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Abstract. Omnidirectional images (ODIs) are commonly used in real-
world visual tasks, and high-resolution ODIs help improve the perfor-
mance of related visual tasks. Most existing super-resolution methods
for ODIs use end-to-end learning strategies, resulting in inferior realness
of generated images and a lack of effective out-of-domain generaliza-
tion capabilities in training methods. Image generation methods repre-
sented by diffusion model provide strong priors for visual tasks and have
been proven to be effectively applied to image restoration tasks. Lever-
aging the image priors of the Stable Diffusion (SD) model, we achieve
omnidirectional image Super Resolution with both fidelity and real-
ness, dubbed as OmniSSR. Firstly, we transform the equirectangular
projection (ERP) images into tangent projection (TP) images, whose
distribution approximates the planar image domain. Then, we use SD
to iteratively sample initial high-resolution results. At each denoising
iteration, we further correct and update the initial results using the pro-
posed Octadecaplex Tangent Information Interaction (OTII) and Gradi-
ent Decomposition (GD) technique to ensure better consistency. Finally,
the TP images are transformed back to obtain the final high-resolution
results. Our method is zero-shot, requiring no training or fine-tuning.
Experiments of our method on two benchmark datasets demonstrate the
effectiveness of our proposed method.

Keywords: Omnidirectional Imaging - Super-Resolution - Latent Dif-
fusion Model

1 Introduction

Omnidirectional images (ODIs) capture the entire scene in all directions, exceed-
ing the narrow field of view (FOV) offered by planar images. Super-Resolution
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(SR) techniques enhance the visual quality of ODIs by increasing their resolu-
tion, thereby revealing finer details and enabling more accurate scene analysis
and interpretation. This becomes particularly crucial in applications like virtual
reality and surveillance, where high-resolution ODIs are essential for precise per-
ception and decision-making.

Current research in omnidirectional image super-resolution (ODISR) explores
various methodologies to enhance the resolution of ODIs |14}36]. SphereSR [59)
addresses non-uniformity in different projections by learning upsampling pro-
cesses and ensuring information consistency using LIIF |5]. OSRT [60] designs a
distortion-aware Transformer to modulate equirectangular projection (ERP) dis-
tortions continuously and self-adaptively. Without a cumbersome process, OSRT
outperforms previous methods remarkably. However, existing ODISR methods
face the following challenges: (1) The majority are end-to-end models that can
only produce a deterministic output, always better data fidelity but worse vi-
sual perception quality [17]. It’s promising to develop a generation-based model,
but requiring high data demands, yet high-resolution ODIs are high cost to col-
lect [54L[55]. (2) Most methods directly perform SR on ERP format ODIs, while
users usually watch ODIs in a narrow FOV using tangent projection (TP). So an-
other promising direction is to use off-the-shelf planar models on TP images. Re-
cent times have witnessed the introduction and widespread application of diffu-
sion models [23,/43|, especially Stable Diffusion (SD) [38], which have provided a
robust backbone for visual tasks [21,24,/56l/61], including SR, [30,/40,/47./51/(52}/62].
However, if TP images are trivially one-by-one processed using diffusion-based
SR models, they will exhibit discrepancies in the overlapping region when re-
projected onto the ERP image. As a result, the global continuity is compromised.

Leveraging the strong image prior provided by SD, we propose the first
diffusion-based zero-shot method for ODISR, named OmniSSR. Specifically, we
propose Octadecaplex Tangent Information Interaction (OTII). OTII entails it-
erative conversion of intermediate SR results between ERP and TP, bridging
the domain gap between ODIs and planar images. Building upon OTTI, we fur-
ther employ an approximate analytical solution of gradient descent, namely as
Gradient Decomposition, to guide high-fidelity, high-quality omnidirectional im-
age SR. By capitalizing on SD’s effective image prior, our approach strikes a
balance between fidelity and realness, ensuring that the restored ODIs exhibit
both fidelity to the input data and realistic visual details. This method shows
potential for advancing the current state of ODISR, providing improved resolu-
tion and visual quality across various applications. Fig. [I| showcases results fully
demonstrating the superiority and performance of our proposed methods.

Our main contributions are summarized as follows:

— We propose OmniSSR, the first zero-shot ODISR method, using an off-the-
shelf diffusion-based model, requiring no training or fine-tuning, leveraging
existing image generation model priors to solve ODISR task.

— To bridge the domain gap between ODIs and planar images, we introduce
Octadecaplex Tangent Information Interaction by repeatedly transforming
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Fig. 1: We address omnidirectional image super-resolution in a zero-shot manner via
OmniSSR. Presented above are select outcomes that sketch the essence of OmniSSR
compared with current state-of-the-art approach OSRT [60]. Part (a) and (b) illustrate
that OmniSSR upholds fidelity and visual realness at the same time, providing vivid
and realistic details, while OSRT outputs over-smoothed and distorted results. Zoom
in for more details.

ODIs between ERP format and TP format, enabling ODISR task with pre-
trained diffusion models on planar images.

— By iteratively updating images using the developed Gradient Decomposition
technique, we introduce consistency constraints into the sampling process of
the latent diffusion model, ensuring a trade-off between fidelity and realness
in the reconstructed results.

— Extensive experiments are conducted on the benchmark datasets, demon-
strating the superior performance of our method over existing state-of-the-
art approaches, which validate the effectiveness of OmniSSR.

2 Related Work

2.1 Single Image Super-Resolution (SISR)

Image super-resolution methods based on deep learning have undergone sig-
nificant development over an extended period. Currently, they can be broadly
classified into two categories of solutions. The first category involves end-to-end
network training methods, which utilize image pairs consisting of low-resolution
degraded images and high-resolution ground truth images for network train-
ing [6-8}[27[311/32,/63}[66]. The network architectures employed in this category
include CNN , Transformers , etc. The second category employs image
generation models as priors, such as GAN , diffusion models , ete.,
where low-resolution images are used as conditions to generate high-resolution
images. We will mainly introduce the methods using generative prior.

Single Image SR using GAN prior In SR works utilizing GAN pri-

ors [3|[12,33/37,58], including real-world senarios [8}[49}/50}/65], pre-trained GAN
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networks are employed to transform image features into latent space, where the
corresponding latent code for the high-resolution image is searched, ultimately
yielding the reconstructed high-resolution result.

Single Image SR using diffusion prior The diffusion model provides a
powerful image prior, and the diffusion sampling process can generate highly
realistic images. This strong prior distribution can be applied to various im-
age restoration tasks, including super-resolution [9}[10,[19} 40,42} |51]. Image-
domain diffusion models directly provide prior distributions of image-domain
data. DDNM [51] based on the mathematical method of Range-Null space De-
composition, iteratively refines content on the zero space, combining image prior
content in the value domain to achieve image restoration. DDRM [25] uses SVD
decomposition to obtain restoration results, which is similar to DDNM. DPS [9]
transforms the image super-resolution problem into an optimization problem
with consistency constraints, using gradient descent algorithms to guide the gen-
eration of image-domain diffusion models. GDP [19] further uses such gradient to
update the degradation operator to tackle blind image inverse problems. Other
methods including MCG [10], DDS [9] and unified control of diffusion gener-
ation [19,/42] use same strategy for image restoration, especially image super-
resolution.

2.2 Omnidirectional Image Super-Resolution

Omnidirectional image super-resolution (ODISR) aims to enhance the resolu-
tion of omnidirectional or 360-degree images, which are commonly captured by
cameras with a wide field of view. This field has garnered increasing attention
due to its applications in virtual reality, omnidirectional video streaming, and
surveillance. Several approaches have been proposed to address the unique chal-
lenges of ODISR [1},2,[35,/44]. For instance, Kdmériinen et al. |18] propose a
deep learning-based approach for omnidirectional super-resolution, leveraging
convolutional neural networks to effectively upscale low-resolution omnidirec-
tional images while preserving spatial details. Similarly, Smolic et al. [36] in-
troduce a novel omnidirectional super-resolution algorithm utilizing generative
adversarial networks (GANSs) to enhance the visual quality of omnidirectional
images by hallucinating high-frequency details.

For evaluation purposes, researchers commonly utilize datasets such as the
ODI-SR dataset from LAU-Net [13], and SUN 360 Panorama dataset [53]. These
datasets enable the quantitative assessment of ODISR algorithms across various
scenarios and facilitate fair comparisons between different methods.

3 Method

In this section, we first briefly introduce the preliminary background of our
method (Sec. , and give an overall view of our proposed OmniSSR (Sec. .
Then, we discuss the designs of Octadecaplex Tangent Information Interaction,
which transform ODIs between ERP and TP formats with pre-upsampling strat-
egy (Sec , and the Gradient Decomposition correction (Sec. .
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3.1 Preliminaries

ERP+TP Transformation The essence of projection transformations be-
tween ERP and TP lie in determining the positions of target image pixels within
the source image and computing their corresponding pixel values using interpo-
lation algorithms, as digital images are always stored discretely [28]. Therefore,
the ERP—TP transformation involves locating the TP image pixels on the ERP
imaging plane, and vice versa. Gnomonic projection [11] provides the correspon-
dence between ERP image pixels and TP image pixels.

For a pixel P.(z.,y.) within the ERP image, we first find its corresponding
pixel Ps(6, ¢) on the unit sphere using Eq.

0 =2nx. /W, ¢ = my./H, (1)

where H and W are the height and width of the ERP image. The Cartesian
coordinates of the ERP image and the angular coordinates on the unit sphere
exhibit a straightforward one-to-one linear relationship, suggesting a conceptual
equivalence between these two projection formats.

Given the spherical coordinates of the tangent plane center (6., ¢.), The
transformation from Ps(60, ¢) to Pi(x¢,y:), i.e. ERP—TP, is defined as:

(6
( 0s(¢) sin(f — 6..) )/C7
= (cos(¢.) sin(¢) — sin(¢.) cos(¢) cos(d — 6.)) /¢,
where ¢ = sin(¢.) sin(¢) + cos(¢.) cos(¢) cos(6 — 6..).
The corresponding inverse transformation, i.e. TP—ERP, is:
6 = 0. + arctan ((z; sin(c))/(p cos(¢1) cos(c) — y; sin(¢.) sin(c))),
¢ = arcsin (cos(c) sin(¢¢) + y¢ sin(c) cos(¢c)/p),
where p = /22 + y? and ¢ = arctan(p).

With Eq. 2] and Eq. [} we can build one-to-one forward and inverse mapping
functions between pixels on the ERP image and pixels on the TP images. An
illustration of the ERP—TP transformation is shown in Fig. [2[a).

(2)

(3)

Iterative Denoising for Super-Resolution Utilizing the rich image priors
provided by SD, we can super-resolve planar images. During initialization, the
images are passed through the encoder £ of SD to obtain latent codes, which are
then added to pure noise to generate initial noise zp. Following the approach
proposed by StableSR [47], we pass the images through a time-aware adapter T.
This adapter network structure is similar to the down-sampling part in denoising
UNet, taking the image and the time step ¢ of diffusion sampling as inputs to
obtain the latent code feature for step t. This feature, along with the latent code
z; for each step and the time step ¢, is then passed through denoising UNet to
calculate the denoised result zg; and the latent code z;_; for the next sampling
step. By iterating this process T times, we can obtain the final super-resolution
result via decoder D of SD, yielding high-resolution images.
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Fig. 2: Details about gnomonic transformations. (a) conversion from ERP to TP. (b)
pre-upsampling proposed in Octadecaplex Tangent Information Interaction (Sec. [3.3)
mitigating loss during transformation.
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Output By

.x“ N Denoising U-Net
inity
N W
— [Xinic,
2
1 Pt )
1 :
1
[ ' %
&%"m} Encoder 2™
B

ERP to TP (a) Overview of our proposed OmniSSR TP to ERP

\
R
i—> N

Encoder % (m)
Zy1

7 )
o)
N ~l :
24 orn |
) I
W ﬁv*wl-’ SEEN
%Z\ m)|  Decoder
ol

—>(I—7ATA)Ey;, —> @ By '—>!

/T\
R YATE,;

Gradient Decomposition

(b) Detailed illustration of GD Correction

Fig. 3: Overview of our proposed OmniSSR. Input low-resolution omnidirectional im-
age E;ni: in ERP format is first projected onto Tangent Projection (TP) images
xgi)it,xgi)it,...,xgzzs, then iteratively refined via Stable Diffusion (SD) with a time-
aware adapter and controllable feature wrapping (CFW) module. In each step of dif-
fusion sampling, we adopt the Gradient Decomposition (GD) correction technique to
introduce consistency constraints for the restored intermediate results. After T steps of

sampling, we obtain the final result Eq with high resolution and better visual quality.

Our approach can be divided into three parts. The first part is pre-processing,
where we initially up-sample the low-resolution ERP images E;,;; with bicu-
bic interpolation to target high-resolution size, then project them onto tangent
planes to obtain a series of TP images. These TP images are transformed to the
latent space by the SD encoder, iteratively processed through denoising UNet
and time-aware adapter network, and then decoded to obtain high-resolution
TP images. During each denoising step, these TP images are transformed back
via inverse transformation to ERP images, employing the Gradient Decomposi-
tion correction to ensure consistency constraints in diffusion sampling. After T
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Algorithm 1: OmniSSR Algorithm 2: Iterative Denois-

Pipeline ing with GD Correction
Input: B, F, 71, A, AT, &, Input: E;ni, F, F L A AT £, D, T, T
D, T - Output: Latent code {zél), zéQ), ey zém>}
Output: SR result Eg 1 fort=T to 1 do
1 {xsi)bt, Ei)“, E:Z)f = F(Einit) 2 for i =1 to m do
2 for i (—)1 togm do 3 et( )_ o (2! (4) 7(—(>z£i’)”7t)7t)
3 = i 1 i —
.| N((o 'y ‘ Zj‘t) = ﬁt( —evi-@)
s | 2 = varal), +vi—are®  ° Xoje = Dleb)
6 end 6 end
7 Get{zgl),zég), ...,zgm)} from 7 Eojp = *F_l({xél\t)’ Xéfz’ : (()Ttl)})
o for 28 4o m do S I At e
o | x{=D@E) o (xRS &S} = F(Bopy)
10 end 10 for z~?)1 to m do
1 Eo = F({x, xP L x{M 1 Zg, = (1= Wazg), + NEXg)
12 Eo =Eqo + "/pAT (Einit — AEO) 12 (1) ~ p(Z(Q) IZY),%U))
13 return Eg 13 end
14 end
15 return {zél),zé2), ...,zém>}

iterations, the final super-resolution result is obtained. A formulaic description
for OmniSSR is shown in Algo. [1] Fig. |3|shows the overview of our pipeline.

3.3 Octadecaplex Tangent Information Interaction (OTII)

Motivation To apply SD for ODISR, a straightforward way is to perform the
ERP—TP transformation on the input ERP image. Then, each obtained TP im-
age is fed into the SD-based model for SR. Finally, the TP—ERP transformation
yields the ultimate super-resolved ERP image. OmniFusion 28] employs a simi-
lar approach for depth estimation. However, this simplistic strategy fractures the
inherent global coherence of ODlIs, leading to pixel-level discontinuities in the
fused ERP images. Moreover, interpolation algorithms cause significant infor-
mation loss in the original projection transformations, resulting in more blurred
images. If applied multiple times, this exacerbates the information loss even fur-
ther. To mitigate this, a trivial solution is to increase the pixel count (resolution)
of the intermediate projection imaging plane. However, excessively high resolu-
tions in TP images can introduce unnecessary computational overhead during
the denoising stage and potentially compromise the denoising performance. (see
Supplementary Materials for details)

Information Interaction and Pre-upsampling Based on the analysis of the
Motivation in[3.3] we propose OTII by alternating the intermediate results be-
tween ERP and TP formats at each denoising step, where a single ERP image
is represented by 18 TP images. From Sec. we can achieve the ERP—TP
transformation (denoted as F(-)) and the TP—ERP transformation (denoted as
F~1(-)). Through the ERP—TP transformation, we can convert distorted ERP
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images into TP images with content distributions that approximate those of
planar images. This enables the use of the original SD super-resolution method
for planar images. Conversely, through the TP—ERP transformation, we can
fuse information between different TP images holistically, while providing ERP-
format input for the subsequent GD Correction in Sec. To handle informa-
tion loss during projection transformation, we further propose to pre-upsample
the source image before projection transformations, as shown in Fig. (b) Our
experiments in Sec. [£.4] demonstrate that this pre-upsampling strategy can sig-
nificantly mitigate the information loss caused by projection transformations.

3.4 Gradient Decomposition (GD) Correction for Fidelity

SD-based methods, as introduced in Sec. can perform SR on sliced TP
images. However, relying solely on the SR results from SD may lack consistency
and fail to accurately preserve the original semantic information and details of
the low-resolution imageEI To enhance the consistency of the SR results from SD,
we opt to use convex optimization methods to iteratively refine them. Modeling
the SR task as an image inverse problem, the following equation is formulated:

y=Ax+n, n~N(0]I), (4)

where x represents the original image, y denotes the degraded result, A is the
degradation operator (e.g., bicubic downsampling for super-resolution), and n is
random noise. The objective we aim to solve can be expressed as the following
convex optimization problem:

argmin||ly — Ax||3 + A\R(x), (5)

where the first term is the data-fidelity term, ensuring the consistency of im-
age reconstruction, and the second term is the regulation term, ensuring the
sparsity of the reconstruction result, thus making the image more realistic. The
regularization term can be the 1-norm, Total Variation, etc. The aforementioned
convex optimization problem can be solved using a series of algorithms, such as
gradient descent, ADMM |[4], etc. Considering the trade-off between time and
performance, we turn to find a solution based on gradient descent, and provide
an approximate analytical solution composed of a fidelity term and a realness
term, named "Gradient Decomposition (GD)":

Eo; = Eo;¢ + oV, |[Einit — ABopt|[r = Eope + o x 2(ATE;i — ATAE,)
= Eg; + YA (Ejit — AEq) = YATEjpi + (I— yATA)Eg),
(6)

where Afdenotes pseudo-inverse of degradation operator A, E;,;; genotes ini-
tial low-resolution ERP input, Eg|; denotes restored result by SD, Eq; denotes
corrected result by GD, a denotes the learning rate of gradient descent, and -~y

! This claim will be further illustrated in subsequent experiments.
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denotes the simplified hyper-parameter which is further tuned using grid search.
The final setting of v on different stages is shown in Sec. [I.1] and the ablation
studies of parameter choice are in Sec. [1.4]

This technique could be seen as a step of gradient descent optimization, and
the optimized result could be decomposed of (1) YATE;,;;, which ensures the
consistency of the generated result, and (2) (I — fyATA)EO‘t, which serves as
the iteratively updated generated result to improve its realness; v is a hyper-
parameter balancing the data fidelity and visual quality. For a better diversity
and generality of the SR process, we expand this solution to latent space, and
obtain the denoising result from both denoising UNet and corrected TP images
(Algo. line. A more detailed understanding of the iterative denoising process
and application of GD correction could be referred to Algo. 2}

4 Experiments

4.1 Implementation Details

Datasets and Pretrained Models We choose the test set of ODI-SR dataset
from LAU-Net [13] and SUN 360 Panorama dataset 53|, comprising 97 and 100
omnidirectional images respectively, for experimental evaluation. The ground
truth images are of size 1024x2048 pixels. In SR methods such as GDP [19] and
PSLD [39] for planar images, we partitioned the images into several 256x256
patches and performed super-resolution on each patch individually.

For pre-trained models, we adopt from StableSR [47], which provided a SR
network for planar images based on SD. This network architecture includes a
time-aware adapter, a controllable feature wrapping (CEFW) module, and the
original SD structure from HuggingFace. All of them are kept untrained in our
proposed OmniSSR.

Settings We set diffusion sampling steps to 200, which is the same as StableSR.
The steps for other diffusion-based methods are set the same as their default
settings (e.g. 1000 steps for PSLD). The degradation for low-resolution ERP
images is bicubic down-sampling, and the implementation of its pseudo-inverse
can be referred from code of DDRM |25ﬂ For choices of hyper-parameter v in
GD correction, we set v, = 1.0, 7. = 1.0, 7, = 0.5. Our code is developed via
PyTorch on NVIDIA 3090Ti GPU. |

4.2 Comparison of OmniSSR with diffusion-based methods

To evaluate the performance of proposed OmniSSR, we compare our method
with recent state-of-the-art zero-shot methods for single image SR task: DPS [9],
DDRM |25|, GDP [19] which are based on the image-domain diffusion model,

2 https://github.com /bahjat-kawar/ddrm
3 Code is at https://github.com/LiRunyi2001/OmniSSR.



10 R. Li et al.

Table 1: SR results under bicubic downsampling on ODI-SR and SUN 360 Panorama
datasets. For tasks not implemented in those papers, we mark N/A in the corresponding
results. The best results are shown in bold, and the second best results are underlined.

Method Scale ODI-SR SUN 360 Panorama

WS-PSNRt WS-SSIM?T FID] LPIPS||WS-PSNRt WS-SSIMt FID| LPIPS|

Bicubic 28.14 0.8343 24.00 0.2164 28.67 0.8537 29.25  0.1933
DDRM |25] 27.90 0.8317 12.28 0.1661 29.55 0.8670 13.10 0.1426
DPS |9] 20.99 0.6194  148.30 0.5249 21.44 0.6598 148.83  0.5175
GDP |19] %2 27.89 0.8157  26.56 0.2724 28.60 0.8376 28.02  0.2445

PSLD |39 N/A N/A N/A N/A N/A N/A N/A N/A
DiffIR [52] 23.77 0.6583 57.23 0.4687 23.54 0.6775 58.06  0.4658
StableSR 47| 22.70 0.6458  44.87 0.3039 23.30 0.6907 43.49  0.2858
OmniSSR 28.57 0.8540 13.01 0.1575 29.69 0.8781 12.99 0.1459
Bicubic 25.43 0.7059 50.84 0.3755 25.49 0.7229 55.99  0.3656
DDRM |25] 25.43 0.7367 32.69 0.3206 25.83 0.7443 32.93 0.3304
DPS |9] 24.75 0.6594 120.74 0.4911 21.09 0.6119 175.2143 0.5541
GDP |19] A 23.16 0.6692 77.43 0.4260 23.75 0.6569 90.23  0.4240
PSLD |39 21.72 0.5498 107.99 0.5329 21.75 0.5828 141.49 0.5461
DiffIR [52] 24.01 0.6770 54.14 0.4367 23.90 0.7014 50.37  0.4235
StableSR 47| 23.33 0.6577  49.95 0.3135 23.99 0.6998 46.03  0.3023
OmniSSR 25.77 0.7279  30.97 0.2977 26.01 0.7481 34.58 0.2963

and PSLD |[39], which is based on latent diffusion model. We also choose super-
vised diffusion-based super-resolution approaches including StableSR [47] and
DiffIR |52 for comparison. We conduct experiments on x2 and x4 SR with
ERP bicubic downsampling, on ODI-SR test set and SUN test set. We choose
WS-PSNR |[45], WS-SSIM [67], FID [22], and LPIPS [64] as the main metrics.

Quantitative results are presented in Tab. [l With proposed OTII and GD
correction, OmniSSR out-performs previous methods in terms of both Fidelity
(from WS-PSNR and WS-SSIM) and Realness (from FID, LPIPS ), which shows
superior performance to existing diffusion-based methods for ODISR tasks on
different scales.

Qualitative results are shown in Fig. [f] and Fig. [5] which illustrates the
visualization of SR results on SUN test set and ODI-SR test set with x2 and
x4 scales, by different methods.

The visual results indicate that our OmniSSR, exhibits superior capability
for detail recovery compared to other methods, particularly evident in textual
elements (e.g., the text "flapping" in upper part of Fig. , complex objects (e.g.,
the black desk with a screen in lower part of Fig. [d] patterns above the white
door in lower part of Fig. |5, and small-scale objects (e.g., the person and clock
behind the desk in upper part of Fig. . OmniSSR demonstrates the ability to
recover highly detailed and realistic visual effects from TP images.

4.3 Comparison with end-to-end supervised methods

The experiments of comparison in Sec.[4:2]are mainly focused on zero-shot image
super-resolution methods, and supervised single image super-resolution methods,
where the approaches are not trained or fine-tuned on omnidirectional images.
In this part, we will compare OmniSSR to supervised end-to-end methods with
end-to-end training on ODI datasets, including SwinIR and OSRT. Besides the
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PSNR/SSIM 24.65dB/0.7753 22.57dB/0.7188 25.36dB/0.8029
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99 24.62dB/0.7981 26.53dB/0.8265

Fig. 4: Visualized comparison of x2 and x4 SR results on SUN 360 test set. 001 and
009 are the ID numbers in the test set filenames. We also calculate the PSNR and
SSIM to HR ground truth of each SR result and downsampled image.

main metrics in Sec. we also use NIQE and DISTS to evaluate the
visual perception of SR outputs. Results are presented in Tab. [2 which shows
that although our OmniSSR exhibits inferior fidelity metrics compared to end-
to-end supervised methods trained directly on ODI datasets, it demonstrates
notable improvements in the visual quality and authenticity of super-resolved
images. Notably, end-to-end methods often produce smoothed reconstructions
with distortions, whereas our approach preserves finer details and adheres more
closely to the realistic distribution. Considering that our method has never been
trained or tuned on ODI datasets, nor having omnidirectional images prior, this
result is acceptable.

4.4 Ablation Studies

We first sequentially validate the performance improvement of the proposed
strategy in OmniSSR including input image type, OTII and GD correction, on
the ODI-SR test set with x2 SR task, thereby demonstrating the significance of
these strategies. The details are demonstrated as follows:
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HR Bicubic DPS
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i

ODI-SR (x4): 049

GDP
24.15dB/0.

DiffIR |52 StableSR [47] OmniSSR(ours)
179 24. 25dB/O 594 21.80dB/0. 52 27.20dB/0.8168

Fig. 5: Visualized comparison of X2 and x4 SR results on ODI-SR test set. 067 and
049 are the ID numbers in test set filenames. We also calculate the PSNR and SSIM
between ground truth and each SR result as well as the downsampled image.

1) we do not use any proposed strategy in the SR task, which is equivalent
to the vanilla StableSR baseline;

2) we transform the degraded ERP image to TP images and feed them sep-
arately into StableSR pipeline, instead of directly inputting ERP images;

3) based on 2), we add OTII strategy during the denoising process of SD
(Algo. l 2[ line @

4) based on 2), we add GD correction at the post-processing stage (Algo.
line of the overall pipeline;

5) based on 3) and 4), we add GD correction at every step and post-processing
stage of sampling, to improve the consistency of the restored result.

Note that the execution of GD correction requires the execution of OTII
in the denoising process simultaneously, there is no scenario where only GD
correction is executed without the execution of OTII in the denoising process.

Quantitative results of ablation studies are shown in Tab. [3] From the result
shown below, we could come to the claim that the OTII helps improve the
performance on the domain level, and the transformation between ERP and TP
images provides information fusion among adjacent TP images. Our proposal of
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Table 2: Comparison on x4 SR task with supervised methods trained on ODI-SR
dataset, including SwinIR and OSRT. The best results are shown in bold.

Method | Dataset |WS-PSNR+ WS-SSIM1 FIDJ LPIPS| NIQEJ DISTS|

SwinIR [29] 26.76 0.7620  27.94 0.3321 5.3961 0.1710
OSRT [60] | ODI-SR 26.89 0.7646 27.39 0.3258 5.4364 0.1695
OmniSSR 25.77 0.7279  30.97 0.2977 5.2891 0.1541
SwinIR [29] 26.02 0.7692  39.90 0.3419 5.2440 0.1325
OSRT [60] [SUN 360 26.33 0.7766 39.22 0.3364 5.2984 0.1312
OmniSSR 26.01 0.7481 34.58 0.2963 5.1329 0.1299

Table 3: Ablation studies of OmniSSR on input type, OTII, and GD correction, on
the test set of the ODI-SR dataset. Best results are shown in bold.

Input type|OTII GD Correction WS-PSNR1T WS-SSIM1T FID| LPIPS|
ERP X X 22.69 0.6458  44.87 0.3039
TP X X 23.53 0.6849  43.91 0.3113
TP v X 23.74 0.6847  65.35 0.3748
TP X |v" (in post-process only) 26.77 0.8192 15.41 0.1691
TP v v 28.58 0.8540 13.01 0.1575

Gradient Decomposition corrects such restoration result, improving fidelity and
realness significantly at the same time, and it would be better if it is applied at
each step of the overall denoising pipeline. Tab. [4 shows the effect of mitigating
information loss via proposed pre-upsampling strategy.

e . - » 03120
=~ 103060 e . .

03040 2570 /! ./ foaiso - 03100

= / 03020 s . o 03080

25.20 2560 03100 2550
oo wspsR T [ 03000 ¢ —as WSPSNRT > o WEFSNRT

2500 Loies 4 b4 LPPs o 2540 o e

B 0.2980 wos0

o 4 03050 03040

0.3060

02960 > 253 / 03020
2460 02940 / 03000 25209/ 03000

20401 7 02920 4 25.107 [/ 02980
02950

00 06 08 0 02 04 06 08 10 12 14 02 04 06 08 10 12

02 04 00 00
(a) y; (interpolation in latent space) (b) ¥p (GD correction at post-processing) (¢) Ye (GD correction at denoising stage)

Fig. 6: Ablation of choices on 7,, 7. and ;. For better readability, WS-PSNR and
LPIPS are chosen as evaluation metrics for fidelity and visual quality, respectively,
to demonstrate the performance under different choices of the gamma parameter. We
illustrate the results of (a) 7 and 7. fixed, while adjusting ~i; (b) e and ~; fixed,
while adjusting ~p; (¢) 7 and ~; fixed, while adjusting ~.. It can be observed that
when v, = 1, 7. = 1, and v, = 0.5, OmniSSR achieves the relatively best performance.

For « in the GD correction technique, we use grid search to obtain better
results on ODI-SR dataset and x4 SR task. Fig. [6|shows performance on different
choices of v, in Algo. [T] line [T2} v, in Algo. 2| line [§} and ; in Algo. [2] line [T}
The entire ablation of 7y, 7. and 7, with WS-PSNR, WS-SSIM, FID and LPIPS
score all calculated and compared, will be provided in Supplementary Materials.

To evaluate the generalizability of our proposed modules, including Pre-
Upsampling, OTII, and GD correction, we further conducted ablation studies
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Table 4: Results of pre-upsampling strategy on different scales, where (z,y) denotes
bicubic-based upsampling at zx scale to ERP before ERP—TP, and yx scale to TP
before TP—ERP transformation. Best results are shown in bold.

ERP—TP—ERP| (1, 1) | (
WS-PSNRT | 28.98
WS-SSIMT  |0.8859|0

L[4 D[(42)](24] (4,4
811 | 28.99 | 33.91 | 38.05 | 38.18
98380.8862|0.9626|0.9837|0.9841

on two super-resolution backbones, StableSR and SwinlIR. The results under-
score substantial performance enhancements facilitated by our modules across
both backbones, which is provided in Supplementary Materials.

5 Limitation and Discussion

Although OmniSSR bridges the gap between omnidirectional and planar images,
achieving competitive performance and better visual results in ODISR, it still ex-
hibits the following limitations: (1) The inference of the diffusion model requires
a considerable amount of time, approximately 14 minutes per ERP-formatted
omnidirectional image to be super-resolved into size 1024 x 2048, making real-
time super-resolution challenging; (2) Multiple conversions between ERP and
TP are required in the pipeline, leading to improved performance but consum-
ing additional inference time; (3) Further exploration of the convex optimization
properties of GD correction is warranted, such as designing gradient term coef-
ficients adaptive to reconstruction results and degradation types.

This study explores the application of image generation models to ODISR
tasks. In future work, the framework behind OmniSSR can be extended beyond
the confines of image super-resolution in a single scenario and venture into more
complex ODI-based real-world scenarios. These include ODI editing, ODI in-
painting, enhancing the quality of 3D Gaussian Splatting scenes |26l41] obtained
after super-resolving ERP images, as well as enhancing the quality of omnidi-
rectional videos 48|, and other possible diffusion-based applications [57,/68].

6 Conclusion

This paper leverages the image prior of Stable Diffusion (SD) and employs the
Octadecaplex Tangent Information Interaction (OTII) to achieve zero-shot om-
nidirectional image super-resolution. Additionally, we propose the Gradient De-
composition (GD) correction based on convex optimization algorithms to refine
the initial super-resolution results, enhancing the fidelity and realness of the re-
stored images. The superior performance of our proposed method, OmniSSR,
is demonstrated on benchmark datasets. By bridging the gap between omnidi-
rectional and planar images, we establish a training-free approach, mitigating
the data demand and over-fitting associated with end-to-end training. The ap-
plication scope of our method can be further extended to various applications,
presenting potential value across multiple visual tasks.
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