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Abstract. Incremental Learning (IL) aims to accumulate knowledge
from sequential input tasks while overcoming catastrophic forgetting.
Existing IL methods typically assume that an incoming task has only
increments of classes or domains, referred to as Class IL (CIL) or Do-
main IL (DIL), respectively. In this work, we consider a more challeng-
ing and realistic but under-explored IL scenario, named Versatile In-
cremental Learning (VIL), in which a model has no prior of which of
the classes or domains will increase in the next task. In the proposed
VIL scenario, the model faces intra-class domain confusion and inter-
domain class confusion, which makes the model fail to accumulate new
knowledge without interference with learned knowledge. To address these
issues, we propose a simple yet effective IL framework, named Incremen-
tal Classifier with Adaptation Shift cONtrol (ICON). Based on shifts
of learnable modules, we design a novel regularization method called
Cluster-based Adaptation Shift conTrol (CAST) to control the model to
avoid confusion with the previously learned knowledge and thereby ac-
cumulate the new knowledge more effectively. Moreover, we introduce an
Incremental Classifier (IC) which expands its output nodes to address
the overwriting issue from different domains corresponding to a single
class while maintaining the previous knowledge. We conducted exten-
sive experiments on three benchmarks, showcasing the effectiveness of
our method across all the scenarios, particularly in cases where the next
task can be randomly altered. Our implementation code is available at
https://github.com/KHU-AGI/VIL.

Keywords: Incremental learning · Real-world scenario · Adaptation
control · Incremental classifier

1 Introduction

Recently, Incremental Learning (IL) strategies [3–6,8,9,11–13,17,19,20,23,24,26,
28, 29, 33, 34, 36, 37, 39–41, 41] have made significant progress in leveraging deep
neural networks in a situation when multiple input tasks arrive sequentially. The
main challenge of IL is catastrophic forgetting [18], which refers to a phenomenon
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(a) Class IL (CIL). (b) Domain IL (DIL). (c) Versatile IL (VIL).

Fig. 1: Illustration of several IL scenarios, including our proposed new scenario, Ver-
satile Incremental Learning. Each color shade indicates each domain group, and the
solid box indicates each class group. The incremental step follows the red arrow.

in the model that significantly forgets what it has learned previously. The main-
stream scenarios to tackle catastrophic forgetting within IL typically fall into
two categories: Class IL (CIL) where tasks possess disjoint label spaces within
the same domain (see Figure 1a, and Domain IL (DIL) where tasks share the
same label space but exhibit distinct distributions (see Figure 1b. Most of the
recent IL studies have focused on either CIL or DIL scenarios [6, 29,34,36,37].

These existing settings are based on a strong assumption that sequential
input tasks always share the same classes or domains, i.e., only classes or domains
can increase, and this assumption makes the existing methods impractical to
apply to the real world. For example, the models for self-driving cars should
continuously learn increasing classes of objects while the domains where a car lies
continuously change by different environments (e.g., weather conditions, regions,
etc.). Therefore, the models need to learn new classes or domains sequentially
when they cannot expect what will increment afterward. Yet, this situation is
under-explored in the existing IL settings although it is crucial for the model
function well in real-world scenarios.

In this paper, to alleviate the aforementioned assumption, we introduce a new
IL scenario called Versatile Incremental Learning (VIL) for the first time,
which is more challenging and realistic than the existing CIL or DIL settings.
VIL aims to deal with a situation where the incoming tasks can contain new
classes in the same domain, the same classes in a new domain, or new classes
in a new domain. In the VIL setting, the model encounters new tasks without
knowing how these tasks will increase, as depicted in Figure 1c. In this class and
domain-agnostic incremental scenario, the goal is for the models to learn how to
accumulate task-specific knowledge continuously without forgetting, regardless
of the incremental type of incoming tasks.

To investigate how the novel VIL scenario is challenging, we conducted ex-
periments on three different datasets. As shown in Figure 2, existing CIL and
DIL methods fail in the VIL scenario. We analyze that existing CIL methods
face severe drift in the classifier while learning new domains that share the same
classes. In the case of DIL methods, they fail on VIL due to inter-domain class
confusion, which is caused by their strong assumption of increasing only the do-
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Fig. 2: Comparison of average accuracies among existing CIL and DIL methods in
iDigits, CORe50, and DomainNet. In this figure, we compare the baselines that show
the best performances in each benchmark, e.g., CODA-Prompt [29] and S-Prompts [34]
in iDigits and CORe50, and LAE [6] and S-Prompts [34] in DomainNet. Our proposed
ICON outperforms the previous state-of-the-art methods in all scenarios, including the
challenging VIL setting.

mains. Therefore, VIL is a challenging scenario that causes severe catastrophic
forgetting due to drift in the classifier and class distribution change.

In light of these empirical findings, we propose a new method named Incre-
mental Classifier with Adaptation Shift cONtrol (ICON), which tackles the
VIL setting to consider not just one kind of CIL or DIL, but both when learn-
ing incrementally. The main challenge of VIL is that since subsequent tasks
can have random incremental types, it is difficult for the model to accumulate
knowledge in a specific direction for each type of incremental task. To this end,
we propose a simple yet effective strategy coined Cluster-based Adaptation Shift
conTrol (CAST) to control the learning direction of the model in a stream of
erratic input tasks. Specifically, we effectively regularize the direction of current
learning concerning the learning directions of previous tasks. Furthermore, we
propose Incremental Classifier (IC), a new strategy to regulate the classifier by
increasing its output nodes dynamically. It helps the model to learn knowledge
of multiple domains for each class effectively while preventing severe forgetting
in the classifier. Through these strategies, our proposed ICON achieves state-of-
the-art performances in the VIL scenario, including existing IL scenarios across
three benchmarks. Our main contributions can be summarized as follows:

– We propose a new realistic IL scenario for the first time, coined Versatile
Incremental Learning (VIL), where a model has no prior knowledge of how
sequential tasks possess class or domain distributions. To tackle this challeng-
ing scenario effectively, we propose a new IL framework, called Incremental
Classifier with Adaptation Shift cONtrol (ICON).

– We introduce a new Cluster-based Adaptation Shift conTrol (CAST) loss to
guide the learning direction of subsequent tasks to avoid colliding with those
of dissimilar tasks already learned.
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Fig. 3: Illustration of comparison of shifts in adapters when the type of IL remains
the same or changes in DomainNet. Shifts are measured by subtracting the previous
weights with weights after learning a task.

– To effectively learn multiple domains in the VIL scenario, we propose a
new Incremental Classifier (IC) that dynamically increases the output units
corresponding to a single label. This approach can alleviate severe drift in
the output nodes of the classifier.

– Comprehensive experiments demonstrate that the proposed ICON outper-
forms the existing state-of-the-art methods significantly in the VIL setting,
as well as existing IL scenarios, which shows the effectiveness of the proposed
framework.

2 Related Work

More Realistic IL Scenario. Recently, cross-domain IL, which sequentially
learns classes from different domains, has begun to be studied [1,27,35,38]. This
is a more difficult and realistic scenario than traditional class IL or domain IL,
because the large domain gap between each task, coupled with the learning of
discrete classes for each task, poses challenges for knowledge transfer. However,
the existing methods [1,27,35] restrict this setting in which each subsequent task
always has unseen classes on different domains. Another work [38] considers
the setting that early tasks have only increasing classes, and the others have
only increasing domains. This setting does not consider that classes or domains
can increase at any time in the real world. In this paper, we introduce a more
realistic and general scenario where the model learns consecutive tasks without
prior knowledge of how inputs will increase. The absence of prior knowledge
regarding the increment type allows the VIL scenario to encompass not only
traditional IL scenarios (CIL and DIL) but also more realistic cross-domain IL
as a subset of task streams.
Regularization for IL. Regularization methods for IL have evolved to pre-
vent catastrophic forgetting by adding regularization terms with reference to
the old model. In general, the existing regularization methods can be catego-
rized into weight regularization and function regularization [32]. EWC [9], SI [4],
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and MAS [22] are the classic regularization approaches that calculate the im-
portance of parameters and consider it to avoid severe changes of important
parameters by imposing a penalty to the loss function. Function regularization
methods maintain the original knowledge using the output of the model. Using
only current task data, LwF [13] distills the knowledge of the previous model by
matching its outputs with the current ones.

However, existing regularization methods are not optimal when the tasks in-
crease in a versatile way. We empirically investigated how the parameters are
updated when the type of IL changes compared to when the type of IL remains
the same. As shown in Figure 3, the similarities of shifts of the model between
the same type of IL are fairly higher than those when what increments in the
following task changes. This indicates that the shifts of the model lean towards
disparate directions when the type IL shifts from one to another. Therefore,
when its learning direction shifts, the model cannot accumulate knowledge well,
deteriorating catastrophic forgetting. Hence, it is needed to regularize the di-
rection of learning of the model not to conflict with the direction of dissimilar
learning in history. Inspired by these points, we propose a novel regularization
method for this sake, which will be further described in Section 3.2.
Model Expansion for IL. Many attempts [3,7,8,11,12,33,35,39,41] have been
made to dynamically expand the models, e.g . neurons, modules, etc., and the
extended capacity is utilized to acquire task-specific knowledge in IL. DER [39]
increases a new feature extractor per each task to learn task-specific super fea-
tures with mask layers. Moreover, DyTox [3] proposed a dynamically expandable
representation model as well as a classifier in a task-dynamic manner. Recently,
ESN [35] also proposes the expandable classifier method, but they leverage train-
ing samples augmented in different ways in the inference phase to vote for the
classifier with low free energy (likely in-distribution) [15,30] among multiple clas-
sifiers. However, the aforementioned expandable classifiers also fail in our novel
VIL setting because there is no consideration for the same class in different
domains which causes intra-class domain confusion and inter-domain class con-
fusion by weight overwriting. In contrast, we propose a novel selective node-wise
expandable classifier to address the overwriting problem that leads to catas-
trophic forgetting in the existing classifier when learning the same classes across
different domains.

3 Method

In this section, we propose a simple yet effective incremental learning frame-
work named ICON to address the problems of VIL aforementioned. We first
introduce the proposed VIL scenario and briefly review the problems that derive
from the under-explored VIL scenario in Section 3.1. Next, we propose two novel
methods: Cluster-based Adaptation Shift Control (CAST) and Incremental Clas-
sifier (IC) in Section 3.2 and Section 3.3, respectively. Finally, we describe the
whole training scheme with an optimization objective in Section 3.4.
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Table 1: Comparison of typical incremental learning scenarios and proposed VIL.

Scenario Attribute CIL DIL VIL
Can it have disjoint label space? ✓ ✗ ✔

Can it have disjoint domain space? ✗ ✓ ✔

Can it have both disjoint label and domain space? ✗ ✗ ✔

3.1 Scenario Description of VIL

Previously, the types of IL can be categorized into CIL and DIL, which have
limitations in that they assume that what will increase in the next task compared
to the current task is fixed with class or domain. However, in the real-world, class,
domain, or both can be increased at a time. Therefore, we introduce a new IL
scenario named Versatile-Incremental Learning (VIL) which better suits for the
real-world. In the VIL scenario, only classes, only domain or both can increase
in the very following task and we describe each scenario in Table 1 and illustrate
it in Figure 1. As shown in Table 1, the existing CIL setting is fixed to have only
disjoint label space, and the DIL setting is fixed to have only disjoint domain
space. However, in a task stream of VIL, two sequential tasks can have disjoint
label space, disjoint domain space, or both. In these differences, the model in
the VIL scenario suffers from the problems as follows.

In the proposed VIL scenario, the model fails on VIL due to intra-class do-
main confusion and inter-domain class confusion that is derived from the ever-
dynamically changing input distribution. Furthermore, the model faces severe
drift in the classifier while learning new domains that share the same classes.
To address these problems, we propose Cluster-based Adaptation Shift conTrol
(CAST) to prevent model confusion and Incremental Classifier (IC) to prevent
weight drift from different domains corresponding to a single class. We precisely
explain each proposed method in the following sections.

3.2 Cluster-based Adaptation Shift Control

In existing CIL and DIL scenarios, the model can accumulate knowledge steadily
without any guidance about updating directions of learnable weights since do-
mains or classes are shared for the entire tasks, which makes the accumulation
of knowledge easier. However, in the VIL scenario, there is no prior knowledge
of what will increment and what will remain stationary in the following task
whether it is classes or domain. Consequently, this makes it difficult to accu-
mulate knowledge in a steady direction along the entire tasks. Therefore, it is
necessary to have guidance for a model about how to accumulate the knowledge
preventing its current shift from moving capriciously. Here, we propose Cluster-
based Adaptation Shift conTrol (CAST) loss for this sake.

In order to learn the current task without affecting the various knowledge
learned previously, we regularize the direction of updates in current adapters
with respect to the directions of updates in previous tasks. For this sake, the
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Fig. 4: Architecture overview. In training time, the model calculates the current shift
V i
t of learnable modules by subtracting them with previous ones. Then a cluster Si

t

which V i
t belongs to is decided, and shifts in the the shift pool which belong to other

clusters Si′

t are considered to be from disparate previous tasks. To guide the current
learning toward a direction where it does not conflict with Vj , V i

t is regularized to be
orthogonal to for all Vj in Si′

t . After learning a task, Vt is saved as a shift in the shift
pool which will be used for clustering afterwards.

model saves weights of adapters Aprev
t−1 before learning task t − 1 as shown in

Figure 4. After learning task t − 1, Vt−1 which we define as the shift in adapter
while learning the task is measured by subtracting Aprev

t−1 from Aafter
t−1 , where

Aafter
t−1 is the adapter weights after learning task t − 1 as follows:

Vt−1 = Aafter
t−1 −Aprev

t−1 . (1)

Here, the subscripts of A and V indicate the task identity, while the superscripts
of A indicate the status with regard to the current task. The shift Vt−1 in the
direction of task t−1 is then saved to a shift pool. As shown in Figure 4, the shift
pool saves all previous shifts obtained after learning each task. It is followed by
clustering the entire shifts in the shift pool saved until task t − 1 using the K-
Means algorithm. Then, when training the following task t, the shift of adapter
for current iteration i, V i

t is calculated using the current weights of adapter Ai
t

for each iteration. Here, we define the shift in the direction of current learning
in comparison with the state before the beginning of the task t as follows:

V i
t = Ai

t −Aprev
t , (2)

where Aprev
t is the adapter weights before learning task t.

The subtraction of weights implies the meaning of the direction of learning
the task, and it can be derived from the formula of classic gradient descent for
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parameter update as follows:

Ai+1
t = Ai

t − η
∂L
∂Ai

t

, A1
t = A0

t − η
∂L
∂A0

t

. (3)

From Equation 3,

Ai
t = A0

t − η
i−1
∑
k=0

∂L
∂Ak

t

, (4)

∴ V i
t = Ai

t −Aprev
t = Ai

t −A0
t = −η

i−1
∑
k=0

∂L
∂Ak

t

. (5)

We can replace Ai
t using Ai−1

t , and after successive replacement from Ai
t to A1

t ,
the subtraction of two weights is expressed in the form of summation of gradients,
which is accumulated gradients. Therefore, by simply subtracting two weights,
we can utilize the shift in the direction of the current iteration with regard to
the state before learning task t.

After the calculation of V i
t , the model predicts the index of the cluster which

V i
t belongs to for each iteration among clusters established via K-Means before

learning task t. The prediction is done by selecting a cluster whose center is
the closest with V i

t . The cluster that V i
t belongs to is notated as Si

t , and other
clusters as Si′

t . The shifts that belong to the rest of clusters Si′

t represent the di-
rections of previous tasks whose directions are distinctive from current learning.
Therefore, to prevent the direction of current learning V i

t from colliding with
those directions, they are used to regularize the current learning. The regular-
ization of the direction of current learning is done by making V i

t to be orthogonal
with shifts in Si′

t . Finally, the equation for CAST loss is defined as follows:

LCAST =∑
j

wj ⋅ V i
t ⋅ Vj

∥V i
t ∥ ∥Vj∥ , wj =

∥V i
t − Vj∥2

∑Vk∈Si′
t
∥V i

t − Vk∥2
, (6)

where Vj ∈ Si′

t , S
i′

t = {V1, V2, . . . , Vt−1} − Si
t . We consider all shifts in Si′

t using
weighted sum in the loss, with wj being acquired using Euclidean distance be-
tween V i

t and Vj in Si′

t , thereby considering the discrepancy of current shift and
each Vj differentially. As a result, the CAST loss leads the current shift not to
affect the shifts in the shift pool while adapting to the current task. Specifically,
the updates of weights in the current task are adjusted in the direction that
preserves the direction of disparate tasks, while fine-tuning. Hence, the model
can accumulate knowledge in a stable direction with regard to all tasks, even
when the input tasks change arbitrarily. As the sequence of tasks increases, the
model can further benefit from CAST by regularizing the direction of shifts and
thereby accumulating knowledge in succession.

3.3 Incremental Classifier

In the proposed VIL scenario, the existing CIL methods have not considered
the same class in different domains, resulting in a forgetting problem due to the



Versatile Incremental Learning 9

Fig. 5: Illustration of Incremental Classifier (IC) in training. The model increases the
output node of classifier if needed whenever classes in current task q had already learned
before, i.e. task p. Nodes for remaining classes included in task q are trained to preserve
the knowledge via distillation. The original nodes with classes whose output nodes has
been increased at task q are kept intact by omitting them from cross-entropy loss.

classifier weight overwriting while struggling with intra-class domain confusion.
Also, existing DIL methods suffer from inter-domain class confusion based on
their consideration of increasing only the domains. To deal with this problem,
we propose a simple but effective Incremental Classifier (IC) (Figure 5) which
increments the final output node of the classifier layer if needed. Unlike the
existing expandable methods, the proposed IC deals with the problem through
a decision process on whether to increase the node using class-wise dynamic
thresholding. Detailed descriptions are as follows.

As mentioned, the fully domain-specific classifier has problems, and it is
necessary to set the appropriate criteria and increase nodes accordingly. To this
end, we utilize the accuracy of each class in the learned domains and the current
domain to determine the class-wise threshold δi dynamically as follows:

δi = tanh(pi), pi = γ ∗
1

∣Dprev ∣(∑d∈Dprev Acc (Cd
i ) ) −Acc (Cdnew

i )
1

∣Dprev ∣ ∑d∈Dprev Acc (Cd
i )

, (7)

where Dprev = {d ∣1 ≤ d ≤ D} (sequential integer set), D refers to the number of
previously learned tasks that contain the same classes as the newly arrived but
different domains, Acc(Cd

i ) refers to the accuracy of i-th class in d-th domain,
and γ is a scaling factor. We consider only the classes that need to be learned in
the current task in the entire processes of the IC (except for the shaded nodes in
Figure 5). In this context, pi in Equation 7 which is obtained by comparing the
accuracies between the new domain and the already learned domains, represents
the difficulty of the corresponding class in the new domain, and the classes whose
accuracies are below the thresholds are considered as challenging classes to learn
using the existing classifier. Therefore, the model increments its output nodes
corresponding to each challenging class. During training, for challenging classes,
only the logits of the increased nodes in the current task are used, and the
existing nodes are not used to prevent forgetting (red solid line box in Figure 5).
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For classes that are not relatively difficult, i.e. whose nodes do not need to be
increased in the current task, the method for handling nodes is different from the
above. In the case of classes that have not been increased and therefore have only
a single corresponding node (the corresponding node to class C1

k+1 in Figure 5),
their single logits are used. In contrast, for the classes that have multiple nodes
corresponding to one class which are not increased in the current task, but
increased in previous tasks, a selection process is required to obtain a unique
logit for learning. Our model selects the maximum logit from multiple nodes
(blue dotted line box with Max operation in Figure 5). We adopt the reasonable
design choices for simple Max operation as follows. A classifier learned with the
cross-entropy (CE) loss can be regarded as an energy model [10], that aims to
minimize the energy of it. Existing energy-based methods [14, 30] have shown
that data from in-distribution usually have lower energy than data from out-of-
distribution for a certain classifier. In this context, the nodes with smaller energy
for a single class are better suited to current training data than the others in
that they are more likely to be in-distribution [2, 25]. If the energy function is
defined as E(x, y) = −fy(x) (unnormalized negative logit of class y for input x)
according to [14], it can be determined that the node that produces the maximum
logit (minimum energy) is the most suited for learning the current training data.
Therefore, choosing the maximum logit for the final prediction is a simple but
effective solution. This node selection strategy is also used in the inference.

Finally, the CE loss (LCE) is applied to all final output logits (see Figure 5).
Moreover, to prevent forgetting, we distill the knowledge of the nodes learned
in the (t − 1)-th task into nodes not selected by the Max operation. Here, the
corresponding logit and Kullback-Leibler divergence loss (LKL) are used (see
Figure 5). The total loss of the proposed IC (LIC) is as follows:

LIC = LCE(Ot, y) + αLKL(Ot,Ot−1), (8)

where Ot = f t,P
ϕ (fθ,A(x)[CLS]) refers to the final logits obtained by a classi-

fier that is updated in current task t. f t,P
ϕ means the classifier of task t with a

function P that decides whether to increase the node with class-wise dynamic
thresholding, and P is applied to the final output of the classifier. fθ,A and fϕ
indicate the frozen ViT (θ) with trainable adapters (A) and the classifier, respec-
tively. fθ,A(⋅)[CLS] is the CLS token of the output after passing all transformer
layers. y is the label and α is the balancing weight between two objectives.

3.4 Training Objective

Along with LCAST in Equation 6 and LIC in Equation 8, our end-to-end full
optimization is as follows:

LTotal = βLCAST (Ot, y) +LIC(Ot,Ot−1, y, α), (9)

where (x, y) ∈ Dt, data of current task Dt. While the parameters of the ViT
are frozen, only the parameters A of the adapters and ϕ of the classifier are
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Table 2: Dataset composition and configuration for each scenario. All IL scenarios
were configured not deviate from the original composition of each dataset. Values with
asterisk (*) refer to the number of domains on trainset pre-defined in the CORe50 [16].
N and Ct indicates that number of tasks and classes per task respectively.

Dataset
Composition CIL DIL VIL

#Class #Domain N Ct N Ct N Ct

iDigits [31] 10 4 5 2 4 10 20 2
CORe50 [16] 50 11 5 10 8* 50 40 10
DomainNet [21] 345 6 5 69 6 345 30 10

updated. The final logits Ot = f t,P
ϕ (fθ,A(x)[CLS]) same as in Equation 8. The

proposed IC can solve the forgetting problem derived from the classifier weight
overwriting and inter-domain class confusion that the existing methods suffered,
and its superiority is demonstrated in the next (Section 4).

4 Experiments

In this section, we compared and evaluated our approach with state-of-the-art
methods on widely used datasets. First, we introduce the experimental setup
including the datasets, comparison baselines, and metrics in Sec. 4.1. The details
about implementation and training are described in supplementary material.
Also, we show extensive results of our experiments in Sec. 4.2 to demonstrate
the effectiveness of our approach. Moreover, we conducted elaborate analysis
including ablation studies in Sec. 4.3 to interpret our approach in detail.

4.1 Experimental Setup

Datasets. We conducted experiments on three benchmarks, including iDig-
its [31], CORe50 [16] and DomainNet [21] which are possible to construct IL
scenarios that can cause a large shift in distribution by clearly distinguishing
both classes and domains. The composition and configuration for each scenario
about the datasets are described in Table 2 and please refer to the supplementary
material for a more detailed explanation of the datasets.
Comparison Baselines. We compared ICON against naive baselines and var-
ious IL methods including the latest ones. First, we set the Lower-bound as
usual supervised sequential fine-tuning result (notated as Fine-tuning in Ta-
ble 3). Then, we compared our proposed ICON with the regularization-based
methods EWC [9] and LwF [13]. Moreover, we compared it with the recent
prompt-based methods, including S-Prompts [34], L2P [37], DualPrompt [36],
CODA-Prompt [29] and LAE [6].
Evaluation Metrics. We evaluated the methods by the widely used two IL
metrics: Average Accuracy which is the higher the better (marked as Avg. Acc↑),
and Forgetting which is the lower the better. For the scenarios with clear task
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Table 3: Main results with all of the IL scenarios. Experiments were conducted based
on the latest incremental learning models. We used the bold and the underline as brief
indications of the best and the second best, respectively.

Method
CIL DIL VIL

Average
Avg. Acc↑ Forgetting↓ Avg. Acc↑ Forgetting↓ Avg. Acc↑ Forgetting↓

iDigits
Fine-tuning 30.32±0.77 48.01±0.72 33.04±0.89 23.23±0.74 19.89±0.82 57.17±1.28 26.22±1.92
EWC [9] 34.16±0.32 38.72±0.59 68.62±0.92 25.94±0.98 21.86±1.45 53.98±1.28 37.36±1.87
LwF [13] 39.88±0.91 33.35±0.52 69.61±0.33 25.81±0.69 23.44±0.14 53.65±0.42 41.91±2.19
L2P [37] 63.17±0.88 28.53±0.81 73.83±0.26 23.43±0.65 59.07±3.01 15.82±2.64 64.43±2.44

S-Prompts [34] 55.09±3.27 25.61±1.62 75.11±2.31 25.66±6.23 39.73±3.40 15.41±1.16 54.33±4.64
DualPrompt [36] 68.82±0.97 11.81±1.77 76.42±0.46 26.33±0.62 60.25±2.92 23.40±3.50 67.61±3.43

CODA-P [29] 69.97±1.02 19.83±2.28 77.42±0.71 22.20±0.18 63.30±3.08 16.43±2.63 70.95±3.91
LAE [6] 65.77±0.83 28.47±0.77 79.09±1.03 21.86±0.40 59.34±0.95 29.32±1.72 68.12±3.12

ICON (Ours) 71.53±0.68 19.36±1.17 84.83±0.51 12.67±0.61 75.11±2.39 9.13±1.88 77.15±1.19
CORe50

Fine-tuning 21.54±1.91 74.05±1.31 23.52±0.26 3.09±0.11 14.04±0.50 58.59±0.83 19.86±1.28
EWC [9] 33.89±0.83 50.18±0.30 73.86±0.38 1.09±0.12 43.20±0.71 9.56±0.46 50.62±1.94
LwF [13] 34.53±0.55 41.05±0.30 74.35±0.52 0.81±0.27 45.77±1.03 10.53±0.79 52.19±1.82
L2P [37] 70.03±0.51 6.51±0.59 80.72±0.39 0.51±0.28 64.85±0.92 6.62±0.19 70.18±0.68

S-Prompts [34] 68.27±3.92 11.79±0.24 86.50±0.46 0.92±0.31 52.88±0.85 6.18±0.83 67.51±1.67
DualPrompt [36] 71.96±0.37 5.04±0.71 81.41±0.22 0.21±0.76 66.21±1.76 7.20±0.88 71.46±1.00

CODA-P [29] 77.85±0.44 4.78±0.37 84.36±1.04 0.64±0.14 69.28±0.24 6.77±0.38 74.52±0.68
LAE [6] 77.11±0.31 18.38±1.67 83.09±0.71 0.17±0.51 77.11±1.37 8.23±2.59 75.89±1.00

ICON (Ours) 80.85±0.23 7.68±0.52 89.01±0.33 0.17±0.21 83.18±1.21 4.72±0.24 84.34±0.59
DomainNet

Fine-tuning 35.43±0.58 47.79±0.28 39.52±0.32 28.81±0.64 20.35±0.72 43.22±1.14 31.66±0.57
EWC [9] 53.04±0.53 24.41±0.48 41.58±0.26 26.79±0.15 36.68±0.25 27.68±0.91 44.28±1.19
LwF [13] 53.79±0.61 19.41±0.11 43.74±0.27 18.23±0.10 38.17±0.35 21.87±0.64 44.70±1.09
L2P [37] 60.90±0.69 8.23±0.90 48.55±0.81 19.71±1.29 48.98±0.69 14.71±1.07 54.22±0.87

S-Prompts [34] 39.78±0.62 19.29±1.04 50.80±0.63 4.20±0.53 35.90±0.54 14.25±15.66 42.54±1.21
DualPrompt [36] 62.55±0.92 7.62±1.07 51.33±0.10 9.60±1.41 49.36±1.05 16.79±1.17 56.00±0.84

CODA-P [29] 65.21±0.24 15.01±0.21 49.13±0.83 25.96±1.13 49.45±1.27 17.01±2.37 58.73±0.93
LAE [6] 65.06±0.18 9.68±0.84 44.67±0.62 28.99±0.64 49.01±1.18 21.20±1.33 55.26±1.63

ICON (Ours) 65.43±0.15 9.72±0.46 54.44±0.21 13.32±0.46 53.37±0.47 11.25±0.18 59.74±1.06

boundaries, we reported the final test score following the general protocol [29,
34,36,37].

4.2 Experimental Results

Main Results. We conducted extensive experiments, including traditional IL
scenarios as well as the proposed VIL scenario. The results are summarized in
Table 3. As shown in the table, ICON significantly outperformed the existing
methods in our proposed VIL scenario in terms of both average accuracy and
forgetting (shaded column). Moreover, we demonstrated the effectiveness of the
proposed methods even in existing scenarios, resulting in the best average perfor-
mance for all scenarios (unshaded columns). Furthermore, the existing state-of-
the-art model showed a rather unstable performance (high standard deviation)
in the two aforementioned scenarios, whereas ICON showed a very stable per-
formance (low standard deviation). This indicates that while existing methods
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Table 4: Results on Cross-Domain Incremental Learning scenario.

Method
iDigits CORe50 DomainNet

Average
Avg. Acc↑ Forgetting↓ Avg. Acc↑ Forgetting↓ Avg. Acc↑ Forgetting↓

Fine-tuning 21.62±5.21 51.01±6.86 20.35±2.46 33.89±1.57 31.35±0.68 56.74±3.18 24.44±2.78
EWC [9] 24.79±4.81 48.94±4.29 51.56±5.87 28.55±4.11 45.85±3.75 34.57±4.20 40.73±4.81
LwF [13] 34.71±7.38 36.34±4.91 54.12±5.18 27.10±1.41 43.12±3.14 33.13±2.77 43.98±5.23
L2P [37] 61.66±5.61 16.84±6.89 65.12±0.93 7.43±1.73 58.45±1.32 6.32±9.80 61.74±2.62

S-Prompts [34] 47.40±9.61 10.03±3.32 62.41±1.47 11.87±4.27 38.82±1.76 9.12±2.11 49.54±4.28
DualPrompt [36] 64.95±9.38 14.90±6.59 66.29±1.65 8.86±1.28 60.79±1.30 5.34±1.94 64.01±4.11

CODA-P [29] 73.09±10.85 11.41±4.13 66.59±1.03 6.08±0.95 67.56±3.44 10.47±1.71 69.08±5.10
LAE [6] 68.24±9.68 19.22±4.22 66.28±1.64 10.17±1.79 61.78±4.56 17.16±3.05 65.43±5.29

ICON (Ours) 75.73±5.63 10.72±2.40 74.98±0.03 5.50±2.17 67.95±1.87 8.18±1.80 72.88±2.51

Table 5: Ablation of CAST and IC in the VIL scenario.

Method iDigits CORe50 DomainNet
Average

CAST IC Avg. Acc↑ Forgetting↓ Avg. Acc↑ Forgetting↓ Avg. Acc↑ Forgetting↓
59.34±0.95 29.32±1.72 77.11±1.37 8.23±2.59 49.01±1.18 21.20±1.33 61.82±1.17

✓ 68.34±2.09 18.30±6.41 79.20±0.59 4.55±1.81 50.56±0.51 17.50±0.96 66.03±1.06
✓ 66.97±1.03 14.32±5.10 81.13±3.01 5.32±2.11 51.60±1.32 11.90±0.77 66.57±1.79

✓ ✓ 75.11±2.39 9.13±1.88 83.18±1.21 4.72±0.24 53.37±0.47 11.25±0.18 69.98±1.23

have limits in their learning abilities based on the order of class and domain that
consists of each task, but ICON can reliably learn in any order.
Results on Cross-Domain Incremental Learning. Moreover, we conducted
experiments on cross-domain incremental learning as shown in Table 4. In cross-
domain IL, both class and domain always increase at the same time in the
following tasks, which is a subset of the VIL scenario. For all datasets, the
number of classes in a task is the same as CIL setting. The number of tasks is 4
in iDigits, and 5 for CORe50 and DomainNet. The outstanding performance on
cross-domain IL implies that our proposed CAST and IC successfully accumulate
knowledge from inputs on various sequences of data distributions.

4.3 Analysis

Ablation Study. We further investigated the effectiveness of each component
of ICON in Table 5. We conducted an ablation study starting from our baseline,
adding CAST, IC, and both. We confirmed that using the CAST loss to regu-
larize the direction of current learning by considering the shifts in parameters
in history is effective in learning versatile tasks. Furthermore, we also confirmed
that with IC, the model can accumulate knowledge of different domains within
the same classes by increasing its output node when the existing nodes are de-
cided not to be appropriate to be used in a new domain. By adopting CAST
and IC for VIL, the model can leverage the effectiveness of each component with
synergy. The ablation results showed that each component of ICON was effective
in alleviating catastrophic forgetting in a situation where input tasks are erratic.
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Moreover, we conducted an ablation study on IC by dividing it into node
expansion and distillation as shown in Table 6. Implementation of simple ex-
pansion of output nodes without distillation to preserve the knowledge showed
considerable performance gain. It indicates that the separation of the output
nodes corresponding to a single class can accommodate disparate knowledge
from different domains. As already known, a distillation of knowledge from pre-
vious classifier was also helpful in mitigating catastrophic forgetting in VIL as
well.
Number of Clusters. We conducted our experiments with different numbers
of clusters in our proposed CAST, varying from 0 to 6 in the VIL setting. We
demonstrated the performance gain from our baseline for each dataset in Fig-
ure 6, where not using CAST is equivalent to when the number of clusters
is 0, and we used all previous shifts in the history for CAST loss when the
number of clusters is 1. As you can see in Figure 6, iDigits gained the best
performance when the number of clusters is 2 and CORe50 when 3. Since the
number of the entire tasks is 20 for iDigits and 40 for CORe50, it can be in-
terpreted that as the number of tasks grows, clustering the history shifts into
a bigger number is effective when the sequence becomes longer. Using bigger
than 3 for the number of clusters did not show any noticeable performance gain.

Table 6: Ablation of IC in iDigits. NE and
KD refer to node expansion and knowledge
distillation respectively.

NE KD Avg. Acc↑ Forgetting↓
59.34±0.95 29.32±1.72

✓ 63.10±3.58 25.50±2.98
✓ 64.66±3.10 19.30±3.27

✓ ✓ 66.97±1.03 14.32±5.10
Fig. 6: Performance gain from number of
clusters.

5 Conclusion

In this work, we proposed a new IL scenario named Versatile Incremental Learn-
ing (VIL), that reflects a more complex real-world derived from random incre-
mental streams (classes, domains, or both) without any incremental prior knowl-
edge. We defined the key challenges in VIL and proposed a novel framework,
coined ICON (Incremental Classifier with Adaptation Shift cONtrol), composed
of Cluster-based Adaptation Shift conTrol (CAST) loss and Incremental Classi-
fier (IC). We demonstrated that ICON showed SOTA performance in the pro-
posed VIL, as well as existing IL scenarios, and its effectiveness through various
experiments. We look forward to our proposed VIL scenario serves as a new
starting point for real-world IL field.

Nevertheless, there is still room for improvement in our work, especially re-
garding the scenario. A scenario that considers a varying number of classes and
domains in a task can deal with a more realistic scenario, since in real-world,
the distributions of classes and domains in a task can change.
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