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In this supplementary material, we further validate the effectiveness of the pro-
posed ICON by providing as follows:

– Architecture Details. 1
– Experimental Details. 2
– Additional Experiments and Analysis. 3
– Additional Ablation Results. 4
– Limitations and Future Work. 5
– Hyperparameters of Comparison Models. 6

1 Architecture Details

As shown in Figure 1, our architecture has a very simple structure. Based on
the typical ViT encoder layer [3], each adapter is added parallel to the attention
of the layers included in the adapter locations demonstrated in Table 1. We also
introduce trainable scaling parameters that have been proven its effectiveness
in [6]. As shown in Figure 1a, we adopt an Exponential Moving Average (EMA)
to each adapter to preserve global knowledge, with our proposed CAST. We also
apply an adapter ensemble mechanism (see Figure 1b)) that takes the bigger
logits from the model with the current adapter or from the model with the
EMA adapter, to utilize global knowledge in the inference phase, following our
baseline [5].

2 Experimental Details

Datasets. We conducted experiments on three benchmarks, including iDig-
its [22], CORe50 [14] and DomainNet [17] which are possible to construct an
incremental learning scenario that can cause a large shift in distribution (both
class and domain change) by clearly distinguishing both classes and domains.
We follow [22] to compose a digit recognition incremental scenario, which is com-
posed of four datasets: MNIST [11], SVHN [15], MNIST-M [4] and SynDigit [4].
Each dataset is treated as a different domain. CORe50 [14] is a widely used
dataset for domain incremental learning or continual real-world object recogni-
tion. It has 50 classes collected from a large variety of views in time, and each
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(a) ViT layer with adapter. (b) Ensemble in inference.

Fig. 1: Detailed architecture visualization of proposed ICON.

class has 11 distinct domains. In an incremental learning setting, the data from 8
domains are used for training and the data from the rest (i.e., unseen) 3 domains
as a test set. DomainNet [17] is a very popular dataset for domain incremental
learning or domain adaptation. All the data from the 6 distinct domains and it
has large 345 classes for classification. Unlike the CORe50 [14], it includes not
only real-world data but also data from unreal domains such as painting, clipart
and infographic.

Data Pre-processing. We adopted a very simple data augmentation strategy
for all experiments, following L2P [25], DualPrompt [24], LAE [5]. First, input
images are randomly resized to 224 × 224 with bilinear interpolation. Unlike
the JAX [1] implementation, scale=(0.08, 1.0) and ratio=(3/4, 4/3) were applied
with random resized crop as default. Second, cropped images were randomly
flipped horizontally. In the inference phase, the images are resized to 256 × 256,
and subsequently center cropped to 224 × 224. We used the normalization to the
range of [0, 1] as the last step of each augmentation strategy.

Implementation Details. We conducted all the experiments on a single NVIDIA
GeForce RTX 3090 GPU. To make fair comparisons, we used standard Ima-
geNet [2] pre-trained ViT-B/161 [3] as a backbone of all methods. Furthermore,
1 storage.googleapis.com/vit_models/imagenet21k/ViT-B_16.npz
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for the unification of the implementation library (PyTorch [16]), we used the
PyTorch implementation for L2P2 [25] and DualPrompt3 [24], which the offi-
cial code is written in JAX [1]. S-Prompts [23] suggests image S-Prompts (S-
iPrompts) and language-image S-Prompts (S-liPrompts). We used S-iPrompts
as a comparison model without using text features (using ViT as a backbone,
not CLIP [18]), for fair comparison.

Training Details. We trained the model for 5 epochs per task, 3 epochs for
training only the classifier and the other 2 epochs for training both classifier and
adapters while freezing other parts of pretrained ViT, following our baseline [5].
With the loss function for training, we adopted α to be 1 and β to be different
among datasets. We used β = 0.05 for CORe50 and iDigits and β = 0.01 for
DomainNet. For thresholds in IC, we used γ to be 2.

Hyperparameters. We summarize the hyperparameters for each dataset used
in the main experiments (Table 3. of main paper) in Table 1. In Table 1, Warmup
epochs means the number of epochs where the model except for the classifier is
frozen, and the classifier and adapters are simultaneously trained after Warmup
epochs are finished. The number of Clusters indicates the K value of the K-
Means algorithm used in the proposed CAST for clustering history shifts. The
coefficient of distillation and CAST in the loss function are denoted as α and
β. Adapter Location represents the index of the 12 ViT layers to which the
adapter is added, and index 0 points to the first layer. We add five adapters
sequentially and the hidden dimension size of the feature that is entered into each
adapter to be downsampled is written as Adapter Downsample. Furthermore, in
our proposed VIL scenario, extreme cases of training all classes sequentially and
then re-training classes already learned in other domains (i.e., [CIL, CIL, CIL, ...,
DIL, DIL, DIL]) can also occur, which can make the performance difference large.
Therefore, we conducted experiments with various sequences (random seeds).

Our ICON does not use a prompt, but most comparison models use it.
Since this is accompanied by relatively more hyperparameters than ours, such
as prompt pool size, top-K, prompt length, etc., we also provide the hyperpa-
rameters of the comparisons that were used in the experiments in Section 6.

Evaluation Metrics. We provide a formal definition of the evaluation metrics
that were used in all experiments. Each metric is formally defined as follows:

Average Accuracy: AT = 1

T

T

∑
i=1

aT,i, (1)

2 github.com/JH-LEE-KR/l2p-pytorch
3 github.com/JH-LEE-KR/dualprompt-pytorch
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Table 1: Detailed hyperparameters and experimental configuration of proposed ICON
for each dataset.

Configuration iDigits [22] CORe50 [14] DomainNet [17]
Optimizer Adam [9] Adam [9] Adam [9]
Base LR 0.0028125 0.0028125 0.0028125
Optimizer Betas β1, β2 = 0.9, 0.999 β1, β2 = 0.9, 0.999 β1, β2 = 0.9, 0.999
Batch Size 24 24 24
EMA Decay 0.9999 0.9999 0.9999
Total Epochs 5 5 5
Warmup Epochs 3 3 3
Number of Clusters 2 3 3
α 1 1 1
β 0.05 0.05 0.01
Adapter Location [0, 1, 2, 3, 4] [0, 1, 2, 3, 4] [0, 1, 2, 3, 4]
Adapter Downsample 5 5 5

where T is the total number of tasks seen until the current task, and an,i is the
test accuracy on task i after training the nth task.

Forgetting: FT = 1

T − 1
T−1
∑
i=1

fT,i, (2)

where fj,i is a measure of forgetting on task i after training task j. fj,i is defined
as the difference between the best accuracy achieved on task i in the past and
the final accuracy of task i evaluated after training task j :

fj,i = max
k∈{1,⋯,j−1}

(ak,i − aj,i), (3)

To validate the performance of the proposed ICON on all of the scenarios, we
also took an average of Avg. Acc of all scenarios. It can be formulated as follows:

Average: AAvg = 1

∣S∣
S

∑
s=1

As, (4)

where ∣S∣ is the total number of scenarios, and As is the final average accuracy
of scenario s. In this paper, we used ∣S∣=3, for CIL, DIL, and VIL.

3 Additional Experiments and Analysis

Robustness to Various Number of Tasks. We conducted additional ex-
periments to validate the robustness of our method on various numbers of task
sequences as shown in Table 2 with the results of standard configuration included
in the main paper. The number of the entire task sequence for the VIL setting is
dependent on the number of domains in it and the number of classes in a single
task. For DomainNet, we conducted experiments in different task configurations
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Table 2: Average accuracy on various number of tasks.

Method
iDigits [22] CORe50 [14] DomainNet [17]

8 Tasks 20 Tasks 16 Tasks 40 Tasks 80 Tasks 18 Tasks 30 Tasks 138 Tasks

LAE [5] 79.67 59.34 86.97 77.11 72.05 47.16 49.01 49.22
ICON (Ours) 81.59 75.11 88.04 83.18 76.34 48.95 53.37 50.84

Fig. 2: Average accuracy on a higher number of tasks in CORe50. Extra GFLOPs is
obtained in comparison with our baseline LAE.

so that the number of entire tasks becomes 18 and 138. Since the entire class
existing in DomainNet is 345, the sequence of tasks become 18 by comprising a
single task with 115 classes, and 138 by comprising a single task with only 23
classes. In the same way, we configured the number of tasks for CORe50 to be
16 and 80. 16 tasks for CORe50 are in the case of a single task with 25 classes,
and 80 tasks are in the case of a single task with 5 classes. For iDigits, by having
5 classes in a single task, we can configure it to have 8 tasks entirely. As it can
be seen in Table 2, in iDigits and CORe50, as the number of tasks increases, the
average accuracy degrades since catastrophic forgetting becomes severe. Also,
ICON achieved noticeable performance improvements compared to our baseline
LAE [5] for all results on various task numbers, showing that the effectiveness of
ICON is robust for various number of tasks. To thoroughly show the results on
a more diverse number of tasks in CORe50, we visualize average accuracies in
Figure 2. As shown in the figure, the performance improvement of ICON com-
pared to the baseline LAE (see red line) is consistent with the number of tasks,
verifying that our proposed ICON is robust with regard to the number of tasks.

Result of Joint Training. To demonstrate the gap between the proposed
method and joint training results, we measured the joint training results as
shown in Table 3. While the performances of our proposed ICON still have gaps
compared to those of joint training, it is noteworthy that our ICON significantly
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Table 3: Comparisons of joint training, the existing SOTA (LAE), and the proposed
ICON in the VIL scenario.

Method
Dataset

iDigits [22] CORe50 [14] DomainNet [17]

LAE [5] 59.34±0.95 77.11±1.37 49.01±1.18
ICON (Ours) 75.11±2.39 83.18±1.21 53.37±0.47

Joint Training 87.18±0.13 91.66±0.25 76.91±0.61

Table 4: Comparison of computational cost on ViT-B/16.

Method L2P [25] DualPrompt [24] CODA-P [19] S-Prompts [23] LAE [5] ICON (Ours)
GFLOPs 116.27 105.89 140.12 75.32 71.34 71.52

Table 5: Experiments on different backbones in CORe50.

Dataset ViT-S/16 [3] ViT-L/16 [3]
LAE [5] ICON (Ours) LAE [5] ICON (Ours)

iDigits [22] 53.40 55.34 69.68 72.42
DomainNet [17] 41.80 45.10 51.80 54.09
GFLOPs 37.09 37.27 247.81 247.99

narrowed the gaps by effectively dealing with the challenges in VIL, especially
in iDigits.

Computational Complexity and Scalability. We analyze computational
complexity in Table 4, which demonstrates that our method demands fewer or
equivalent resources compared to the baselines, while achieving the best perfor-
mances. In addition, to investigate the scalability, we conducted experiments on
various sizes of backbones and extreme numbers of tasks. As shown in Table
5, the proposed ICON performed the best in all sizes of backbones with equiv-
alent costs compared to the baseline LAE. Moreover, even when extended to
extreme numbers of tasks, the proposed ICON only required negligible extra
costs as indicated in Figure 2. Therefore, our method is applicable in dynamic
and large-scale scenarios without issues in terms of computational complexity
and scalability.
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Fig. 3: Average threshold and the
number of increased nodes.

Table 6: Ablation of Dynamic Threshold
(DT).

DT iDigits [22] CORe50 [14] DomainNet [17]
74.79 82.71 52.99

✓ 75.11 83.18 53.37

Analysis on Incremental Classifier. We further investigated our proposed
Incremental Classifier, IC, regarding the average thresholds which are the criteria
for increasing nodes for each label, and the number of increased nodes in Figure
3. In Figure 3, the ratio of increased nodes, (i.e. the number of increased nodes
relative to the total number of classes in the entire tasks), was the most numerous
in DomainNet, indicating that it is composed of images with huge domain gap
among domains. In CORe50 and iDigits which have relatively smaller domain
gaps, the nodes were increased less since existing nodes in the classifier can
accommodate knowledge of multiple domains when a new task arrives. Also,
the average thresholds of classes in the entire task are demonstrated in Figure 3.
Since domain differences are big in the order of DomainNet, iDigits, and CORe50,
the average thresholds follow the same order. The higher the threshold, the more
the model increases the nodes because the number of classes that do not exceed
the threshold increase.

Ablation of Dynamic Threshold. The impact of using dynamic threshold
(DT) in IC is demonstrated in Table 6. The comparison was conducted in the
setting in which the threshold value is set to a constant of 0.5. The strategy
of setting threshold dynamically was effective in leveraging IC, by successfully
deciding the optimal threshold value on the basis of domain differences calculated
using accuracies per class.

Incremental Classifier Compared to Standard CIL Strategy. The mech-
anism of Incremental Classifier (IC) is quite different from a standard strategy
in CIL research. The existing strategy in CIL only increases output nodes corre-
sponding to new classes naively when new tasks arrive. However, our proposed IC
can increase output nodes of both old and new classes to prevent semantic drift
of the classifier while learning diverse domains, with our novel strategies that
decide when to expand each node and handle the node selection issue for each
class. In this way, IC can tackle the challenge successfully while learning various
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Table 7: Additional experiments on CNN.

Dataset
Fine-tuning EWC [10] LwF [13] LAE [5] ICON (Ours)

Avg. Acc↑ Forgetting↓ Avg. Acc↑ Forgetting↓ Avg. Acc↑ Forgetting↓ Avg. Acc↑ Forgetting↓ Avg. Acc↑ Forgetting↓

iDigits [22] 23.22±0.24 25.13±0.94 29.91±0.64 16.63±0.98 28.64±0.43 17.94±0.51 30.43±0.36 15.62±1.12 37.34±0.73 7.55±0.47
CORe50 [14] 13.49±0.69 27.61±0.08 14.14±1.34 23.98±0.36 23.29±0.81 12.22±0.61 37.36±0.49 6.34±0.55 45.67±0.66 5.92±0.41
DomainNet [17] 11.34±0.37 20.91±0.42 13.74±0.73 13.83±0.89 14.83±1.53 13.16±0.36 17.68±0.67 12.46±0.69 23.73±0.55 7.32±0.28

Table 8: Average accuracy on various number of shifts per task.

# shifts
per task iDigits [22] CORe50 [14] DomainNet [17]

1 75.11 83.18 53.37
2 71.77 82.66 53.23
4 69.24 82.70 53.89
6 71.82 82.28 53.66
8 69.06 82.51 53.68
10 68.45 81.70 53.61

domains associated with a single class, with dynamic thresholding and knowl-
edge distillation to mitigate catastrophic forgetting effectively. Consequently, IC
successfully tackles forgetting in the classifier caused by various domains while
the existing strategy in CIL cannot.

Architecture Generalizability. Existing prompt-based methods are not flexi-
ble enough to be combined with architectures other than the Transformer family.
On the other hand, our proposed ICON uses a bottleneck adapter that is suf-
ficiently applicable to CNN and others. Therefore, we applied ICON to CNN
structure without pre-trained weights other than ViT and demonstrated its per-
formance with Fine-tuning, EWC [10], LwF [13] and LAE [5] similarly applicable
in the CNN structure. We used ResNet-152 (60M) [7], which has a similar num-
ber of parameters as ViT-B/16 (86M). The bottleneck adapter was implemented
with 1×1 convolution layers for up and down projection and inserted in the shal-
lower 23 of 50 convolution blocks parallelly. As shown in Table 7, our proposed
ICON also achieved significantly better performance compared to other IL meth-
ods based on CNN architecture, emphasizing the broader applicability of ICON
beyond being limited to ViT.

Multiple Shifts per Task. We further explored using shifts more than one
that are saved in the shift pool for each task, as shown in Table 8. For iDigits,
when used more than one shift for a task, the performance drops showing that
having too many shifts in the shift pool can cause too strict regularization in
CAST, and CORe50 has similar results. For DomainNet, the performance was
robust against the number of shifts saved per task.

Representation Spaces of Competing Methods. As we mentioned in the
main paper, the model faces intra-class domain confusion and inter-domain con-



Versatile Incremental Learning 9

Class 0●

Class 1●

Class 2●

Class 3●

Class 4●

Class 5●

Class 6●

Class 7●

Class 8●

Class 9●

S-Prompt CODA-P

LAE Ours (ICON)

L2P DualPrompt

Fig. 4: t-SNE visualization on the resulting feature spaces of L2P [25], DualPrompt
[24], S-Prompts [23], CODA-P [19], LAE [5] and proposed ICON on the iDigits dataset
in VIL scenario.

fusion in the proposed VIL scenario, and these confusions are very likely to
appear in a mixed state in feature representation space. Therefore, we visual-
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Table 9: Average accuracy on various locations of adapter.

Location iDigits [22] CORe50 [14] DomainNet [17]

First 5 (Ours) 75.11 83.18 53.37
Last 5 52.94 77.79 50.31
All 62.57 83.10 55.14

ized the feature representation spaces of competing methods in the VIL scenario
using t-SNE (Figure 4). As shown in Figure 4, in the case of prompt-based
methods, such as L2P [25] and DualPrompt [24], only the most recently learned
classes are biased and separated. However, unlike other prompt-based methods,
CODA-P [19] shows a lot of mixtures, which we expect to be the result of the
weighted sum of prompt using attention. S-Prompts [23] strongly rely on task-
specific prompt and selection mechanisms, therefore, representations of classes
learning in the same task are overlapped. LAE [5] using an adapter, shows rel-
atively more separation compared to the aforementioned methods, but there
are still many mixed representations. In contrast, our proposed ICON produces
much more separated class-specific representation subspaces. This demonstrates
that ICON has well-accumulated knowledge without interfering with previously
learned knowledge away from intra-class domain confusions and inter-domain
confusions.

4 Additional Ablation Results

Results on Various Locations of Adapter. We conducted experiments of
ICON with different locations of adapters (Table 9). For all datasets, inserting
adapters to the first 5 layers of the backbone was the best, and the performances
significantly dropped when used them in the last 5 layers of the backbone. The
result indicates that adapting to new task is optimal in the early layers, and
using them in the later layers prevents flexible adjustment of representations to
each new task.

Hyperparameter Sensitivity. In this section, we demonstrated the result of
our experiments with different hyperparameter values, α, β, and γ which are
used in the loss function. The hyperparameter α adjusts the impact of knowl-
edge distillation from the previous classifier which is involved in our proposed
Incremental Classifier.

As shown in Table 10, using small α prevents fully leveraging the bene-
fit of knowledge distillation, while the excessive effect of knowledge distillation
learning the current task. We set α = 1.00 for all datasets as default. We also
explored the impact of CAST loss via the coefficient β that controls the power
of regularization of the direction of the current task in Table 11. For iDigits and
CORe50, the performance was the best when β = 0.05, while the performance of
DomainNet was the best when β = 0.01, indicating relatively the weak intensity
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Table 10: Average accuracy on various α.

α iDigits [22] CORe50 [14] DomainNet [17]
0.25 74.73 81.30 52.45
0.50 74.90 82.51 53.21
1.00 75.11 83.18 53.37
1.50 74.97 83.23 53.06
2.00 74.88 82.89 52.80

Table 11: Average accuracy on various β.

β iDigits [22] CORe50 [14] DomainNet [17]
0.01 74.51 79,85 53.37
0.02 74.78 80.55 53.21
0.03 74.22 82.15 53.17
0.04 73.95 83.08 53.19
0.05 75.11 83.18 53.27
0.06 74.69 83.21 53.07
0.07 74.95 83.50 53.03
0.08 73.89 83.02 52.75
0.09 74.06 83.24 52.90
0.10 74.32 83.11 52.66

Table 12: Average accuracy on various γ.

γ iDigits [22] CORe50 [14] DomainNet [17]
0.5 72.00 80.74 53.53
1.0 73.12 81.23 53.41
1.5 74.51 82.70 53.22
2.0 75.11 83.18 53.37
2.5 75.08 82.52 53.12
3.0 74.99 82.74 52.99

of regularization allows learning more difficult tasks (DomainNet). Lastly, the
impact of the scaling factor γ used when deciding the threshold in IC is demon-
strated in Table 12. Using too small γ can cause overwriting of the classifier by
not increasing nodes in the classifier dynamically even when the domain differ-
ence is huge. Meanwhile, using too big γ can degrade the performance since the
model can be confused while selecting which logit to use for a single label at
inference time, after increasing nodes too easily even when not necessary.

5 Limitations and Future Work

Despite achieving noticeable performance and successfully resolving the prob-
lem from the absence of prior knowledge of the following tasks, our work has a
few limitations as well. We conducted experiments on widely used three bench-
marks, that can be configured VIL scenario. Then we tried to experiment with
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additional datasets, but other widely used datasets have the following problems
when constructing the VIL scenario. ImageNet-R [8] and VLCS [20] have severe
imbalance problems, and thus in some classes, it becomes a few-shot (about 1
to 5) learning task when constructing a VIL scenario. Moreover, PACS [12] and
OfficeHome [21] have an insufficient number of classes (both have 7 classes) to
strictly evaluate incremental scenarios and have imbalance problems too. Thus,
the VIL scenario requires more complex and well-organized large benchmarks
to evaluate the effectiveness of VIL methods and encourage the advances of this
real-world challenge.

Furthermore, in IC, there can be other algorithms to replace max pooling
which are more effective based on further analysis even though they work well
currently. In the same way, deciding the number of clusters in CAST as the
sequential tasks increase can be addressed in the future work. Also, while only a
single domain and a single group of classes increase in the current VIL setting,
having more than a single domain and a single group of classes can be included
in the future work as well.

6 Hyperparameters of Comparison Models.

1. L2P [25]
● iDigits

- Prompt pool size: 20
● CORe50

- Prompt pool size: 40
● DomainNet

- Prompt pool size: 30
● Common

- Prompt top-K: 5
- Prompt length: 5
- Batch size: 16

2. S-Prompts [23]
● iDigits

- Number of clusters: 4
● CORe50

- Number of clusters: 8
● DomainNet

- Number of clusters: 6
● Common

- Prompt length: 10
- Batch size: 128

3. DualPrompt [24]
● iDigits

- E-Prompt pool size: 20
● CORe50
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- E-Prompt pool size: 40
● DomainNet

- E-Prompt pool size: 30
● Common

- G-Prompt layer index: [0, 1]
- G-Prompt length: 5
- E-Prompt layer index: [2, 3, 4]
- E-Prompt length: 5
- E-Prompt top-K: 1
- Batch size: 24

4. CODA-P [19]
● iDigits

- E-Prompt pool size: 20
● CORe50

- E-Prompt pool size: 40
● DomainNet

- E-Prompt pool size: 30
● Common

- G-Prompt length: 0
- E-Prompt length: 8
- Batch size: 128

5. LAE [5]
● Common

- Adapter location: [0, 1, 2, 3, 4] of Multi-head Self-Attention layer
- Adapter downsample: 5
- EMA decay: 0.9999
- Batch size: 24
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