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Abstract. Text-to-Image (T2I) generation based on diffusion models
has garnered significant attention in the last few years. Although these
image synthesis methods produce visually appealing results, they fre-
quently exhibit spelling errors when rendering text within the generated
images. Such errors manifest as missing, incorrect or extraneous charac-
ters, thereby severely constraining the performance of text image gen-
eration based on diffusion models. To address the aforementioned issue,
this paper proposes a novel approach for text image generation, utiliz-
ing a pre-trained diffusion model (i.e., Stable Diffusion). Our approach
involves the design and training of a light-weight character-level text
encoder, which replaces the original CLIP encoder and provides more
robust text embeddings as conditional guidance. Then, we fine-tune the
diffusion model using a large-scale dataset, incorporating local attention
control under the supervision of character-level segmentation maps. Fi-
nally, by employing an inference stage refinement process, we achieve
a notably high sequence accuracy when synthesizing text in arbitrarily
given images. Both qualitative and quantitative results demonstrate the
superiority of our method to the state of the art. Furthermore, we show-
case several potential applications of the proposed UDiffText, including
text-centric image synthesis, scene text inpainting, etc. Our code and
model are available at https://github.com/ZYM-PKU/UDiffText.
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1 Introduction

Since the proposal of denoising diffusion probability model (DDPM) [14], it has
shown great potential in the field of image generation. In comparison with tradi-
tional generative adversarial networks (GANs) [10], this kind of hidden-variable
probabilistic graphical model has significant advantages, which are specifically
reflected in its simple optimization objectives and clear iterative definition of
the generation process. Especially, it does not suffer the problem of loss conver-
gence difficulty when the model parameters are expanded. With the evolution
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Fig. 1: The proposed UDiffText is capable of synthesizing accurate and harmonious
text in either synthetic or real-word images, thus can be applied to tasks like scene
text inpainting (a), arbitrary text generation (b) and accurate T2I generation (c).

of multimodal approaches, the integration of textual guidance into the diffusion
model has given rise to large T2I generation models [3, 25, 27, 28, 31]. The ma-
jority of these models have a substantial number of parameters and are trained
on extremely large-scale text-image pair datasets, typically in the billion-level
range. Their capability of producing high-fidelity images with straightforward
text prompts facilitates their seamless adaptation to a range of generative tasks.

Although T2I generation models have made significant strides and can au-
tomate the process of artistic visual design to some extent, they still exhibit
numerous limitations. For instance, when generating images that include hu-
man figures, these models often produce inaccurate or missing details in hands
and faces. When synthesizing images with the desired text, these models often
encounter serious spelling issues including incorrect, missing or repetitive char-
acters. In some cases, they fail entirely to render text in generated images. Some
researchers [21] pointed out that these text rendering issues primarily stem from
the inadequate information provided by the text encoder. They suggested that
incorporating a character-aware text encoder with a large number of parame-
ters could mitigate this problem to some extent. The authors of DALL-E 3 [3]
also noted a limitation when the model encounters quoted text in a prompt: the
T5 text encoder they utilize actually interprets tokens representing whole words
and must map these to letters in an image, inevitably leading to unstable text
rendering.

We suspect that those spelling issues in text synthesis is closely linked to
the fundamental problems of existing T2I models, namely catastrophic neglect
and incorrect attribute binding. To address this problem, we adopt and train
a light-weight character-level text encoder to replace the original CLIP encoder
employed in Stable Diffusion [28], thus providing more robust conditional guid-
ance for the diffusion model. We then fine-tune a small portion of the model
using the denoising score matching scheme and a proposed local attention map
constraint. Finally, after implementing a refinement process during the inference
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stage, we shape the diffusion model into a powerful text designer capable of
rendering precise words in images. Consequently, it can be utilized to precisely
synthesize arbitrary text in given images based solely on text conditions. We
summarize our main contributions as follows:

– We propose a diffusion model-based text image synthesis method, UDiffText,
to address the text rendering challenges of existing T2I models. We leverages
a character-level text encoder to derive robust text embeddings and employs
a combination of the local attention loss and the scene text recognition loss
to train our model on large-scale datasets.

– The incorporation of segmentation map supervision offers a novel training
strategy for T2I models, leading to enhanced text rendering performance.
Experimental results demonstrate the effectiveness and superiority of our
proposed method to the state of the art in terms of both text rendering
accuracy and visual context coherency.

– As shown in Fig. 1, we demonstrate several potential applications of our pro-
posed UDiffText, including scene text inpainting, arbitrary text generation
as well as T2I generation with precise text content.

2 Related Work

2.1 Image Synthesis with Diffusion Models

Recent state-of-the-art methods in image synthesis mostly utilize diffusion mod-
els (DMs). Ever since the introduction of denoising diffusion probability model
(DDPM) [14], large T2I models [3, 25, 27, 28, 31] have achieved significant ad-
vancements in high-resolution image synthesis, exhibiting considerable diversity.
Our research is conducted on the basis of Stable Diffusion [28] and relevant
efficient sampling algorithms [18,33].

2.2 Guided Diffusion

While the advent of classifier-free guidance [15] has enhanced the generation per-
formance of diffusion models, numerous methods have been explored to control
these models using conditions from different modalities. Some approaches [4,24,
30] concatenate image conditions with noised latent variables as model input
to furnish visual information. Others [9, 20] utilize prompt tuning for concept-
specific generation. Besides, certain methods [23, 42] construct bypass network
to control diffusion models using flexible pixel-domain conditions.

Notably, it is widely accepted that the cross-attention (CA) mechanism is
pivotal in the generation process. Prompt-to-prompt [12] evidences that CA
maps are instrumental in determining the spatial layout of objects in generated
images. Perfusion [34] elaborates that the “Keys” in the CA mechanism gov-
ern the region of objects, while the “Values” dictate the features incorporated
into the region. Structured Diffusion [8] employs noun phrase extraction to ob-
tain more accurate CA features, thereby mitigating semantic attribute leakage.
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FastComposer [36] aligns CA maps with subject segmentation masks to address
the problem of identity blending in multi-subject image generation. Attend-and-
excite [5] directs diffusion models to refine the CA units to attend to all subject
tokens in the text prompt, thus alleviating the issue of catastrophic neglect. In
this study, we attempt to constraint the CA maps of our diffusion model under
the guidance of character-level segmentation maps to gain better performance.

2.3 Scene Text Synthesis

GAN-based scene text editing methods exhibit proficiency in generating coherent
text within a specific visual context. Textstylebrush [19] utilizes a StyleGAN ar-
chitecture to generate new content aligned with the source style. STEFANN [29]
constructs a FANnet to edit a single character and implements a placement
algorithm to generate the expected word. SRNet [35], MOSTEL [26] and Swap-
Text [39] divide the task into two primary parts: background inpainting and
text style transfer. This division facilitates whole word editing in an end-to-end
manner. Despite their simplicity and effectiveness, the capacity of these methods
to generate high-resolution and polystylistic text images remains limited.

More recently, a number of approaches that aim to tackle the aforementioned
text rendering challenges associated with diffusion models have been proposed.
They leverage the robust capabilities of DMs to synthesis scene text, thereby
enhancing the quality and variety of the generated content. DiffSTE [16] uses
the dual encoder structure (character text encoder and instruction text encoder)
and performs instruction tuning to provide more accurate control for the back-
bone network. DiffUTE [6] uses an OCR-based glyph encoder to obtain glyph
guidance from the rendered glyph image. Similarly, GlyphDraw [22] leverages an
additional image encoder and a fusion module to inject glyph condition and the
fine-tuned model is able to generate images with coherent Chinese text. Glyph-
Control [40] applies ControlNet [42] to text image generation tasks by using the
rendered reference image as both position and glyph guidance. TextDiffuser [7]
chooses to concatenate the segmentation mask as conditional input and uses the
character-aware loss to control the generated characters more precisely. In this
study, we supplant the original CLIP text encoder in Stable Diffusion with a
more robust character-level text encoder. This substitution equips the CA mod-
ule with expressive and highly distinguishable character-aware embeddings. We
firstly employ contrastive learning under visual supervision from a well-trained
scene text recognition (STR) model to train the encoder. Then we fine-tune the
CA blocks to yield more efficient CA “Keys” and “Values”, which help the model
generate more accurate text images.

3 Method

As mentioned above, we aim to design a unified framework for high-quality
text synthesis in both synthetic and real-world images. The proposed method,
UDiffText, is built based on the inpainting variant of Stable Diffusion (v2.0).
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Fig. 2: An overview of the training process of our proposed UDiffText. We build our
model based on the inpainting version of Stable Diffusion (v2.0). A character-level (CL)
text encoder is utilized to obtain robust embeddings from the text to be rendered. We
train the model using denoising score matching (DSM) together with the local attention
loss calculated based on character-level segmentation maps and the auxiliary scene
text recognition loss. Note that only the parameters of cross-attention (CA) blocks are
updated during training.

An overview of our method is depicted in Fig. 2. Specifically, we first design
and train a light-weight character-level (CL) text encoder as a substitute for the
original CLIP text encoder. Then, we train the model using the denoising score
matching (DSM) loss in conjunction with the local attention loss and scene text
recognition loss. More details of our proposed UDiffText will be elaborated in
the following subsections.

3.1 Character-level Text Encoder

As expounded in prior research [21], a character-aware text encoder is deemed
crucial in rectifying the issue of spelling errors in T2I models. However, the CLIP
text encoder and T5 encoder, which are prevalently employed in T2I models, do
not tokenize prompts at the character level. This results in the backbone network
perceiving the entire word (subword) rather than its internal structure. A po-
tential substitute for these encoders could be pre-trained character-aware trans-
formers like ByT5 [38]. However, only models with large amounts of parameters
can exhibit reasonable performance, making the generation process inefficient
and leading to unnecessary computational waste. A possible solution is to utilize
encoders to obtain character-level embeddings with the help of pixel domain ref-
erences. Yet, how to select appropriate references for the visual encoder is still
an unsolved problem due to the requirement of a precise and generalized text
representation to synthesize text images with diverse visual contexts.
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Fig. 3: The network architecture of our character-level text encoder. A codebook is
employed to translate the character indices into a sequence of learnable embeddings.
These embeddings are enhanced by position embeddings and then fed into a trans-
former to generate the encoded output.

In this research, we design a CLIP-like text encoder that processes words
at the character level. As shown in Fig. 3, a target word is first mapped to
corresponding indices and then converted into learnable embeddings using a
codebook. Transformer layers are concatenated to produce the final output of
shape (B,L, demb), where B represents the batch size, L indicates the maximum
sequence length, and demb denotes the dimension of the encoder. To obtain robust
generalized embeddings, we train the text encoder Etext using a combination
of the contrastive loss and the multi-label classification loss. We first render the
target word with a standard font style into an image. Then we use the ViTSTR [1]
model, a scene text recognizer, as the image encoder Eimage to obtain robust
visual features. A multi-label classification head HMLC is trained concurrently
to predict character indices Ids given text embeddings. The calculation of the
training loss is detailed in the following equations, where T and IT represent the
text label and corresponding image, respectively, and Wt,Wi are linear mapping
matrices. We employ a cosine similarity (CS) objective to align cross-modal
features and use cross-entropy (CE) as a multi-label classification loss to ensure
that the learned embeddings are highly distinguishable:

etext = Etext(T ), eimage = Eimage(IT ), (1)
Lclip = −CS(Wtetext,Wieimage), (2)
Lce = CE(HMLC(etext), Ids), (3)

L = Lclip + λceLce. (4)

3.2 Training Strategy

Our system is constructed based on the inpainting version of Stable Diffusion [28]
(v2.0). During the training stage, the model functions as a denoiser, accepting a
noised text image x0 + n of shape (H,W ), a binary mask M of the text region
and the masked image xM = (J −M)⊙ x0 as input (J is the all-ones matrix),
and predicting the original text image as output. We utilize the denoising score



UDiffText 7

matching (DSM) loss to train a denoiser for the specific text rendering task with
the text condition T :

LDSM = λσ ∥Dθ (x0 + n;σ, T ,M,xM)− x0∥22 , (5)

where Dθ is a U-Net denoiser with the learnable parameter θ. (x0, T ,M) ∼
pdata represents the text image, text label and binary mask of text region which
are randomly sampled from the dataset. n ∼ N

(
0, σ2Id

)
is the gaussian noise

added to the text image and σ represents the noise level. We set λσ = σ−2 as
the weighting function.

Our experimental results indicate that the DSM loss alone is insufficient to
empower the model to render accurate text in generated images. This is mainly
due to the fact that the L2 distance merely measures the mean distance between
pixels, rather than the accuracy of character representation. To address this
problem, we incorporate a local attention loss to regulate the cross-attention
maps of the model, a strategy similar to the approach adopted in [36].

As mentioned in Sec. 2.2, we expect the model to learn appropriate projec-
tion matrices in the cross-attention blocks. This enables the computed attention
map to attend to corresponding character regions, and the learned character
features could be appended to these regions. To achieve this goal, we utilize the
supervision from character segmentation maps in our dataset. Specifically, for
a character sequence T =

{
c1, c2, . . . cL

}
, its corresponding segmentation map

can be denoted as ST =
{
S1,S2, . . .SL

}
, where Si of shape (H,W ) is a binary

mask of the corresponding character ci in the image. We can derive the attention
maps Ai from each cross-attention block i of the U-Net:

Qi = WQ
i eimage, Ki = WK

i etext, Vi = WV
i etext, (6)

Ai = softmax
(
QiKT

i /
√
d
)
Vi. (7)

In this step, we partition the attention maps Ai on the dimension of sequence
length into Ai =

{
A1

i ,A
2
i , . . .A

L
i

}
. Each Aj

i of shape (H,W ) reflects the region
of interest (ROI) of block bi on the character cj . Subsequently, the local attention
loss can be computed as follows:

Lloc =
1

C

C∑
i=1

{
1

L

L∑
j=1

(
max

(
G
(
Aj

i

)
⊙

(
J − Sj

)))

− 1

L

L∑
j=1

(
max

(
G
(
Aj

i

)
⊙ Sj

))}
,

(8)

where C represents the number of cross-attention blocks in the U-Net, G denotes
a Gaussian blur and ⊙ means the Hadamard product. The Gaussian blur is
employed to perform low-pass filtering on the attention map, which helps to
prevent excessive variance in the attended region. This approach ensures that
the attention is distributed more evenly across the relevant regions, contributing
to more accurate and stable model performance.

To enhance the text rendering accuracy, we incorporate the scene text recog-
nition (STR) loss. Specifically, we employ a pre-trained STR model [2] to operate



8 Yiming Zhao, Zhouhui Lian

on the text region in the denoised results, and apply cross-entropy (CE) to mea-
sure the correctness of the rendered word:

Lstr = CE (S (Dθ (x0 + n;σ, T ,M,xM)⊙M) , T ) , (9)

where S represents the STR function, which accepts an RGB image as input
and outputs the recognition logits.

During the training process, the majority of the U-Net parameters are frozen
to maintain the fundamental image generation capability of the original model
conditioned by the visual context. Only the parameters of the cross-attention
blocks are updated to learn a generalized visual representation of each character
in the character set. We refer to this type of model fine-tuning as “knowledge
complement”. In this fine-tuning stage, the model attends to the character regions
of the text images and encodes the character shape and appearance into “Keys”
and “Values” of the cross-attention blocks. The complete objective of our training
strategy can be expressed as a combination of the denoising score matching
(DSM) loss, the local attention loss and the scene text recognition loss:

L = LDSM + λlocLloc + λstrLstr. (10)

3.3 Refinement of Noised Latent

Despite being constrained by the local attention loss, the fine-tuned model is
still prone to producing spelling errors when rendering words in text images,
such as missing some characters in a target word. We attribute this problem to
a fundamental flaw in existing T2I models, i.e. catastrophic neglect. To address
this issue, we implement noised latent refinement during the inference stage.
Motivated by the generative semantic nursing approach introduced in [5], we
design a new loss function Laae with the aim of enhancing the maximum scores
of the attention maps Aj

i corresponding to each character cj within the region
delineated by the binary mask M:

Laae(A,M) = − 1

C

C∑
i=1

{
min
1≤j≤N

(
max

(
G
(
Aj

i

)
⊙M

))}
. (11)

Our noised latent refinement process mainly consists of two steps: identifying
an optimal initial noise n, and optimizing the noised latent zt at each timestep t.
Initially, we sample Gaussian noise N times from the distribution N

(
0, σ2Id

)
.

For each sampled noise, we swiftly execute the entire denoising process in a
limited number (e.g., 2) of iterations and compute the corresponding objective
Laae at the final timestep. Subsequently, we select the noise with the minimum
loss value as our initial noise ni∗ . During the denoising process to get the final
output, we refine the noised latent zt using the gradient calculated based on the
proposed objective Laae at each timestep t:

z′t = zt − αt · ∇ztLaae, (12)

where αt represents the learning rate used to update the noised latent zt at each
timestep t. The gradient ∇zt

Laae is computed in a backward manner through the
parameters of the U-Net on the noised latent zt. The specifics of the refinement
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process are outlined in Algorithm 1. We utilize the denoising algorithm proposed
in [18]. Here, EulerStep denotes a single sampling step implemented using the
Euler’s method and ODESchedule(T ) is the ODE scheduler which takes the
number of ODE solver iterations T as input and outputs the σs of discretized
sampling steps.

Algorithm 1 Denoising process with refinement
Input: A binary maskM, a text condition T , a masked image xM = (J −M)⊙ x0,

a U-Net denoiser Dθ and a latent decoder D
Output: the denoised image x̂0

1: {σ2, σ1} ← ODESchedule(2)
2: for i← 1, 2 . . . N do
3: ni ∼ N

(
0, σ2

2Id

)
4: d,A2 ← Dθ(ni;σ2, T ,M,xM)
5: z← EulerStep(d,ni, σ2)
6: _,A1 ← Dθ(z;σ1, T ,M,xM)
7: Li ← Laae(A1,M)
8: end for
9: i∗ ← argmin

1≤i≤N
Li ▷ select the best initial noise

10: zT ← ni∗

11: {σT , σT−1, . . . σ1} ← ODESchedule(T )
12: for t← T, T − 1 . . . 1 do
13: _,At ← Dθ(zt;σt, T ,M,xM)
14: Lt ← Laae(At,M)
15: z′t ← zt − αt · ∇ztLt ▷ refine the noised latent
16: dt−1,_← Dθ(z

′
t;σt, T ,M,xM)

17: zt−1 ← EulerStep(dt−1, z
′
t, σt)

18: end for
19: x̂0 ← D(z0)
20: return x̂0

4 Experiments

4.1 Datasets and Evaluation Metrics

To apply the training strategy mentioned in Sec. 3.2 and enhance the general-
ization capability of our proposed model, we require large-scale datasets, which
should offer a diverse range of character samples, varying in shape and style.
Ideally, the datasets should contain large numbers of text images, text annota-
tions and the bounding boxes of text regions. Additionally, the character-level
segmentation maps are also necessary. Considering these requirements, we have
selected both synthetic and real-world datasets to constitute our training data:

– SynthText in the Wild [11] is a synthetically generated dataset, in which
word instances are placed in natural scene images, while taking into account
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the scene layout. The dataset consists of 800,000 images with approximately
8 million synthetic word instances. Each text instance is annotated with its
text-string, word-level and character-level bounding-boxes, which we utilize
to generate character-level segmentation maps.

– LAION-OCR [7] derives from the large-scale dataset LAION-400M [32].
It contains 9,194,613 filtered high-quality text images including advertise-
ments, notes, posters, covers, memes, logos, etc. The authors of [7] trained a
character-level segmentation model to obtain the segmentation maps of the
text images.

For the purpose of validation, we gather datasets that include text images not
previously encountered by the model. These datasets are derived from various
tasks, encompassing scene text detection and segmentation.

– ICDAR13 [17] is the standard benchmark for evaluating near-horizontal
text detection, which contains 233 test images.

– TextSeg [37] is a multi-purpose text dataset focused on segmentation. It
contains real-world text images collected from posters, greeting cards, covers,
logos, road signs, billboards, digital designs, handwriting, etc. 340 images of
them are for validation.

– LAION-OCR evaluation dataset. We partition a subset of the LAION-
OCR dataset for the purpose of validation. The text images in this subset
are not exposed to the model during the training phase.

We assess the performance of our proposed model in two aspects: image qual-
ity and text sequence accuracy. For the evaluation of image quality, we employ
Fréchet Inception Distance (FID) [13] to measure the distance between the text
images in the dataset and the images generated by our model and other base-
lines. Furthermore, we incorporate Learned Perceptual Image Patch Similarity
(LPIPS) [43] as an additional metric to assess the quality of the generated im-
ages. The above metrics provide an indication of the visual coherence between
the rendered text and its background. Given that our primary objective is to
correct word spelling errors prevalent in existing diffusion models, we utilize an
off-the-shelf scene text recognition (STR) model [2] to identify the rendered text.
Subsequently, we employ sequence accuracy (SeqAcc) to evaluate the word-level
correctness by comparing the STR result with the ground truth.

4.2 Implementation Details

UDiffText primarily comprises two components: a U-Net backbone and the pro-
posed character-level text encoder. For the U-Net, we employ the pre-trained
checkpoint of Stable Diffusion (v2.0) inpainting version. The model is fine-tuned
using an image size of 512×512 on the SynthText dataset for 100k steps and then
on the LAION-OCR dataset for an additional 100k steps. The training process
utilizes a batch size of 64 and a learning rate of 5×10−5. The U-Net encompasses
891M parameters, of which only 75.9M (the parameters of the cross-attention
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blocks) are updated during training. As for the character-level text encoder, it
undergoes initial training using the strategy outlined in Sec. 3.1 for 8k steps with
a batchsize of 256 and a learning rate of 1×10−5. Following this, it is frozen and
connected to the U-Net for subsequent training. The proposed encoder comprises
approximately 302M parameters. In the training stage, we set λce to 0.1, λloc to
0.01 and λstr to 0.001. During the inference stage, we employ 50 sampling steps
and utilize a classifier-free guidance (CFG) scale of 5.0.
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Fig. 4: Qualitative results on the scene/document/poster text inpainting task. The
first column consists of the original images, while the second column comprises the
input images with binary masks applied to the text region. The specific word to be
generated is indicated at the left of each row.

4.3 Quantitative and Qualitative Results

To validate the superiority of our proposed method, we compare it with sev-
eral scene text synthesis techniques, including the GAN-based method (MOS-
TEL [26]), and diffusion-based methods (DiffSTE [16] and TextDiffuser [7]). For
better comparison, we evaluate all methods across two distinct tasks: scene text
inpainting of the original text and the substitute text. In the case of the former,
we employ the models to reconstruct the text image using the provided ground
truth text label and binary mask. For the latter, we substitute the original text
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in each image with a random word of equivalent length and evaluate the models
by generating images containing the new text. The sequence accuracy (SeqAcc)
for these tasks is denoted as SeqAcc-O and SeqAcc-S, respectively. We limit
the text length in each instance to a maximum of 12 characters and randomly
select 100 images from each dataset for testing.

The quantitative evaluation is conducted repeatedly 3 times for more con-
vincing comparison and the mean value/standard deviation results are presented
in Tab. 1. For TextDiffuser [7], we utilize their inpainting variant, where we ren-
der the desired text in a standard font (Arial) at the masked region as the input
for their proposed segmentor. As for MOSTEL [26], we employ it to generate the
text at the masked region and then integrate the output back into the original
image. Their FID and LPIPS scores appear satisfactory, in part because the
background remains unaltered. Furthermore, we also assess the performance of
the pre-trained Stable Diffusion (v2.0) inpainting version as a baseline result.
We set the prompt as “[word to be rendered]” for fair comparison. Overall, our
method outperforms the baselines across all quantitative metrics, suggesting that
our proposed model is capable of generating text images with superior sequence
accuracy and quality, conditioned solely on the text label. For the qualitative
results, we display the outputs of all aforementioned methods on the scene text
inpainting task with substitute text. As illustrated in Fig. 4, our method yields
the most visually pleasing results, characterized by high text rendering accuracy
and visual context coherency. For more qualitative results, please refer to Sec.
B of our supplementary material.

Table 1: Quantitative comparison between our method and four baselines. ICDAR13
(8ch) denotes that we restrict the text length to be no more than 8 characters for the
purpose of evaluating short word rendering performance. The items in the table contain
the mean/standard of the data points and the best scores are highlighted in bold.

Method SeqAcc-O(%)↑ SeqAcc-S (%)↑ FID↓ LPIPS↓
ICDAR13 (8ch) ICDAR13 TextSeg LAION-OCR ICDAR13 (8ch) ICDAR13 TextSeg LAION-OCR

MOSTEL 74.7/2.87 67.3/2.50 64.3/2.87 70.0/2.16 34.3/2.49 28.0/2.45 24.7/2.05 48.3/2.62 20.8/1.25 0.0634/0.0022
SD-Inpainting 33.0/1.41 28.3/0.94 12.3/1.25 15.0/0.82 7.0/0.82 6.7/0.47 4.3/0.47 6.0/0.81 26.6/1.43 0.0697/0.0018
DiffSTE 44.3/2.50 37.3/2.87 49.3/3.30 40.3/2.49 34.7/3.30 29.0/3.27 46.7/2.87 36.0/2.94 52.8/1.34 0.1069/0.0065
TextDiffuser 85.7/1.25 80.7/1.25 68.0/1.63 79.7/2.05 81.3/1.70 74.3/2.49 65.7/2.05 71.3/1.70 34.1/1.79 0.0881/0.0049

Ours 93.3/1.70 91.0/1.63 92.3/1.25 90.3/1.25 84.0/1.63 82.7/1.25 84.3/1.25 79.0/1.63 19.7/1.89 0.0574/0.0011

4.4 Ablation Study

To assess the efficacy of each design choice in our method, we perform an ablation
study on various settings, which include: (1) Base: The inpainting version of the
pre-trained Stable Diffusion (v2.0), which uses the CLIP text encoder to obtain
conditional embeddings. (2) CL Encoder: We employ our proposed character-
level text encoder (CL Encoder) as a replacement for the CLIP encoder. (3) Lloc:
We incorporate the proposed local attention loss into the basic diffusion loss to
serve as the training objective. (4) Lstr: We introduce the scene text recognition
loss for additional supervision. (5) Refinement: We apply the refinement of noised
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Table 2: Ablation study results.

(a) Ablation study results on different de-
sign choices of the proposed method.

Setting SeqAcc-O (%)↑
Base 8.0
+ CL encoder 40.0
+ Lloc 54.0
+ Lstr 65.0
+ Refinement 76.0

(b) Ablation study results on the text encoder trained
with different objectives.

Setting ByT5 Ours-CLIP loss Ours-Full loss

SeqAcc-S (%) ↑ 10.0 17.0 62.0

(c) Ablation study results on the hyper-parameter λloc

and λstr.

λloc 0.1 0.01 0.001

SeqAcc-S (%) ↑ 5.0 62.0 41.0

λstr 0.1 0.01 0.001

SeqAcc-S (%) ↑ 8.0 18.0 62.0

latent, as mentioned in Sec. 3.3, at the inference stage to enhance text accuracy.
We train the model under all the above settings on the SynthText dataset for
6k steps and test them on the corresponding evaluation set. The quantitative
results of sequence accuracy (SeqAcc-O) are presented in Tab. 2 (a), which
indicate that the whole model outperforms the other variants.

In our work, we utilize a relatively light-weight CL text encoder instead of the
ByT5 text encoder to avoid unacceptable computational waste. Our motivation
of introducing the CE loss is to supervise the CL text encoder to learn a codebook
with more divisible embeddings. To prove the above assumption, we train the
whole model three times using ByT5 text encoder and our CL text encoder with
the classic CLIP loss and the proposed full loss, respectively. As shown in Tab. 2
(b), the results prove that our CL text encoder helps to achieve much better
performance compared to ByT5-base with the similar number of params and
the CE loss helps to achieve much better performance. We also conduct ablation
study on the hyper-parameter λloc and λstr to indicate the influence of different
weights of the loss components, as shown in Tab. 2 (c).

To further illustrate the efficacy of our character-level text encoder and local
attention loss, we compare the performance of our UDiffText with that of Stable
Diffusion. In a specific generation scenario, we extract the attention maps from
the U-Net model during an intermediate inference step. As depicted in Fig. 7
of our supplementary material, it is evident that our UDiffText focuses on the
precise regions of each rendered character, whereas Stable Diffusion exhibits am-
biguous attention areas within the rendered word, leading to incorrect results
and attention maps devoid of meaningful information. This experiment indi-
cates that the local attention loss indeed imposes an effective constraint on the
attention maps, thereby enhancing the interpretability of our proposed method.

4.5 Applications

Scene text inpainting. Taking an arbitrary image, a binary mask and a text
sequence as input, UDiffText generates a modified image with the desired text
rendered in a specific region defined by the mask. This inpainting-based archi-



14 Yiming Zhao, Zhouhui Lian

tecture makes the proposed method suitable for a variety of inpainting-like text
rendering applications. As demonstrated in Fig. 1 (a)(b) and Fig. 4, our method
can be applied to tasks involving the synthesis of scene text in real-world images
and scanned documents. Additionally, the proposed UDiffText has the poten-
tial to be applied to construct large-scale scene text image datasets, given its
capability to generate context-coherent text images that do not exist in the real
world. Moreover, our UDiffText can also be applied to graphic design tasks like
poster design and advertisement design.
T2I generation with accurate text content. Leveraging the text inpaint-
ing capability of our proposed model, we devise a two-stage method for T2I
generation that ensures accurate text rendering, as shown in Fig. 1 (c). Specif-
ically, in our experiments, we first utilize the large-scale T2I model [3, 25] to
produce a preliminary result using the prompt template generated by a LLM
(e.g., GPT3.5). Then, we employ a previous SOTA text spotting model [41] to
mask the text region in the generated image. At last, our UDiffText is applied to
the masked image to produce the final output, which features accurate text and
a consistent style (see Sec. C of our supplemental material). It should be noted
that we drop and regenerate the image when no text is detected. Depending on
the excellent performance of the spotting model, ill-fitting text bounding-boxes
are barely encountered in our experiments. Furthermore, we also quantitatively
evaluate our method using the SimpleBench prompt templates proposed in [40].
Experimental results show that our approach significantly improve the average
text rendering accuracy of the pre-trained SDXL model from 8.0% to 60.0%.

5 Limitations

Though simple and effective, the propose method still has some limitations such
as limited number of characters in generated images and lack of ability to pre-
serve the style of the original text. Please refer to Sec. G of the supplemental
material for a more detailed discussion and some failure cases.

6 Conclusion

In this paper, we proposed UDiffText, a novel method for high-quality text syn-
thesis in arbitrary images using character-aware diffusion models. We designed
and trained a character-level text encoder that provides robust text embeddings
and fine-tuned the diffusion model with local attention control and scene text
recognition supervision. Our method can generate coherent images with accurate
text and can be used for arbitrary text generation, scene text inpainting and T2I
generation with precise text content. We demonstrated the effectiveness of our
method through extensive experiments and comparisons with existing methods,
showing the superiority of the proposed UDiffText to the state of the art in terms
of both text rendering accuracy and visual context coherency. In the future, we
plan to explore more ways to improve the controllability and diversity of our
method, and extend it to other text-related image synthesis tasks.



UDiffText 15

Acknowledgments

This work was supported by National Natural Science Foundation of China
(Grant No.: 62372015), Center For Chinese Font Design and Research, Key
Laboratory of Intelligent Press Media Technology, and State Key Laboratory
of General Artificial Intelligence.

References

1. Atienza, R.: Vision transformer for fast and efficient scene text recognition. In:
Document Analysis and Recognition–ICDAR 2021: 16th International Conference,
Lausanne, Switzerland, September 5–10, 2021, Proceedings, Part I 16. pp. 319–334.
Springer (2021)

2. Bautista, D., Atienza, R.: Scene text recognition with permuted autoregressive
sequence models. In: Computer Vision–ECCV 2022: 17th European Conference,
Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVIII. pp. 178–196.
Springer (2022)

3. Betker, J., Goh, G., Jing, L., Brooks, T., Wang, J., Li, L., Ouyang, L., Zhuang, J.,
Lee, J., Guo, Y., Manassra, W., Dhariwal, P., Chu, C., Jiao, Y.: Improving image
generation with better captions (2023), https://cdn.openai.com/papers/dall-
e-3.pdf

4. Brooks, T., Holynski, A., Efros, A.A.: Instructpix2pix: Learning to follow image
editing instructions. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 18392–18402 (2023)

5. Chefer, H., Alaluf, Y., Vinker, Y., Wolf, L., Cohen-Or, D.: Attend-and-excite:
Attention-based semantic guidance for text-to-image diffusion models. ACM Trans-
actions on Graphics (TOG) 42(4), 1–10 (2023)

6. Chen, H., Xu, Z., Gu, Z., Li, Y., Meng, C., Zhu, H., Wang, W., et al.: Diffute:
Universal text editing diffusion model. Advances in Neural Information Processing
Systems 36 (2024)

7. Chen, J., Huang, Y., Lv, T., Cui, L., Chen, Q., Wei, F.: Textdiffuser: Diffusion
models as text painters. Advances in Neural Information Processing Systems 36
(2024)

8. Feng, W., He, X., Fu, T.J., Jampani, V., Akula, A., Narayana, P., Basu, S., Wang,
X.E., Wang, W.Y.: Training-free structured diffusion guidance for compositional
text-to-image synthesis. arXiv preprint arXiv:2212.05032 (2022)

9. Gal, R., Alaluf, Y., Atzmon, Y., Patashnik, O., Bermano, A.H., Chechik, G.,
Cohen-Or, D.: An image is worth one word: Personalizing text-to-image gener-
ation using textual inversion. arXiv preprint arXiv:2208.01618 (2022)

10. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., Bengio, Y.: Generative adversarial networks. Communications of the
ACM 63(11), 139–144 (2020)

11. Gupta, A., Vedaldi, A., Zisserman, A.: Synthetic data for text localisation in nat-
ural images. In: IEEE Conference on Computer Vision and Pattern Recognition
(2016)

12. Hertz, A., Mokady, R., Tenenbaum, J., Aberman, K., Pritch, Y., Cohen-Or,
D.: Prompt-to-prompt image editing with cross attention control. arXiv preprint
arXiv:2208.01626 (2022)

https://cdn.openai.com/papers/dall-e-3.pdf
https://cdn.openai.com/papers/dall-e-3.pdf


16 Yiming Zhao, Zhouhui Lian

13. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained
by a two time-scale update rule converge to a local nash equilibrium. Advances in
neural information processing systems 30 (2017)

14. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Advances in
Neural Information Processing Systems 33, 6840–6851 (2020)

15. Ho, J., Salimans, T.: Classifier-free diffusion guidance. arXiv preprint
arXiv:2207.12598 (2022)

16. Ji, J., Zhang, G., Wang, Z., Hou, B., Zhang, Z., Price, B., Chang, S.: Improv-
ing diffusion models for scene text editing with dual encoders. arXiv preprint
arXiv:2304.05568 (2023)

17. Karatzas, D., Shafait, F., Uchida, S., Iwamura, M., i Bigorda, L.G., Mestre, S.R.,
Mas, J., Mota, D.F., Almazan, J.A., De Las Heras, L.P.: Icdar 2013 robust read-
ing competition. In: 2013 12th international conference on document analysis and
recognition. pp. 1484–1493. IEEE (2013)

18. Karras, T., Aittala, M., Aila, T., Laine, S.: Elucidating the design space of diffusion-
based generative models. Advances in Neural Information Processing Systems 35,
26565–26577 (2022)

19. Krishnan, P., Kovvuri, R., Pang, G., Vassilev, B., Hassner, T.: Textstylebrush:
Transfer of text aesthetics from a single example. IEEE Transactions on Pattern
Analysis and Machine Intelligence (2023)

20. Kumari, N., Zhang, B., Zhang, R., Shechtman, E., Zhu, J.Y.: Multi-concept cus-
tomization of text-to-image diffusion. In: Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition. pp. 1931–1941 (2023)

21. Liu, R., Garrette, D., Saharia, C., Chan, W., Roberts, A., Narang, S., Blok, I.,
Mical, R., Norouzi, M., Constant, N.: Character-aware models improve visual text
rendering. In: Proceedings of the 61st Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers) (Jul 2023)

22. Ma, J., Zhao, M., Chen, C., Wang, R., Niu, D., Lu, H., Lin, X.: Glyphdraw: Learn-
ing to draw chinese characters in image synthesis models coherently. arXiv preprint
arXiv:2303.17870 (2023)

23. Mou, C., Wang, X., Xie, L., Wu, Y., Zhang, J., Qi, Z., Shan, Y.: T2i-adapter:
Learning adapters to dig out more controllable ability for text-to-image diffusion
models. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 38,
pp. 4296–4304 (2024)

24. Nichol, A., Dhariwal, P., Ramesh, A., Shyam, P., Mishkin, P., McGrew, B.,
Sutskever, I., Chen, M.: Glide: Towards photorealistic image generation and editing
with text-guided diffusion models. arXiv preprint arXiv:2112.10741 (2021)

25. Podell, D., English, Z., Lacey, K., Blattmann, A., Dockhorn, T., Müller, J., Penna,
J., Rombach, R.: Sdxl: improving latent diffusion models for high-resolution image
synthesis. arXiv preprint arXiv:2307.01952 (2023)

26. Qu, Y., Tan, Q., Xie, H., Xu, J., Wang, Y., Zhang, Y.: Exploring stroke-level
modifications for scene text editing. In: Proceedings of the AAAI Conference on
Artificial Intelligence. vol. 37, pp. 2119–2127 (2023)

27. Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., Chen, M.: Hierarchical text-
conditional image generation with clip latents. arXiv preprint arXiv:2204.06125
(2022)

28. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution
image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 10684–10695 (2022)



UDiffText 17

29. Roy, P., Bhattacharya, S., Ghosh, S., Pal, U.: Stefann: scene text editor using
font adaptive neural network. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 13228–13237 (2020)

30. Saharia, C., Chan, W., Chang, H., Lee, C., Ho, J., Salimans, T., Fleet, D., Norouzi,
M.: Palette: Image-to-image diffusion models. In: ACM SIGGRAPH 2022 Confer-
ence Proceedings. pp. 1–10 (2022)

31. Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J., Denton, E.L., Ghasemipour,
K., Gontijo Lopes, R., Karagol Ayan, B., Salimans, T., et al.: Photorealistic text-
to-image diffusion models with deep language understanding. Advances in Neural
Information Processing Systems 35, 36479–36494 (2022)

32. Schuhmann, C., Vencu, R., Beaumont, R., Kaczmarczyk, R., Mullis, C., Katta, A.,
Coombes, T., Jitsev, J., Komatsuzaki, A.: Laion-400m: Open dataset of clip-filtered
400 million image-text pairs. arXiv preprint arXiv:2111.02114 (2021)

33. Song, Y., Sohl-Dickstein, J., Kingma, D.P., Kumar, A., Ermon, S., Poole, B.: Score-
based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456 (2020)

34. Tewel, Y., Gal, R., Chechik, G., Atzmon, Y.: Key-locked rank one editing for text-
to-image personalization. In: ACM SIGGRAPH 2023 Conference Proceedings. pp.
1–11 (2023)

35. Wu, L., Zhang, C., Liu, J., Han, J., Liu, J., Ding, E., Bai, X.: Editing text in the
wild. In: Proceedings of the 27th ACM international conference on multimedia. pp.
1500–1508 (2019)

36. Xiao, G., Yin, T., Freeman, W.T., Durand, F., Han, S.: Fastcomposer: Tuning-
free multi-subject image generation with localized attention. arXiv preprint
arXiv:2305.10431 (2023)

37. Xu, X., Zhang, Z., Wang, Z., Price, B., Wang, Z., Shi, H.: Rethinking text segmen-
tation: A novel dataset and a text-specific refinement approach. In: Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition. pp. 12045–
12055 (2021)

38. Xue, L., Barua, A., Constant, N., Al-Rfou, R., Narang, S., Kale, M., Roberts, A.,
Raffel, C.: Byt5: Towards a token-free future with pre-trained byte-to-byte models.
Transactions of the Association for Computational Linguistics 10, 291–306 (2022)

39. Yang, Q., Huang, J., Lin, W.: Swaptext: Image based texts transfer in scenes.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 14700–14709 (2020)

40. Yang, Y., Gui, D., Yuan, Y., Liang, W., Ding, H., Hu, H., Chen, K.: Glyphcontrol:
Glyph conditional control for visual text generation. Advances in Neural Informa-
tion Processing Systems 36 (2024)

41. Ye, M., Zhang, J., Zhao, S., Liu, J., Liu, T., Du, B., Tao, D.: Deepsolo: Let trans-
former decoder with explicit points solo for text spotting. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 19348–
19357 (2023)

42. Zhang, L., Rao, A., Agrawala, M.: Adding conditional control to text-to-image
diffusion models. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision. pp. 3836–3847 (2023)

43. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable
effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. pp. 586–595 (2018)


	UDiffText: A Unified Framework for High-quality Text Synthesis in Arbitrary Images via Character-aware Diffusion Models

