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Abstract. In this supplementary material, we first extend the related
work from the main paper. Then, we provide an in-depth explanation of
our proposed network architecture, encompassing both the Reconstruc-
tion Network and the Semantic-Discriminative Network. We also present
the pseudo-code for our novel updating strategy. Besides, we validate the
semantics spaces to support our assumption. Additionally, we examine a
failure case and analyze the reason for negative forgetting measurement
(FM), memory size, efficiency, and limitations of our current approach.
This analysis leads us to propose potential directions for future research,
aiming to advance the field further.

1 Related Work (continued)

General Incremental Learning Incremental learning (also known as continu-
ous learning, lifelong learning) aims to enable AI systems to continuously acquire,
update, accumulate, and utilize knowledge in response to external changes [14].
The primary challenge in incremental learning is to alleviate catastrophic for-
getting, and numerous studies have been conducted to design methods targeting
this objective [14]. Typically, continuous learning approaches can be categorized
into regularization-based methods [1, 7, 16], rehearsal-based methods [3, 9], and
dynamic architecture methods [12], etc. Generally, these methods are closely
related to their respective downstream tasks [14].

⋆ Corresponding author.
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However, unlike other downstream tasks, our continuous learning requires
building upon an image reconstruction network. Therefore, we analyze the fun-
damental cause of catastrophic forgetting in reconstruction networks as feature
conflict and propose a suitable method for reducing catastrophic forgetting in
reconstruction networks by employing network space operations.

2 Network Implementation

Our framework is composed of two critical learning-based modules: the Recon-
struction Network and the Semantic-Discriminative Network. The subsequent
sections will delineate the intricacies of each component in detail.

2.1 Reconstruction Network

Following the previous studies [10, 15], we adopt the transformer-based autoen-
coder for reconstruction. Specifically, we use a four-layer encoder and a four-layer
decoder. Table 2 shows the details of this network.

2.2 Semantic-Discriminative Network

The Semantic-Discriminative Network serves as a plug-and-play module designed
to enhance the learning of semantic boundaries. It’s seamlessly integrated with
the Object-Aware Self-Attention (OASA) mechanism. To achieve this, we lever-
age a transformer-based architecture for the discriminator, focusing on the ef-
fective classification of labels. The network is structured around a four-layer
transformer, complemented by two fully connected layers, as detailed in Table 3.

2.3 Objective of COn and Decision of T .

COn is the intermediate feature of the classifier, representing the semantic spaces
of different objects. We formulate satisfied COn with T feature layers to capture
both coarse semantics in shallow layers, and fine-grained semantics from deep
layers. The location of these T layers is identical in the discriminator and the
reconstruction network since they have the same encoder structure.

3 Experiment Validation of Objects’ Semantics Spaces

Fig. 1 shows an example of the feature spaces of various objects in our network.
Different objects have varying activations in distinct channels, which reflects
their occupied different semantic spaces. Certainly, shared semantic spaces may
also happen (like grid and screw).
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4 Pseudo-Code of Our Updating Strategy

Algorithm 1 shows our update strategy. This strategy makes two modifications
to Vanilla Gradient Descent. The first is retaining prior semantic information
by model regulation in updating, and the second is decreasing the rewriting of
prior semantics by semantic importance. Both of them make the updated space
to minimize the impact on the old model memory, thus avoiding catastrophic
forgetting.

5 Selection of New or Old Objects

We verified the feature distribution of the dataset and found they are separated
(as Fig. 5). So, the objects’ order is not strict. We follow the previous research
(CAD [8]), sorting all objects in alphabetical order.

6 Quantitative Evaluation Throughout the Procedure

We quantitatively evaluate the efficacy of our proposed method by examining
its performance across the entire task stream. The evaluation focuses on the
accuracy of our method and its ability to retain learned information over time,
which is paramount in the context of incremental learning.

As depicted in Fig. 3 and Fig. 4, our method consistently outperforms other
baselines under most task protocols. Although there are instances where the
model’s performance in certain intermediate steps is suboptimal, it still main-
tains the SOTA overall performance in the whole task stream.

7 Explanation of Negative FM.

The reason is that when the AUROC of the previous tasks is lower, the new
updating object may improve the overall AUROC, resulting in a negative FM
(as Fig. 2).

Since the base AUROC of our method is much higher than other baselines,
the performance of the newly integrated object is still higher (although it may
cause a decrease overall), leading to a high forgetting measure. Therefore, FM
does not reflect the real performance in retaining previous objects or integrating
new objects facing different previous AUROC.

8 Memory Size Analysis

First, as Table 1, our network’s base backbone is not heavy and takes up less
memory space than others. For updating new objects, our saved feature has
already been compressed in the spatial dimensions and is much smaller than
other baselines, L× 1(≈ 5) << H ×W (≈ 48× 48).
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Table 1: Memory analysis of different frameworks.

CAD UCAD Ours
Fixed (Base Model) ↓ ViT (∼330 MB) SAM (∼2.4G) + ViT (∼330MB) Recon. + Classifi. (∼160 MB)

After Updating ↓ N × C ×H ×W N × C ×H ×W L×N × C × 1 (L is number of layers)

9 Preliminary Analysis in Efficiency

Compared to UniAD [15], while our method has an efficiency loss due to the clas-
sification network, it still has high performance (about 5.88 FPS), and it is higher
than other SOTA baselines such as Padim [4] (about 1.14 FPS), PatchCore [11]
(about 1.28 FPS), Reverse Distillation [5] (about 0.10 FPS), and Dream [6]
(about 0.45 FPS). The problem of efficiency is not the main concern of our
paper, but it is a good direction to explore in the future.

10 Failure Analysis

Despite our algorithm’s advancements in mitigating catastrophic forgetting, it
encounters challenges with complex structured objects, as illustrated in Fig. 6.
While it significantly reduces semantic feature conflicts, outperforming UniAD [15]
in handling a broad spectrum of semantic inconsistencies, limitations inherent
to the semantic space and network capacity prevent it from capturing all correct
semantic information accurately.

11 Limitations

Firstly, our approach does not explicitly represent the semantic space capacity,
which is unfavorable for measuring the network ability for object-incremental
learning. Besides, feature sharing is also significant in incremental learning since
feature sharing on the reconstruction network can reduce the space occupation
of individual objects. These limitations are valuable and should be further dis-
cussed.

12 Future Work

Given the limitations discussed in Sec. 10 and Sec. 11, a critical future research
direction is the explicit evaluation of the semantic space within the reconstruc-
tion network. An accurate estimation of the semantic space would enable us
to gauge the network’s capacity directly. This insight could then be leveraged
to dynamically compress or expand the network’s space as required, optimizing
performance and adaptability.
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Fig. 1: Example of Objects’ Semantic Space.

Fig. 2: Explanation of negative FM.
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Table 2: Architecture of transformer-based autoencoder with feature extract-
ing network (EfficientNet [13]). Each encoder consists of an Object-Aware Self-
Attention (OASA) followed by a feed-forward neural network (FFN), as Y =
FFN(OASA(XQ, XK , XV ) + X) + X. Each encoder consists of a vanilla Self-
Attention (SA) followed by a feed-forward neural network (FFN), as Y =
FFN(SA(XQ, XK , XV ) +X) +X

Layer Type Position Activation Heads KQV Dim Feed-forward Dim Output Size
Input Image - - - - - H ×W × 3

EfficientNet - - - - - H
16
× W

16
× C

Embedding Layer - - - - - H
16
× W

16
× C

Encoder Layers
OASA 1 ReLU 2 1024 - H

16
× W

16
× C

Feed-forward 1 ReLU - - 1024 H
16
× W

16
× C

OASA 2 ReLU 4 1024 - H
16
× W

16
× C

Feed-forward 2 ReLU - - 1024 H
16
× W

16
× C

OASA 3 ReLU 4 1024 - H
16
× W

16
× C

Feed-forward 3 ReLU - - 1024 H
16
× W

16
× C

OASA 4 ReLU 8 1024 - H
16
× W

16
× C

Feed-forward 4 ReLU - - 1024 H
16
× W

16
× C

Decoder Layers
Self-Attention 1 ReLU 2 1024 - H

16
× W

16
× C

Feed-forward 1 ReLU - - 1024 H
16
× W

16
× C

Self-Attention 2 ReLU 4 1024 - H
16
× W

16
× C

Feed-forward 2 ReLU - - 1024 H
16
× W

16
× C

Self-Attention 3 ReLU 4 1024 - H
16
× W

16
× C

Feed-forward 3 ReLU - - 1024 H
16
× W

16
× C

Self-Attention 4 ReLU 8 1024 - H
16
× W

16
× C

Feed-forward 4 ReLU - - 1024 H
16
× W

16
× C

Output Layer - Sigmoid - - - H
16
× W

16
× C

Table 3: Architecture of the Semantic-Discriminative Network with one transformer
backbone and two full connect layers for classifying.

Layer Type Position Activation Heads KQV Dim Feed-forward Dim Output Size
Input Feature - - - - - H

16
× W

16
× C

Transformer Backbone
Self-Attention 1 ReLU 2 1024 - H

16
× W

16
× C

Feed-forward 1 ReLU - - 1024 H
16
× W

16
× C

Self-Attention 2 ReLU 4 1024 - H
16
× W

16
× C

Feed-forward 2 ReLU - - 1024 H
16
× W

16
× C

Self-Attention 3 ReLU 4 1024 - H
16
× W

16
× C

Feed-forward 3 ReLU - - 1024 H
16
× W

16
× C

Self-Attention 4 ReLU 8 1024 - H
16
× W

16
× C

Feed-forward 4 ReLU - - 1024 H
16
× W

16
× C

Classification Head
Global Average Pooling - - - - - C

Fully Connected - ReLU - - - C
2

Fully Connected - ReLU - - - 15

Output Layer - Softmax - - - 15
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Algorithm 1 Model Updating with Prior Memory

Require: Model parameters: θ = (θ1, θ2, . . . , θJ) ∈ RC×W , representing the weights
of a neural network model across C channels and W weights.

Require: Learning rate: α, the step size used in the gradient descent optimization.
Require: Old weights: θoldj , the weights of the model from the previous iteration, used

for preserving prior learning.
Require: Regulation hyper-parameter: β, a constant to control the influence of old

weights on the update.
Require: Channel eigenspace in old objects: V T

old, representing the eigenvectors of the
old weight space, used to project updates.

1: Update weight considering old semantics: θ
′
j ← θj +∇θj + βθoldj , where ∇θj is the

gradient of the loss function w.r.t. θj . This step combines the current update with
a portion of the old weights to maintain prior knowledge.

2: Project gradient to channel space: ∇Θj = V T
old∇θj , projecting the gradient onto

the space of old channels.
3: Constrain updates: Ω(k, c) = k∗log(c), defining a function to modulate the updates

based on the channel and some constant k.
4: Update gradient: ∇θ∗j = (V T

old)
−1Ω(k, n) ⊙ ∇Θj , applying the modulation to the

projected gradient.
5: Update model: θ

′
j ← θj + ∇θ∗j + βθoldj , finalizing the update by combining the

modulated gradient with the original and old weights.
6: return Updated model parameters θ

′
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Fig. 3: Quantitative evaluation in all steps (MvTec AD [2]). Here are the accuracy-
changing charts in the whole task stream. These charts indicate our method can main-
tain a low forgetting rate compared with other baselines.
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Fig. 4: Quantitative evaluation in all steps (VisA [17]). Here are the accuracy-changing
charts in the whole task stream. These charts indicate that our method can maintain
a low forgetting rate compared with other baselines.
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Fig. 5: Explanation of Selecting New/Old Objects.

Transistor 
“Damaged Case”

Ground Truth OursUniAD

Fig. 6: Failure Case in Transistor. Compared to UniAD [15]. Although our method
avoids catastrophic forgetting and reconstructs the corresponding objects as much as
possible, it still cannot locate defective regions precisely.
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