
Supplementary Materials of “OmniSSR: Zero-shot
Omnidirectional Image Super-Resolution using

Stable Diffusion Model”

Runyi Li1†, Xuhan Sheng1†, Weiqi Li1, and Jian Zhang1 �
† Equal contributor � Corresponding author

School of Electronic and Computer Engineering, Peking University, China
{lirunyi,shengxuhan,liweiqi}@stu.pku.edu.cn

{zhangjian.sz}@pku.edu.cn
https://www.ece.pku.edu.cn/

1 Extra Experiments

1.1 Ablation Studies

Ablation study of γ on Gradient Decomposition (GD) correction Ac-
cording to the principle of GD correction, the super-resolution (SR) result in
equirectangular projection (ERP) format E0|t generated by StableSR [5] can be
further corrected to Ẽ0|t = E0|t+γA†(Einit−AE0|t), where γ balances realness
and fidelity. To improve the convergence of this gradient-based technique, we per-
form a grid search over different γ values to obtain the best results, presented in
Tab. 1. For an overall performance superiority, we choose γl = 0.5, γp = 1, γe = 1.
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Fig. 1: Visualization of different choices of γ. (a) γp and γe fixed, while adjusting γl;
(b) γe and γl fixed, while adjusting γp; (c) γp and γl fixed, while adjusting γe.

Ablation study of SR backbone We further conducted ablation studies on
the selection of the SR backbone network to justify our choice of StableSR as
the backbone and demonstrate the effectiveness of our proposed strategy at the
same time. We selected the current state-of-the-art method in super-resolution
work, SwinIR [3], to compare its results with StableSR [5], which is shown in
Tab. 2.
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Table 1: Ablation studies of hyper-parameter γ in GD correction. γp denotes γ in post-
processing stage, γl denotes γ in post-processing stage, γe denotes γ in post-processing
stage. The best results are shown in Bold.

γp γl γe WS-PSNR↑ WS-SSIM↑ FID↓ LPIPS↓

1 0 1 24.33 0.6903 27.05 0.2925
1 0.25 1 25.64 0.7272 29.66 0.2912
1 0.5 1 25.77 0.7279 30.97 0.2977
1 0.75 1 25.74 0.7253 31.37 0.3029
1 1 1 25.69 0.7227 31.56 0.3067

0 0.5 1 25.37 0.7172 39.64 0.3184
0.25 0.5 1 25.53 0.7221 37.303 0.3090
0.5 0.5 1 25.67 0.7260 34.86 0.3037
0.75 0.5 1 25.75 0.7278 32.66 0.2960
1 0.5 1 25.77 0.7279 30.97 0.2977

1.25 0.5 1 25.74 0.7262 29.69 0.3052
1.5 0.5 1 25.66 0.7230 29.22 0.3169

1 0.5 0 25.07 0.7136 30.64 0.3121
1 0.5 0.25 25.38 0.7217 30.83 0.3066
1 0.5 0.5 25.56 0.7249 30.88 0.3037
1 0.5 0.75 25.66 0.7259 31.18 0.3020
1 0.5 1 25.77 0.7278 30.97 0.2977
1 0.5 1.25 25.71 0.7257 31.49 0.3010

Table 2: Results of our proposed techniques on different backbones, StableSR, and
SwinIR. Best results are shown in Bold.

Backbone Whether to use proposed techniques WS-PSNR↑ WS-SSIM↑ FID↓ LPIPS↓
SwinIR [3] × 26.11 0.7821 27.11 0.2390
SwinIR [3] ✓ 27.89 0.8409 13.33 0.1510

StableSR [5] ✓ 28.58 0.8540 13.01 0.1575

Compared with SwinIR, StableSR significantly improves the fidelity and re-
alness of reconstruction results. On the other hand, it also validates the effective-
ness of our proposed Octadecaplex Tangent Information Interaction (OTII) and
GD correction techniques on different backbones. Given its iterative updating
and continuous correction nature, StableSR indeed has advantages over SwinIR’s
end-to-end reconstruction approach.

1.2 Simple pre-upsampling makes OmniSSR faster and stronger

We try configuring OmniSSR without pre-upsampling (while using larger TP
images excessively sized 1024×1024). Inference required 3053s without pre-
upsampling, and 726s with pre-upsampling, and the former shows degraded
performance in Tab. 3.

1.3 Comparison with DDNM

OmniSSR exhibits significant advantages over DDNM [6] as shown in Tab. 3.
Though GD uses the concept of pseudo-inverse A†, which also appears in DDNM.
They are theoretically different as follows:
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1) GD is derived from convex optimization target ||Ax− y||F , resulting
in the gradient term A⊤(Ax − y) (we replace A⊤ with A† for a higher qual-
ity gradient direction in practice), and the intensity of gradient updating can
be adjusted using γ; whereas DDNM originates from solving linear inverse
problem Ax = y, directly replacing the content of range space through Range
Nullspace Decomposition to strictly satisfy Ax ≡ y.

2) GD is specifically designed for tasks related to latent diffusion models
and panorama. It calculates the gradient direction in image space using
ERP images, while guiding gradient information on TP features in
latent space. However, DDNM lacks such a design.

Table 3: Quantitative comparison between OmniSSR and DDNM on ×4 ODI-SR test
set.

Method WS-PSNR ↑ WS-SSIM ↑ FID ↓ LPIPS ↓
DDNM [6] 25.33 0.7161 32.56 0.3315

OmniSSR(without pre-upsampling) 25.56 0.7210 34.54 0.3197
OmniSSR 25.77 0.7279 30.97 0.2977

1.4 Further Exploration of ERP↔TP Transformation

On latent feature On latent feature
(without pre-upsampling) (with pre-upsampling)

On the latent noise On the latent noise
(without pre-upsampling) (with pre-upsampling)

Fig. 2: Visualized comparison of projection transformations on latent image feature
and latent noise. Zoom in for details.
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A simple question arises: can we perform ERP↔TP1 transformation in the
latent space, thus avoiding the need to transform intermediate results between
image and latent space repeatedly? To answer this question, we made two at-
tempts without Stable Diffusion (SD) encoder and decoder during each denoising
step. GD correction is also not used in this section.

1) Projection transformations on latent feature z0: In this experiment,
we focus on the impact of projection transformation on image features in the
latent space, so here we do not involve the denoising process. Therefore, we first
transformed the ground truth ERP image E0 to m TP images {x(i)

0 }i=1,...,m

through ERP→TP. Then, we sequentially obtain the latent TP image features
in the latent space:

z
(i)
0 = E(x(i)

0 ), i = 1, ...,m. (1)

Next, we perform TP→ERP→TP on z
(i)
0 to obtain ẑ

(i)
0 and decode them to TP

image as follows:

x̂
(i)
0 = D(ẑ

(i)
0 ), i = 1, ...,m. (2)

Finally, the decoded TP image x̂
(i)
0 are transformed by TP→ERP to get Ê0.

2) Projection transformations on latent noise ϵ
(i)
t : In this experiment,

we focus on the impact of projection transformation on the noise ϵ
(i)
t . We trans-

form the low-resolution ERP image to TP images and feed the latter into Sta-
bleSR pipeline. At each sampling step, we directly perform TP→ERP→TP
transformation on the predicted noise {ϵ(i)t }i=1,...,m to get {ϵ̂(i)t }i=1,...,m, and
using ϵ̂

(i)
t for following denoising.

In the two experiments above, we also present the effects of using and not us-
ing pre-upsampling in the TP→ERP→TP transformation process, respectively.
We illustrate the visual results of Ê0, using the 0000.png in image ODI-SR test-
set as an example in Fig. 2. When performing projection transformations
on latent feature z0, the decoded images exhibit severe blurring. Although
using pre-upsampling in the TP→ERP→TP process can alleviate the blurriness
to some extent and present clearer image content in certain areas, the overall
image quality remains poor. In the experiment involving projection transfor-
mations on latent noise ϵ

(i)
t , it can be observed that regardless of whether

pre-upsampling strategy is used or not, the super-resolved images suffer from
significant damage. This may be attributed to the SD encoder’s spatial down-
sampling at ×8 scale, compressing image pixels within an 8×8 patch into a single
latent pixel. Projection transformations, on the other hand, operate at the image
pixel level with fine granularity. Applying such fine-grained operations directly to
latent pixels can greatly disrupt the original image structure. Therefore, projec-
tion transformations related to ODIs should be performed in image space rather
than in the latent space mapped by the SD Variational Auto Encoder (VAE).

1 TP denotes tangent projection.
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1.5 Exploration of SD Encoder and Decoder

During the ablation study, we observed that OmniSSR, when GD correction
is removed while OTII is retained, demonstrates improved fidelity (e.g., WS-
PSNR, WS-SSIM) and deteriorated realness (e.g., FID, LPIPS) compared to
the original StableSR model. Upon examining the outputs of the ablation model
under this configuration, significant color shift issues were identified, as depicted
in Fig. 3(a).

We initially suspected that this color shift stemmed from the utilization
of the SD VAE before and after OTII in each denoising step. To validate this
hypothesis, we conducted a visual comparison experiment using image 0006.png
from the ODI-SR testset as an example. It can be observed that even when GD
correction and OTII are successively removed, as illustrated in Fig. 3(a)(b), the
color shift persists. It is only when we eliminate the repeated usage of SD VAE
in each denoising step that the color at the boundary of black and white tiles
returns to normal, as shown in Fig. 3(c). Ground truth reference can be seen in
Fig. 3(d). This phenomenon of color shift indicates the potential problem caused
by frequently using SD VAE.

(a) OmniSSR w/o GD correction. (b) OmniSSR w/o GD correction,
w/o OTII.

(d) Ground Truth. (c) OmniSSR w/o GD correction,
w/o OTII, w/o SD VAE while denoising.

Fig. 3: Phenomenon and causes of color shift: By progressively removing different
components of OmniSSR (a)(b)(c), we ultimately discovered that the color shift in
the super-resolution results disappears again after removing the SD VAE used in the
denoising step. This indicates the potential risk of color shift associated with frequent
usage of SD VAE during denoising.
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1.6 The Global Continuity of ODIs

The existing ODISR methods directly perform SR on ERP images, resulting in
the discontinuity between the left and right sides [1]. Our proposed OTII treats
TP images as the direct input for the network. Besides facilitating the transfer
use of existing planar image-specific diffusion models, it also effectively consid-
ers the omnidirectional characteristics of ODIs. We selected some visualization
results of OSRT [7] and OmniSSR, focusing on the continuity near the left and
right sides of the ERP. As shown in Fig. 4, OSRT exhibits poor continuity be-
tween the left and right sides of the ERP, while OmniSSR naturally inherits the
advantage of TP images in seamlessly spanning different areas of the ERP.

 SR result of OSRT SR result of OmniSSR

SR result of OSRT SR result of OmniSSR

Fig. 4: Continuity of left and right part of SR results on OSRT and our proposed
OmniSSR. It is shown that OSRT suffers from serious artifacts and bad continuity. All
ERP images have been rotated by 180 degrees to stitch the left and right sides. (Upper
image: 0039 of ODI-SR test set, lower image: 0015 of SUN test set.)

1.7 Time Consumption

The inference runtime of different methods are compared as follows. Considering
fair comparison, we use the default settings referred to in corresponding papers.
The diffusion sampling steps for OmniSSR are 200, DDRM [2] 100, and PSLD [4]
1000.2 All experiments are conducted on a single NVIDIA 3090Ti GPU.

2 We have tried to use the same sampling accelerate strategy in DDRM, but get bad
restored results.



Abbreviated paper title 7

Table 4: Time consumption of OmniSSR and other SR methods.

Method Runtime per ERP image (s)↓
SwinIR [3] 0.87
OSRT [7] 1.44
DDRM 711.95
PSLD 6720.87

OmniSSR (Ours) 726.19

2 Theoretical Discussion

In this section, we provide a simple theoretical discussion of our proposed GD
correction technique, explaining why a single step of GD would also work and
obtain better results.

Take the update step in GD correction as an example, let us first re-examine
this step:

Ẽ0|t = E0|t + γeA
†(Einit −AE0|t), (3)

where γeA
†(Einit − AE0|t) is the gradient of fidelity term ||Einit − AE0|t||F ,

and γe = 2× α (learning rate).
An obvious and direct question is: why did we perform only a single up-

date step rather than multiple steps? Through the following analysis, we will
demonstrate that, in this context, multi-step gradient descent and single-step
are essentially equivalent, with the number of steps being governed by the coef-
ficient γe.

Analysis Suppose we take multiple steps in GD correction and are taking
step k to k − 1. As Ẽ

(k)
0|t can be represented via Ẽ

(k−1)
0|t in linear form, we can

use Ẽ
(0)
0|t to express Ẽ(k)

0|t , and Ẽ
(0)
0|t only has linear coefficients composed of γe, A

and A†. Thus for fixed γe, there is no difference between one step and multiple
steps of GD correction. For adaptive γe, it is also obvious that Ẽ

(k)
0|t can be

represented via Ẽ
(0)
0|t with linear transforms and different γe. Thus for a better

trade-off between performance and inference time, we turn to use one step of
GD correction.
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