from other methods vs. ours. We tested on 5k objects.

Method Quality A/B test Hallucination A/B test CLIP
Score(1-5) Win % Lose % Score(1-5) Win % Lose % Score R@1 R@5 R@10

Human 2.57 31.9 62.1 2.88 39.9 46.4 66.2 8.9 21.0 27.8
Cap3D 2.62 32.7 60.2 2.43 25.8 63.9 71.2 20.5 40.8 51.9
Ours - - - - - - 74.6 26.7 48.2 57.5

Allviews 28-views 2.91 37.9 43.6 2.85 35.1 47.2 73.5 24.9 46.7 55.7
Horizontal 6-views 2.84 35.2 44.5 2.90 36.2 40.9 73.8 25.8 46.7 55.9
Bottom 6-views 2.74 31.1 52.0 2.61 30.1 57.0 72.8 24.6 45.1 55.2

6-views: selecting 6 rendered views that place the camera horizontally across
the object’s default orientation, applying the same up and down positioning
heuristics as Cap3D, and (3) Bottom 6-views: using the bottom-6 captions,
defined as those with the worst alignment scores according to our DiffuRank al-
gorithm (see Alg. 1), as input to GPT4-Vision. Through these comparisons, we
aim to demonstrate the impact of DiffuRank’s selection process on the quality
of the generated captions.

Metrics. Our primary evaluation method utilizes A/B testing with human
judgment, where participants evaluate a pair of captions on a 1-5 scale, with
3 representing a neutral preference (i.e., tie). Our approach includes two dis-
tinct assessments: (a) evaluating which caption more accurately describes the
object’s type, appearance, and structure, and (b) determining which caption is
less prone to presenting incorrect information or hallucinations. Each assessment
involves over 10,000 ratings across 4,000 objects to ensure statistical reliability.
We calculate and report the average scores and the frequency each option is pre-
ferred (i.e., excluding neutral (tie) responses). More human evaluation details
are included in Appendix B.7. Additionally, we follow Cap3D [35] and employ
automated metrics, including CLIP score, measuring the cosine similarity be-
tween CLIP encodings and input images, and CLIP R percision [45], assessing
the match between a rendered image and all potential texts.

Results. The evaluation results, presented in Table 1, highlight the effec-
tiveness of our captioning approach. According to scores from human evaluators
on quality and hallucination metrics, our captions feature more accurate details
with fewer instances of hallucination, compared to Cap3D and human-authored
captions. Supporting qualitative findings are detailed in Appendix B.3, reinforc-
ing these conclusions.

A comparison of our method, which selects the top-6 views, with alterna-
tives—the bottom-6 views and horizontally placed 6-views—demonstrates the
impact of DiffuRank on performance. Specifically, as depicted in Figure 2, bottom-
6 views often relate less to the 3D object as they may capture only the back or
bottom. This issue highlights the difficulties arising from Objaverse’s random
default orientation, positioning cameras ‘horizontally’ does not always ensure
they are actually horizontal. More qualitative compairsons between the three
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Table 2: Text-to-3D Finetuning experiments.

FID↓ CLIP CLIP R-Precision (2k)
Score R@1 R@5 R@10

Ground Truth Images - 81.6 32.7 55.1 64.3

Point·E 36.1 61.5 3.4 10.4 15.3
Point·E + Cap3D 32.8 65 7.1 19.4 26.4
Point·E + Ours (330k) 32.4 66.2 8.1 20.3 28.5
Point·E + Ours (825k) 31.2 66.5 10.1 21.9 29.8

Shap·E (STF) 37.2 68.8 12.7 29.0 37.9
Shap·E (STF) + Cap3D 35.5 68.2 11.9 28.8 37.4
Shap·E (STF) + Ours (330k) 35.6 69.4 13.4 29.7 39.3
Shap·E (STF) + Ours (825k) 34.3 69.8 14.9 33.7 42.8

Shap·E (NeRF) 48.7 68.3 12.2 27.9 36.2
Shap·E (NeRF) + Cap3D 48.2 68.0 11.7 27.1 35.1
Shap·E (NeRF) + Ours (330k) 48 68.4 13.2 29.3 38.4
Shap·E (NeRF) + Ours (825k) 47.9 69.3 14.3 31.7 40.4

types of view selection are included in Appendix B.5. Furthermore, DiffuRank
does not consistently achieve optimal performance, as illustrated by the selec-
tion of the 6th image in the first row (referenced in Figure 2) captioned ’a blue
laptop.’ Enhancements could be achieved through using an improved text-to-3D
diffusion models, a topic explored in detail in Appendix E.

Furthermore, our approach outperforms the variant using 24 views, delivering
captions with greater detail and fewer hallucinations (See qualitative compar-
isons at Appendix B.4). Interestingly, providing a larger number of views (24)
does not necessarily improve details; it appears to complicate the model’s abil-
ity to access precise information due to the variance in detail across different
perspectives. This observation contradicts expectations, suggesting an optimal
balance of view selection is crucial for accurate 3D object captioning.

5.2 Text-to-3D Generation with New Captions

Settings. This section we finetune Text-to-3D models to check if our updated
captions can bring more improvements compared to Cap3D captions. For this
purpose, we would mainly conduct experiments over point-E [41] and shap-E [40]
as they are used in Cap3D. We follow the same setting as Cap3D, including learn-
ing rate, batch size, optimizer, and steps. We adopted the same 330k training
split and test split used in [35], and we have updated 72k captions in this 330k
set (∼20%). Additionally, we scale our experiment up, and train models with
825k (2.5× 330k) data from our full 3D-text pairs. More details and qualitative
results are included in Appendix C.
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Metrics. We incorporated the use of CLIP Score and CLIP R-Precision
[35,45] in our evaluation process. CLIP R-Precision involves ranking a rendered
image among all text pairs within the test set based on the cosine similarity as
measured by CLIP, then determining the precision based on accurate text-image
matches. Given the availability of ground truth images, we employed the FID
metric to compare the fidelity of 3D rendered images with these true images.

Results. Results are showcased in Table 2. Considering we updated nearly
20% captions of the 330k training set for Cap3D 3D-text pairs, we anticipated
some improvement, albeit modest. However, the improvements exceeded our ex-
pectations. Our enhanced model (‘model + Ours’ with 330K data points) consis-
tently outperformed both the ‘model + Cap3D’ (with 330K data points) version
and pre-trained Shap·E model. Surpassing the pre-trained Shap·E model is non-
trivial, as the ’model + Cap3D’ version generally showed declining performance
when compared to the pre-trained Shap·E model, indicating that fine-tuning
on Cap3D data actually harms the performance. The performance enhancement
achieved by correcting 20% of the data underscores the effectiveness of address-
ing misalignments in the 3D-text of Cap3D by locating the potential errors
and refining with our new captioning approach. Furthermore, by expanding our
dataset by 2.5 times, we have boosted performance across multiple metrics and
models. Given that Shap·E model was trained on proprietary data, our findings
suggest that our proposed 3D-text dataset could be a competitive open-source
alternative.

5.3 DiffuRank on VQA

Settings. We extend our DiffuRank to solve Visual Question Answering task,
with the help of a pre-trained text-to-2D diffusion model [49]. We list our de-
tailed settings and the updated algorithm in Appendix D. We mainly compare
to CLIP [48] in terms of zero-shot VQA performance and test on the Multimodal
Visual Patterns (MMVP) benchmark [59], comprising nine fundamental visual
patterns across 150 images pairs. Each pair of images (Figure 8), despite having
clear visual distinctions, are perceived similarly by the CLIP model. Each pair
is associated with a question that has two divergent answers. Numerous Vision-
Language Models (VLMs) have been shown to underperform on this challenging
benchmark.

Given that the task involves Visual Question Answering (VQA), neither our
approach nor the CLIP model is inherently designed to generate textual re-
sponses directly. To address this, we employed GPT-4 to transform each ques-
tion and its corresponding answers into declarative statements. Consequently, for
each image pair, we obtained two distinct statements. For DiffuRank, we exe-
cuted multiple iterations of alignment estimation for the statements correspond-
ing to each image, selecting the statement with the highest alignment estimate
as the correct answer/statement. For CLIP model, we determined the appro-
priate answer by calculating the cosine similarity between an image and each
statement, choosing the statement with the greatest similarity as the response.
We used “ViT-B/32" CLIP here for evaluation.
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Model Accuracy (%)

Human 95.7
Gemini [58] 40.7
GPT4-Vision [42] 38.7
Ours 30.7
Random Guess 25.0
LLaVA-1.5 [28] 24.7
Bard 19.0
Bing Chat 17.3
InstructBLIP [11] 16.7
CLIP [48] 13.3
mini-GPT4 [71] 12.7
LLaVA [28] 6.0

Table 3: Accuracy comparison among various
VLMs, CLIP, and our method.

There is a shadow on 
the flower.

There is not a shadow 
on the flower.

The school bus is 
driving towards the 
camera.

The school bus is 
driving away from the 
camera.

Fig. 8: Each row repre-
sents a matched pair, and
the accompanying text
beneath it is the descrip-
tion.

Metrics. Our evaluation metrics are aligned with those proposed by [59]. A
model’s response is deemed accurate only if it correctly identifies the appropriate
statements for both images in a pair. Hence, if a model accurately selects the
correct statement for only one image within the pair, its attempt is marked as in-
correct. It is important to note that both DiffuRank and CLIP may occasionally
select identical statements for different images within the same pair.

Results. Table 3 shows the quantitative results which demonstrate Diffu-
Rank significantly outperforms CLIP in the MMVP benchmark with the help
of pre-trained stable diffusion model. Also, for the example pairs shown on the
Figure 8, our method is able to select the correct corresponding image-statement
pairs. In contrast, the CLIP model incorrectly selects There is not a shadow on
the flower’ and The school bus is driving towards the camera’ for both images
in each pair.

6 Conclusion

This paper help alleviate inaccuracies and hallucinations in Cap3D captions (a
3D-Text dataset for Objaverse), attributed to suboptimal render views based
on default object orientations. We introduced DiffuRank to address this issue, a
method that ranks rendered views by their alignment with 3D object information
using pre-trained text-to-3D diffusion models. Combining DiffuRank and GPT4,
our new captioning approach improved caption quality, reduced inaccuracies, and
enhanced detail richness with fewer views. Our efforts have not only improved the
quality of existing Cap3D captions but also expanded the dataset to cover a total
of 1M 3D-text pairs (whole Objaverse and a subset of Objaver-XL highquality
set). We also extended DiffuRank’s application to the 2D domain, demonstrating
its effectiveness in Visual Question Answering tasks.



View Selection for 3D Captioning via Diffusion Ranking 15

Acknowledgement

This work has been made possible through the generous support of the “Efficient
and Scalable Text-to-3D Generation" grant from LG AI Research. We also thank
the OpenAI Researcher Access Program for partially supporting our use of the
GPT-4 API. We greatly appreciate Chris Rockwell for his invaluable technical
support in caption evaluation, and Mohamed El Banani for his insightful feed-
back to our initial draft. Tiange thanks Minghua Liu and Jiaming Song for their
insightful discussions back at NeurIPS 2023 in NOLA.

References

1. Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I., Aleman, F.L., Almeida,
D., Altenschmidt, J., Altman, S., Anadkat, S., et al.: Gpt-4 technical report. arXiv
preprint arXiv:2303.08774 (2023)

2. Betker, J., Goh, G., Jing, L., Brooks, T., Wang, J., Li, L., Ouyang, L., Zhuang, J.,
Lee, J., Guo, Y., et al.: Improving image generation with better captions. Computer
Science. https://cdn. openai. com/papers/dall-e-3. pdf 2(3), 8 (2023)

3. Bird, S., Klein, E., Loper, E.: Natural language processing with Python: analyzing
text with the natural language toolkit. " O’Reilly Media, Inc." (2009)

4. Brooks, T., Peebles, B., Holmes, C., DePue, W., Guo, Y., Jing, L., Schnurr, D.,
Taylor, J., Luhman, T., Luhman, E., Ng, C., Wang, R., Ramesh, A.: Video gener-
ation models as world simulators (2024), https://openai.com/research/video-
generation-models-as-world-simulators

5. Chen, C., Du, Y., Fang, Z., Wang, Z., Luo, F., Li, P., Yan, M., Zhang, J., Huang,
F., Sun, M., et al.: Model composition for multimodal large language models. arXiv
preprint arXiv:2402.12750 (2024)

6. Chen, D.Z., Siddiqui, Y., Lee, H.Y., Tulyakov, S., Nießner, M.: Text2tex: Text-
driven texture synthesis via diffusion models. arXiv (2023)

7. Chen, R., Chen, Y., Jiao, N., Jia, K.: Fantasia3d: Disentangling geometry
and appearance for high-quality text-to-3d content creation. arXiv preprint
arXiv:2303.13873 (2023)

8. Chen, S., Chen, X., Zhang, C., Li, M., Yu, G., Fei, H., Zhu, H., Fan, J., Chen, T.:
Ll3da: Visual interactive instruction tuning for omni-3d understanding, reasoning,
and planning. arXiv preprint arXiv:2311.18651 (2023)

9. Chen, Y., Fang, J., Huang, Y., Yi, T., Zhang, X., Xie, L., Wang, X., Dai, W.,
Xiong, H., Tian, Q.: Cascade-zero123: One image to highly consistent 3d with
self-prompted nearby views. arXiv preprint arXiv:2312.04424 (2023)

10. Chen, Y., Pan, Y., Li, Y., Yao, T., Mei, T.: Control3d: Towards controllable text-
to-3d generation. In: Proceedings of the 31st ACM International Conference on
Multimedia. pp. 1148–1156 (2023)

11. Dai, W., Li, J., Li, D., Tiong, A.M.H., Zhao, J., Wang, W., Li, B., Fung, P., Hoi,
S.: Instructblip: Towards general-purpose vision-language models with instruction
tuning (2023)

12. Deitke, M., Liu, R., Wallingford, M., Ngo, H., Michel, O., Kusupati, A., Fan, A.,
Laforte, C., Voleti, V., Gadre, S.Y., et al.: Objaverse-xl: A universe of 10m+ 3d
objects. arXiv preprint arXiv:2307.05663 (2023)

https://openai.com/research/video-generation-models-as-world-simulators
https://openai.com/research/video-generation-models-as-world-simulators


16 Tiange Luo et al.

13. Deitke, M., Schwenk, D., Salvador, J., Weihs, L., Michel, O., VanderBilt, E.,
Schmidt, L., Ehsani, K., Kembhavi, A., Farhadi, A.: Objaverse: A universe of
annotated 3d objects (2023)

14. Ding, L., Dong, S., Huang, Z., Wang, Z., Zhang, Y., Gong, K., Xu, D., Xue, T.:
Text-to-3d generation with bidirectional diffusion using both 2d and 3d priors.
arXiv preprint arXiv:2312.04963 (2023)

15. Du, X., Kolkin, N., Shakhnarovich, G., Bhattad, A.: Generative models: What do
they know? do they know things? let’s find out! arXiv preprint arXiv:2311.17137
(2023)

16. Han, J., Gong, K., Zhang, Y., Wang, J., Zhang, K., Lin, D., Qiao, Y., Gao, P., Yue,
X.: Onellm: One framework to align all modalities with language. arXiv preprint
arXiv:2312.03700 (2023)

17. He, Y., Bai, Y., Lin, M., Zhao, W., Hu, Y., Sheng, J., Yi, R., Li, J., Liu, Y.J.:
T3 bench: Benchmarking current progress in text-to-3d generation. arXiv preprint
arXiv:2310.02977 (2023)

18. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. NeurIPS 33
(2020)

19. Jain, A., Mildenhall, B., Barron, J.T., Abbeel, P., Poole, B.: Zero-shot text-guided
object generation with dream fields. arXiv preprint arXiv:2112.01455 (2021)

20. Jun, H., Nichol, A.: Shap-e: Generating conditional 3d implicit functions. arXiv
preprint arXiv:2305.02463 (2023)

21. Kabra, R., Matthey, L., Lerchner, A., Mitra, N.J.: Evaluating vlms for score-based,
multi-probe annotation of 3d objects. arXiv preprint arXiv:2311.17851 (2023)

22. Li, A.C., Prabhudesai, M., Duggal, S., Brown, E., Pathak, D.: Your diffusion model
is secretly a zero-shot classifier. arXiv preprint arXiv:2303.16203 (2023)

23. Li, J., Tan, H., Zhang, K., Xu, Z., Luan, F., Xu, Y., Hong, Y., Sunkavalli, K.,
Shakhnarovich, G., Bi, S.: Instant3d: Fast text-to-3d with sparse-view generation
and large reconstruction model. arXiv preprint arXiv:2311.06214 (2023)

24. Li, J., Li, D., Savarese, S., Hoi, S.: Blip-2: Bootstrapping language-image pre-
training with frozen image encoders and large language models. arXiv (2023)

25. Li, W., Chen, R., Chen, X., Tan, P.: Sweetdreamer: Aligning geometric priors in
2d diffusion for consistent text-to-3d. arXiv preprint arXiv:2310.02596 (2023)

26. Lin, C.H., Gao, J., Tang, L., Takikawa, T., Zeng, X., Huang, X., Kreis, K., Fidler,
S., Liu, M.Y., Lin, T.Y.: Magic3d: High-resolution text-to-3d content creation.
arXiv preprint arXiv:2211.10440 (2022)

27. Liu, D., Huang, X., Hou, Y., Wang, Z., Yin, Z., Gong, Y., Gao, P., Ouyang, W.:
Uni3d-llm: Unifying point cloud perception, generation and editing with large lan-
guage models. arXiv preprint arXiv:2402.03327 (2024)

28. Liu, H., Li, C., Wu, Q., Lee, Y.J.: Visual instruction tuning. Advances in neural
information processing systems 36 (2024)

29. Liu, M., Xu, C., Jin, H., Chen, L., Xu, Z., Su, H., et al.: One-2-3-45: Any single
image to 3d mesh in 45 seconds without per-shape optimization. arXiv preprint
arXiv:2306.16928 (2023)

30. Liu, R., Wu, R., Van Hoorick, B., Tokmakov, P., Zakharov, S., Vondrick, C.: Zero-
1-to-3: Zero-shot one image to 3d object. arXiv (2023)

31. Liu, X., Huang, S., Kang, Y., Chen, H., Wang, D.: Vgdiffzero: Text-to-image dif-
fusion models can be zero-shot visual grounders. arXiv preprint arXiv:2309.01141
(2023)

32. Liu, Y.T., Luo, G., Sun, H., Yin, W., Guo, Y.C., Zhang, S.H.: Pi3d: Efficient text-
to-3d generation with pseudo-image diffusion. arXiv preprint arXiv:2312.09069
(2023)



View Selection for 3D Captioning via Diffusion Ranking 17

33. Lorraine, J., Xie, K., Zeng, X., Lin, C.H., Takikawa, T., Sharp, N., Lin, T.Y., Liu,
M.Y., Fidler, S., Lucas, J.: Att3d: Amortized text-to-3d object synthesis. arXiv
preprint arXiv:2306.07349 (2023)

34. Luo, T., Lee, H., Johnson, J.: Neural shape compiler: A unified framework for
transforming between text, point cloud, and program. Transactions on Machine
Learning Research (2023), https://openreview.net/forum?id=gR9UVgH8PZ

35. Luo, T., Rockwell, C., Lee, H., Johnson, J.: Scalable 3d captioning with pretrained
models. arXiv preprint arXiv:2306.07279 (2023)

36. Melas-Kyriazi, L., Laina, I., Rupprecht, C., Vedaldi, A.: Realfusion: 360deg recon-
struction of any object from a single image. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 8446–8455 (2023)

37. Mercier, A., Nakhli, R., Reddy, M., Yasarla, R., Cai, H., Porikli, F., Berger, G.:
Hexagen3d: Stablediffusion is just one step away from fast and diverse text-to-3d
generation. arXiv preprint arXiv:2401.07727 (2024)

38. Michel, O., Bar-On, R., Liu, R., Benaim, S., Hanocka, R.: Text2mesh: Text-driven
neural stylization for meshes. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 13492–13502 (2022)

39. Mukhopadhyay, S., Gwilliam, M., Agarwal, V., Padmanabhan, N., Swaminathan,
A., Hegde, S., Zhou, T., Shrivastava, A.: Diffusion models beat gans on image
classification. arXiv preprint arXiv:2307.08702 (2023)

40. Nichol, A., Jun, H.: Shap-e: Generating conditional 3d implicit functions. arXiv
(2023)

41. Nichol, A., Jun, H., Dhariwal, P., Mishkin, P., Chen, M.: Point-e: A system for
generating 3d point clouds from complex prompts. arXiv (2022)

42. OpenAI: Gpt-4 technical report. arXiv (2023)
43. Panagopoulou, A., Xue, L., Yu, N., Li, J., Li, D., Joty, S., Xu, R., Savarese,

S., Xiong, C., Niebles, J.C.: X-instructblip: A framework for aligning x-modal
instruction-aware representations to llms and emergent cross-modal reasoning.
arXiv preprint arXiv:2311.18799 (2023)

44. Peebles, W., Xie, S.: Scalable diffusion models with transformers. In: Proceedings
of the IEEE/CVF International Conference on Computer Vision. pp. 4195–4205
(2023)

45. Poole, B., Jain, A., Barron, J.T., Mildenhall, B.: Dreamfusion: Text-to-3d using
2d diffusion. arXiv (2022)

46. Qi, Z., Dong, R., Zhang, S., Geng, H., Han, C., Ge, Z., Yi, L., Ma, K.:
Shapellm: Universal 3d object understanding for embodied interaction. arXiv
preprint arXiv:2402.17766 (2024)

47. Qi, Z., Fang, Y., Sun, Z., Wu, X., Wu, T., Wang, J., Lin, D., Zhao, H.: Gpt4point: A
unified framework for point-language understanding and generation. arXiv preprint
arXiv:2312.02980 (2023)

48. Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry,
G., Askell, A., Mishkin, P., Clark, J., et al.: Learning transferable visual models
from natural language supervision. In: ICML (2021)

49. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution
image synthesis with latent diffusion models. In: CVPR (2022)

50. Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J., Denton, E.L., Ghasemipour,
K., Gontijo Lopes, R., Karagol Ayan, B., Salimans, T., et al.: Photorealistic text-
to-image diffusion models with deep language understanding (2022)

51. Sanghi, A., Chu, H., Lambourne, J.G., Wang, Y., Cheng, C.Y., Fumero, M., Malek-
shan, K.R.: Clip-forge: Towards zero-shot text-to-shape generation. In: CVPR
(2022)

https://openreview.net/forum?id=gR9UVgH8PZ


18 Tiange Luo et al.

52. Saxena, S., Kar, A., Norouzi, M., Fleet, D.J.: Monocular depth estimation using
diffusion models. arXiv preprint arXiv:2302.14816 (2023)

53. Shi, Y., Wang, P., Ye, J., Long, M., Li, K., Yang, X.: Mvdream: Multi-view diffusion
for 3d generation. arXiv preprint arXiv:2308.16512 (2023)

54. Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., Ganguli, S.: Deep unsuper-
vised learning using nonequilibrium thermodynamics. In: ICML (2015)

55. Song, Y., Ermon, S.: Generative modeling by estimating gradients of the data
distribution. NeurIPS (2019)

56. Tang, J., Wang, T., Zhang, B., Zhang, T., Yi, R., Ma, L., Chen, D.: Make-it-3d:
High-fidelity 3d creation from a single image with diffusion prior. arXiv preprint
arXiv:2303.14184 (2023)

57. Tang, Z., Gu, S., Wang, C., Zhang, T., Bao, J., Chen, D., Guo, B.: Volumediffusion:
Flexible text-to-3d generation with efficient volumetric encoder. arXiv preprint
arXiv:2312.11459 (2023)

58. Team, G., Anil, R., Borgeaud, S., Wu, Y., Alayrac, J.B., Yu, J., Soricut, R., Schalk-
wyk, J., Dai, A.M., Hauth, A., et al.: Gemini: a family of highly capable multimodal
models. arXiv preprint arXiv:2312.11805 (2023)

59. Tong, S., Liu, Z., Zhai, Y., Ma, Y., LeCun, Y., Xie, S.: Eyes wide shut? exploring the
visual shortcomings of multimodal llms. arXiv preprint arXiv:2401.06209 (2024)

60. Wang, H., Du, X., Li, J., Yeh, R.A., Shakhnarovich, G.: Score jacobian chaining:
Lifting pretrained 2d diffusion models for 3d generation. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 12619–
12629 (2023)

61. Wang, Y., Xian, Z., Chen, F., Wang, T.H., Wang, Y., Fragkiadaki, K., Erickson,
Z., Held, D., Gan, C.: Robogen: Towards unleashing infinite data for automated
robot learning via generative simulation. arXiv preprint arXiv:2311.01455 (2023)

62. Wei, J., Wang, H., Feng, J., Lin, G., Yap, K.H.: Taps3d: Text-guided 3d textured
shape generation from pseudo supervision. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition. pp. 16805–16815 (2023)

63. Xu, R., Wang, X., Wang, T., Chen, Y., Pang, J., Lin, D.: Pointllm: Empowering
large language models to understand point clouds. arXiv preprint arXiv:2308.16911
(2023)

64. Xu, Y., Tan, H., Luan, F., Bi, S., Wang, P., Li, J., Shi, Z., Sunkavalli, K., Wet-
zstein, G., Xu, Z., et al.: Dmv3d: Denoising multi-view diffusion using 3d large
reconstruction model. arXiv preprint arXiv:2311.09217 (2023)

65. Yariv, L., Puny, O., Neverova, N., Gafni, O., Lipman, Y.: Mosaic-sdf for 3d gener-
ative models. arXiv preprint arXiv:2312.09222 (2023)

66. Yi, T., Fang, J., Wu, G., Xie, L., Zhang, X., Liu, W., Tian, Q., Wang, X.: Gaus-
siandreamer: Fast generation from text to 3d gaussian splatting with point cloud
priors. arXiv preprint arXiv:2310.08529 (2023)

67. Zhang, J., Herrmann, C., Hur, J., Polania Cabrera, L., Jampani, V., Sun, D.,
Yang, M.H.: A tale of two features: Stable diffusion complements dino for zero-shot
semantic correspondence. Advances in Neural Information Processing Systems 36
(2024)

68. Zhao, M., Zhao, C., Liang, X., Li, L., Zhao, Z., Hu, Z., Fan, C., Yu, X.: Efficient-
dreamer: High-fidelity and robust 3d creation via orthogonal-view diffusion prior.
arXiv preprint arXiv:2308.13223 (2023)

69. Zhao, W., Rao, Y., Liu, Z., Liu, B., Zhou, J., Lu, J.: Unleashing text-to-image
diffusion models for visual perception. arXiv preprint arXiv:2303.02153 (2023)



View Selection for 3D Captioning via Diffusion Ranking 19

70. Zhou, Q., Yu, C., Zhang, S., Wu, S., Wang, Z., Wang, F.: Regionblip: A unified
multi-modal pre-training framework for holistic and regional comprehension. arXiv
preprint arXiv:2308.02299 (2023)

71. Zhu, D., Chen, J., Shen, X., Li, X., Elhoseiny, M.: Minigpt-4: Enhancing vision-
language understanding with advanced large language models. arXiv preprint
arXiv:2304.10592 (2023)

72. Zhu, J., Zhuang, P.: Hifa: High-fidelity text-to-3d with advanced diffusion guidance.
arXiv preprint arXiv:2305.18766 (2023)


	View Selection for 3D Captioning via Diffusion Ranking

