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1 Architecture of Temporal Disparity Completion
Module

Our temporal disparity completion module is depicted in Fig. 1. It takes the semi-
dense disparity projected from the previous timestamp, a binary mask indicating
the sparsity in the disparity map, and the multi-level context features from the
feature extractor as the inputs.
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Fig. 1: Architecture of the temporal disparity completion module.

The semi-dense disparity map undergoes a preprocessing step where the dis-
parity values are scaled down by a factor of 1/β before being encoded by a
lightweight MLP. This is done to compress the range of disparities into a smaller
interval, aiming to obtain a globally well-initialized disparity map. We set β to 10
in practice. Afterward, features of disparity and binary mask are concatenated
⋆ Corresponding author
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and passed into an encoder-decoder network, along with multi-level context fea-
tures. This network outputs a weight map and an intermediate disparity map
ditm. The weight w ∈ (0, 1) is used to fuse the intermediate disparity ditm with
the semi-dense disparity dsemi, which is formulated as:

dfused = w × ditm + (1− w)× dsemi.

The fused disparity map is scaled up by the factor of β to produce the completed
disparity map. Additionally, the multi-level features from the decoder network
are passed through a tanh function to provide state features for further temporal
state fusion.

2 Training and Testing Split of Ablation Study

The TartanAir [3] dataset is categorized into Easy mode and Hard mode based
on motion patterns, with the former having fixed pitch and roll angles, whereas
the latter encompasses 6 DoF motion, along with higher translation and rotation
speeds. Unlike the strategy of TemporalStereo [4] training exclusively on data
with hard motion patterns, our ablation study involves both Easy and Hard
data for training and testing. This provides a comprehensive evaluation of our
method with different motion patterns. Specifically, we sampled 17 videos from
the entire dataset, encompassing a variety of scenes, for evaluation, as shown in
Table 1. The remaining data was utilized for training.

Video ID Scene Motion Pattern Part Video ID Scene Motion Pattern Part
1 abandonedfactory Easy P002 10 hospital Hard P042
2 abandonedfactory Hard P002 11 office Easy P006
3 amusement Easy P007 12 office Hard P006
4 amusement Hard P007 13 office2 Easy P004
5 carwelding Hard P003 14 office2 Hard P004
6 endofworld Easy P006 15 oldtown Hard P006
7 endofworld Hard P006 16 soulcity Easy P008
8 gascola Easy P001 17 soulcity Hard P008
9 gascola Hard P001

Table 1: Test set of ablation study on TartanAir dataset.

3 Additional Temporal Metrics of Ablation Study

The additional 3-px error rate of temporal metrics for the ablation study is
shown in Table 2. Setting (H) shows a significant reduction in the 3-px error
rates compared to Setting (A). Both |∆d|>3px and Relu(∆e)>3px decreased by
over 40%. Additionally, compared to (B), despite setting (C) showing the lower
overall accuracy, the |∆d|>3px and Relu(∆e)>3px metrics are significantly better.
This highlights the importance of temporal information for maintaining temporal
consistency.
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(%)
Relu(∆e)>3px

(%)
(A) 2 5 1.78 0.81 7.53 3.06
(B) 2 32 1.48 0.71 6.08 2.60
(C) 2 5 ✓ 1.34 0.65 5.90 2.07
(D) 2 5 ✓ ✓ 1.29 0.61 5.54 1.96
(E) 2 5 ✓ ✓ ✓ 1.05 0.45 4.84 1.77
(F) 2 5 ✓ ✓ ✓ 1.03 0.47 4.77 1.80
(G) 2 5 ✓ ✓ ✓ ✓ 1.00 0.45 4.58 1.74
(H) 4 5 ✓ ✓ ✓ ✓ 0.99 0.45 4.46 1.69
(I) 4 5 ✓ ✓ ✓ 1.40 0.67 5.95 2.54

Table 2: 3-px error rate of temporal metrics for ablation study on TartanAir [3].

4 Visualizations on Temporal Consistency

Frame 0 Frame 1 Frame 2 Frame 3 Frame 4
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Fig. 2: Visualizations of temporal consistency on the TartanAir dataset. For
the error map, blue regions indicate small errors, while red regions indicate large errors.

Fig. 2 illustrates the temporally inconsistent cases of RAFT-Stereo caused
by reflective surfaces. As the camera moves, the reflection spots on the window
also move, disrupting the matching of corresponding points and leading to tem-
poral inconsistency in the results predicted by RAFT-Stereo [2]. In contrast, our
method effectively maintains temporal consistency. This is primarily due to the
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Fig. 3: EPE change with pose noise level (left), and moving speed multiplier (right)
on Tartanair.

utilization of temporal information and the dual-space refinement module, which
constrains the ill-posed regions.

5 Robustness on Pose and Large Camera Motion

Similar to XR-stereo [1], we evaluate the robustness of our method by examining
its performance under varying pose noise levels and moving speed. Fig. 3 illus-
trates the change in End-Point Error (EPE) with varying pose noise levels (left)
and moving speed multipliers (right) on the TartanAir dataset. Each noise level
randomly perturbs the rotation by 0.3° and the position by 3% of the baseline
length. It can be observed that to a certain extent, our method is robust to
pose noise and large motions. However, for larger pose noise, the accuracy of
the method decreases rapidly as the noise level increases. This decline is likely
due to incorrect initialization disparity caused by erroneous poses, which in turn
misguides the model. As for large motion, due to the limited overlap between
two frames, the model gradually degrades into regressing disparity from scratch
like RAFT-Stereo [2].
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