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Abstract. Endoscopic Ultrasound (EUS) is advantageous in perceiving
hierarchical changes in the esophageal tract wall for diagnosing submu-
cosal tumors. However, the lesions often disrupt the structural integrity
and fine-grained texture information of the esophageal layer, impeding
the accurate diagnosis. Moreover, the lesions can appear in any radial
position due to the characteristics of EUS imaging, further increasing the
difficulty of diagnosis. In this study, we advance an automatic classifica-
tion model by equipping the Vision Transformer (ViT), a state-of-the-
art(SOTA) model, with a novel statistical rotation-invariant reinforce-
ment mechanism dubbed SRRM. Mainly, we adaptively select crucial
regions to avoid interference from irrelevant information in the image.
Also, this model integrates histogram statistical features with rotation in-
variance into the self-attention mechanism, achieving bias-free capture of
fine-grained information of lesions at arbitrary radial positions. Validated
by in-house clinical and public data, SRRM-ViT has demonstrated re-
markable performance improvements, suggesting our approach’s efficacy
and potential in EUS image classification.The source code is publicly
available at: https://github.com/tianyiliu-lab/SRRM-ViT/.
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Fig. 1: The annular imaging characteristics of EUS result in a highly random spatial
distribution of lesions. Firstly, we perform a rotation operation and then extract the
lesion area from the detection image; following that, we apply histogram statistics to
analyze this segmented region. The histogram analysis results showed that the his-
togram distribution of the lesion area remained unchanged.

Fig. 2: Typical esophageal cancer presented in EUS of in-house dataset.

1 Introduction

Esophageal cancer is the eighth most common type of cancer worldwide and
constitutes the sixth leading cause of cancer deaths [37]. Esophageal cancer de-
tection methods include X-ray, CT, endoscopy, endoscopic ultrasound (EUS)
technology, and tissue excision. Considering factors such as economy and secu-
rity, EUS is more appropriate. Therefore, it is crucial to develop an accurate and
robust EUS-based detection method in modern esophageal cancer research.

Due to the complex hierarchical structure of the esophagus, the types of
lesions are diverse. As demonstrated in Fig.1 and Fig.2, the tumor originat-
ing from the muscular layer compresses the mucosal layer, and the infiltrative
tumors directly invade both the mucosal and muscular layers, causing severe
disruption to the structure. These characteristics lead to minor internal imaging
differences within subclasses, contributing to a high misdiagnosis rate. Previ-
ous EUS detection of the digestive tract mainly focused on tumors originating
within the gastrointestinal [54]. To our knowledge, our work is the first work
to include infiltrative tumors in the classification task. Traditional classifica-
tion models lack attention to internal detailed texture information, performing
poorly on such complex problems. Therefore, a more fine-grained classification
method is required for esophageal cancer ultrasound images. Current research
methods in Fine-Grained Visual Classification (FGVC) can generally divided
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into location-based and attention-based approaches. The localization-based ap-
proaches [4, 18, 45] achieve FGVC by directly annotating discriminative parts
in the image. Previous work on esophageal cancer EUS grading based on this
approach, where doctors segmented the lesion area first and then trained and
predicted the segmented regions. However, pre-segmentation of regions is time-
consuming and requires extensive clinical experience, which hinders the prac-
tical applicability of these methods. The attention-based methods [44, 53, 58]
can detect discriminative regions in the image automatically through attention
mechanisms. These approaches eliminate the need for handcrafted annotation of
discriminative regions and have achieved encouraging results. However, enhanc-
ing rotation invariance pivot to the Esophageal Cancer EUS FGVC model has
yet to be thoroughly explored in transformer-based approaches.

In this paper, we introduce Soft Histogram Texture Feature Reinforced To-
ken Selection ViT(SRRM-ViT), an innovative FGVC technique for esophageal
cancer diagnosis. To the best of our knowledge, this handcrafted feature integra-
tion mechanism is introduced for the first time, providing a novel approach to
improve model performance and reinforce model robustness. In contrast to prior
works [43, 55], where doctors segmented the lesion area first and then trained
and predicted the segmented regions, our method avoids region pre-segmentation
that is time-consuming and requires extensive clinical experience. As demon-
strated in Fig.1, the local detailed texture information of the lesion and its
surroundings plays a crucial role in the classification results; at the same time,
the annular imaging characteristics of EUS result in a highly random spatial
distribution of lesions within the images. Therefore, motivated by clinical expe-
rience, we first employed a self-attention [38] weight integration mechanism [16]
for the EUS FGVC task in Esophageal Cancer. This method dynamically select-
ing crucial texture regions in the images to ensure the model makes decisions
based on the distinctive texture features of different pathological categories.
Moreover, considering CNN and ViT are translation invariant but sensitive to
rotation [23,24], we further specifically focus on the issue of rotational invariance
learning in EUS images to improve our method. Joshua Peeples et.al [28] have
demonstrated that soft histogram features provide a degree of rotational invari-
ance by learning the same local pixel distribution for each image, enhancing
the performance of texture analysis. Inspired by this study, we advance a fea-
ture fusion mechanism integrating soft histogram features with rotation-invariant
texture characteristics into the model, boosting its performance and mitigating
rotation sensitivity. Experimental results on in-house data and publicly avail-
able dataset reveal outstanding performance of the proposed method, implying
its applicability in various scenarios.

In summary, we make the following contributions:

• We employ a region importance discrimination model based on the ViT for
EUS FGVC task in Esophageal Cancer, leading to a further improvement in
performance.
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Fig. 3: Proposed architecture, including the Soft Histogram Texture Feature Modeling,
Rotation-invariant Reinforcement, Token Selection Module, and the loss function.

• We propose the Soft Histogram Texture Feature Reinforce mechanism, inte-
grating rotation invariant features into the key and value matrices to capture
lesions in arbitrary spatial locations.

• For the first time, we use complete EUS images and include infiltrative tu-
mors in the classification task. Compared to classical algorithms on both
in-house and public data, our approach shows significant improvement.

2 Related Works

2.1 Endoscopic Ultrasound Image Classification

The detection rate of submucosal tumors (SMT) has been on the rise due to
heightened public health awareness, the widespread popularity of endoscopic
examinations, and the advancement and maturation of endoscopic ultrasound
(EUS) technology [13, 36]. Recently, there have been some studies focusing on
endoscopic ultrasound images of the digestive tract. Hangbin Zheng et.al [54]
proposed a two-stage deep learning algorithm, which encompasses an attention-
based network and self-supervised pre-training. Junke Wu et.al [43] proposed
a multi-feature fusion classification method for adaptive EUS tumor images.
They classified local lesions processed through principal component analysis,
local binary pattern, and gray-level co-occurrence matrix using support vector
machines. Hangbin Zheng et.al [55] introduce a Multi-Attribute Guided Con-
textual Attention Network (MAG-CA-Net) for interpretable SMT recognition
in EUS. This network localizes abnormal areas using echo attributes and then
determines tumor categories through contextual semantics. These tasks require
doctors to pre-segment the lesion area and exclude infiltrative tumor categories.
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2.2 Fine-Grained Visual Classification

Considerable efforts have been devoted to addressing fine-grained visual clas-
sification challenges. The primary obstacle in this domain lies in enhancing
inter-class disparities and capturing intra-class similarities [49]. Currently, deep
learning-based methods for fine-grained visual classification can be categorized
into two main types. The first type is the localization method, which trains a
detection network to accurately identify discriminative regions, followed by the
fusion of these localized regions for fine-grained classification [8,14,21,49,52,57].
The second method is the feature encoding method, which aims to learn more
informative features by calculating high-order information [20, 56] or exploring
relationships between contrastive pairs [6, 7, 10,29,33,35].

In recent years, ViT has demonstrated outstanding performance in gen-
eral image classification [9], image retrieval [12], and semantic segmentation
[58]. These achievements show that the inherent attention mechanism of the
pure Transformer architecture can autonomously identify important image re-
gions for recognition. As the first work investigating visual transformers in the
FGVC domain [16], proposed replacing the input of the final transformer layer
with key tokens, leading to improved results. Jun Wang et.al [40] introduced a
new transformer-based framework, Feature Fusion Vision Transformer (FFVT),
which aggregates key tokens from each transformer layer to capture local, low-
level, and mid-level information. Wang, Q et.al [41] designed an attention ag-
gregating transformer (AA-Trans) with a core attention aggregator (CAA) and
an innovative information entropy selector (IES) to guide the network in acquir-
ing discriminative parts of the image precisely. Sun, H et.al [34] introduced a
structure information learning (SIL) module and a multi-level feature boosting
(MFB) module, which incorporate spatial context information of key patches
and utilize multi-level feature complementarity and inter-class contrastive learn-
ing to enhance feature robustness. These methods have not been tailored to
enhance specific task characteristics, such as emphasizing rotation-invariant tex-
ture features in the fine-grained classification of esophageal cancer endoscopic
ultrasound images.

2.3 Rotation-invariant Handcrafted Features

Combining neural and handcrafted features into a deep learning architecture
can reinforce the model’s learning ability for fine-grained texture features; these
approaches have already been successful [5, 22, 27, 39, 42]. Additionally, the ro-
tation invariance of handcrafted features can improve the model’s sensitivity
to rotation issues. However, handcrafted features can not be updated through
backpropagation.

In recent years, much research have been conducted on the design task of
soft handcrafted features, and significant progress has been made. Qiuze Yu et.al
[50] proposed an improved nonlinear scale-invariant feature transform (SIFT).
This framework-based algorithm combines spatial feature detection with local
frequency-domain description to registering Synthetic Aperture Radar(SAR)
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and optical images; these methods achieved remarkable accuracy improvements.
Rohan Dubey et.al [11] proposed integrating the geometric structure of the Eu-
clidean motion group SE(2) into convolutional networks via SE(2)-group convo-
lution layers. This approach ensures translation and rotation equivariance, main-
taining output invariance under a discrete set of rotations. Imran Riaz et.al [30]
proposed a circular shift combination local binary pattern (CSC-LBP) to com-
pute the local binary pattern within a 3×3 spatial window for each neighborhood
pixel separately can obtain the more discriminative feature vector. Maxime W
et.al [19] proposed a framework that encodes the geometric structure of the
Euclidean motion group SE(2) into convolutional networks, achieving transla-
tion and rotation equivariance through SE(2)-group convolution layers. They
ensured that the outputs remained invariant under a discrete set of rotations.
Qi Xie et.al [46] explored an ameliorated Fourier series expansion for 2D filters
and constructed a new equivariant convolution method; based on this, they pro-
posed filter parametrization method, named F-Conv. In super-resolution image
processing, the task outperforms classical convolution-based methods. Inspired
by these works, we reinforce the ViT model with soft histogram features that
can provide rotation-invariant texture information.

3 Methods

This section introduces SRRM-ViT in four parts: soft histogram feature model-
ing, rotation-invariant reinforcement, token selection and the loss function.

3.1 Overview

An overview of our method is shown in Fig.3. Firstly, we employ convolutional
layers to model soft histogram features. Secondly, we construct the soft histogram
rotation-invariant reinforcement mechanism, merging soft histogram features
with self-attention features using the rotation-invariant reinforcement mecha-
nism. Thirdly, we implement a module for sorting and selecting tokens based
on attention weights, aggregating attention weights from each layer, and identi-
fying tokens that capture intricate local lesion characteristics features. Finally,
SRRM-ViT is trained with a hybrid approach combining contrastive loss and
cross-entropy loss. This training strategy is designed to reduce the similarity
between classification tokens of different labels while maximizing the similarity
between classification tokens of samples with the same label.

3.2 Rotation-invariant Texture Self-attention

Soft Histogram Texture Feature Modeling. We utilize Radial Basis Func-
tions (RBFs) [29] for histogram feature modeling. The smooth slope will create a
path for gradients to flow backward through each histogram bin to the previous
layer. In addition, RBFs exhibit robustness to slight variations in bin centers
and widths compared to standard histogram operations. This is attributed to
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Fig. 4: Soft Histogram Texture Feature Modeling.

the soft bin allocation and smoothness of RBFs, allowing for a certain degree
of error tolerance. Similar to previous studies [48, 51], but considering the low
contrast of ultrasound images, we use a 3 × 3 convolutional kernel instead of a
1×1 kernel to capture more local context information, thus reducing the impact
of image noise and extracting more texture features. We employ a 3 × 3 × D
convolution to extract the feature maps from the input x ∈ RW×H×D, where d
is the channel number of the input. The binning operation for histogram values
is defined as follows:

Yrcnd =
1

WH

W∑
w=1

H∑
h=1

e−γ2
nd(xr+w,c+h,d−µnd)

2

, (1)

where r and c denote the spatial dimensions of the histogram feature map, n
represents the number of bins, and d represents the number of channels. The
aggregation process of feature mapping is shown in Fig.4. The binning process
begins by assigning each feature value to the nearest bin center (µnd). The center
of each bin’s feature is computed using a 3×3 convolution applied to each feature
map, where the convolution kernel weights are set uniformly to 1, , and each bias
acts as a trainable bin center. The width of features assigned to each bin (γnd) is
determined by another 3×3 convolution applied to each feature map, where the
biases in the convolution kernels are fixed at 0 and each weight is a trainable bin
width parameter. B represents the number of bins. Finally, the feature map will
be normalized by the exponential function e after passing through two special
convolutional layers.
Rotation-invariant Reinforcement. To address the issue of the sensitivity of
ViT to rotation, we fuse soft histogram feature map into weight of self-attention
reinforce the attention of the ViT to rotation invariant features. Soft histogram
reinforced self-attention can be viewed as a novel attention reinforcement learn-
ing method. Firstly, we use 1 × 1 convolution operation to aggregate all bins,
generating a feature aggregation map with the same size as the original feature.
Following that, the raw input and soft histogram feature aggregation map are
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preliminarily divided into non-overlapped patches. The number of patches can
be calculated as follows:

N =
W ×H

P 2
, (2)

where N denotes the number of patches, and P represents the height and width of
each patch. Patches are mapped into 1D vectors and encode the spatial positions
and relationships of the patches after the previous step, calculated as follows:

z =
[
x1
pE, x2

pE, · · · , xN
p E

]
+Epos, (3)

where N is the number of image patches, E ∈ R(p2×D)×M is the patch embedding
projection, and Epos ∈ RN∗M denotes the position embedding, M represents the
1D vector dimension. Finally, we construct the reinforcement mechanism using
original feature maps and soft histogram feature maps (Img1, Img2). For Img1,
we compute the query, key, and value vectors, corresponding to Q1, K1, and
V 1. For Img2, we only compute the key and value vectors, corresponding to K2
and V 2. Subsequently, we concatenate the key and value matrices from both
images and compute the attention between the query of the target image and
the combined key-value pairs as follows:

f (Q1,Kcat, Vcat) = softmax

(
Q1K

T
cat√
d

)
Vcat, (4)

where Kcat = [K1;K2] ∈ R(2N+2)×d and Vcat = [V1;V2] ∈ R(2N+2)×d. We com-
pute N+1 self-attention scores within itself and N+1 attention scores according
to Eq.4. All the 2N + 2 attention scores are jointly normalized by the softmax
function, thereby learning the attention scores for the target image Img1.

3.3 Token Selection Module

For the fine-grained classification of esophageal cancer EUS images, we need
to identify subtle variations in the lesion areas. Benefiting from the patch-
embedding mechanism of ViT, we can skip the region segmentation step and
select tokens that are beneficial for classification. Due to the lack of token dis-
tinguishability in embeddings, the original attention weights may not accurately
reflect the relative importance of input tokens, especially for higher layers of the
model [1,31]. Therefore, we integrate the attention weights from the early layers.
Specifically, we recursively apply matrix multiplication to the original attention
weights of all layers. Due to the change in attention weight size caused by the
rotation-invariant reinforcement mechanism, in contrast to previous work [16],
the recursive process requires the addition of a transpose operation as:

afinal =

l−1∏
l=0

a′l a′l =

{
aTl , l mod 2 ̸= 0
al , l mod 2 = 0.

(5)

As afinal captures information propagation from the input layer to embed-
dings in higher layers, this recursive process is preferred for selecting discrimina-
tive regions over single-layer raw attention weights aL−1. We then identify the
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indices corresponding to the maximum values A1, A2, · · · , AK across K different
attention heads in afinal. These indices correspond to the labels in zL−1. Finally,
we concatenate these selected labels with the classification labels to form the
input sequence, denoted as:

zlocal =
[
z0L−1; z

A1

L−1, z
A2

L−1, · · · , z
AK

L−1

]
. (6)

This operation preserves global information and enables the final Transformer
layer to emphasize subtle differences between subclasses while disregarding less
distinctive regions like background or common features.

3.4 Loss Function

We adopt the first token zi of the Self-attention weight integration module for
classification. The limitations of a basic cross-entropy loss become apparent in
fine-grained classification tasks, where subtle distinctions between sub-categories
may pose challenges for effective supervision. To address this, we utilize the
contrastive loss (Lcon), which has been widely applied in FGVC tasks, to reduce
the similarity between classification tokens associated with different labels while
maximizing the similarity of classification tokens from samples sharing the same
label y. To alleviate the influence of less challenging negative pairs, where samples
from different classes show minimal similarity, we introduce a constant margin α.
The Lcon, only considers negative pairs with a similarity greater than α, denoted
as:

Lcon =
1

N2

N∑
i

 N∑
j:yi=yj

(1− Cossim (zi, zj)+

N∑
j:yi ̸=yj

max ((Cossim (zi, zj)− α) , 0)

 .

(7)

Lcross (y, y′) represents the cross-entropy loss between the predicted label y′
and the ground-truth label y, denoted as:

Lcross (y, y
′) = − 1

N

N∑
i

· log (y′i) . (8)

In summary, our model is trained with the combined loss function, consisting
of the cross-entropy loss (Lcross ) and the contrastive loss (Lcon ), expressed as:

L = Lcross (y, y′) + Lcon (z). (9)

4 Experiments

4.1 Datasets

In-house Dataset. We utilized in-house data from the the First Affiliated Hos-
pital of Nanjing Medical University, captured using Olympus Endoscopic Ultra-
sound from May 2011 to October 2020 and the class labels were provided by five
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Fig. 5: Esophageal endoscopic ultrasound image hierarchical structure display.

Table 1: Distribution in the In-house Dataset.

In-house Dataset Super-class Origin Infiltration
Sub-class Propria Mucosa Propria Serosa Submucosa

Training Number 118 294 375 64 472
Testing Number 31 74 95 16 119

experienced doctors. We evaluate effectiveness of our method with classical meth-
ods and the recent SOTA FGVC methods on this dataset, the institutional ethics
committee has approved this study. During esophageal endoscopic ultrasound,
doctors use a water-filled balloon combined with intracaVitary water-filling tech-
nology to conduct the examination. Normal esophageal endoscopic ultrasound
examination shows a seven-layer structure of the esophageal wall. The first to
seventh layers from the inside to the outside are the hyperechoic mucosal ep-
ithelium, the hypoechoic mucosal lamina propria, the hyperechoic submucosal
layer, the hypoechoic superficial muscularis propria, and the hyperechoic muscu-
laris propria. The echogenic myenteric membrane, the hypoechoic deep layer of
the muscularis propria, and the hyperechoic adventitial layer as shown in Fig.5.
In this study, due to the thinning of the esophageal wall caused by the com-
pression of the probe, only a hyperechoic layer was visible in layers 1-3 in most
pictures.as detailed in Table1. There are 5 categories in total, including from
muscularis propria, from muscularis mucosae, origin muscularis propria, origin
adventitia, and origin submucosa. Fig.2 shows some sample images.
Brain Tumor MRI Dataset. Due to the lack of publicly available fine-grained
ultrasound classification datasets and our intention to test the effectiveness of
SRRM-ViT on different modalities of medical imaging data, we included a brain
tumor MRI dataset [26] for comparison. The dataset comprises 7023 grayscale
JPG images of human brain MRI, sourced from a combination of Figshare, SAR-
TAJ, and BrH35 datasets, detailed in the supplementary material. It includes
four classes of brain tumors: Glioma, Meningioma, No tumor, and Pituitary.
Notably, images from the Glioma class in the SARTAJ dataset were initially
misclassified and subsequently corrected during the dataset integration process.
Images categorized as no tumor originated from the BrH35 dataset.
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4.2 Training Details

We use 1324 cases for the training and 334 cases for the testing, and we im-
plement 5-fold cross-validation for the training set. Common data augmentation
techniques were applied, including horizontal flipping, vertical flipping, and ran-
dom rotation. Data is strictly partitioned by patient, ensuring that data from
the same patient does not appear concurrently in both training and test sets.
The image inputs are resized to 224 × 224. Each fold has 500 epochs, initial-
izing with intermediate weights from the official ViT-b16 model pre-trained on
ImageNet21k. The batch size is set to 16. The learning rate is 0.03. All experi-
ments are conducted using the PyTorch framework on an Nvidia 3090 GPU for
training, evaluation, and testing.

Table 2: Comparing our method with the classic models and recent SOTA FGVC
models on In-house Dataset(Unit: %, FLOPs unit: G).

Method Baseline Accuracy Precision Recall F1-score FLOPs
ResNet-18 [17] Resnet-18 68.9 88.4 31.4 26.1 1.82
ResNet-50 [17] Resnet-50 69.5 88.4 30.6 24.7 4.13
VGG-16 [32] Vgg-16 65.6 87.2 29.3 22.6 16.9

ViT [9] ViT-B 16 61.6 88.4 29.3 22.2 16.9
IELT [47] ViT-B 16 66.7 88.5 34.9 27.5 19.3
FFVT [40] ViT-B 16 73.8 91.3 33.6 28.9 16.4

Cross-X [25] Resnet-50 74.2 91.2 36.1 31.1 4.13
AA-Trans [41] ViT-B 16 74.3 91.3 33.0 28.4 25.7
SIM-Trans [34] ViT-B 16 75.9 91.8 37.0 32.5 16.9

ViT+TS ViT-B 16 76.3 90.5 39.7 34.7 17.0
ViT+TS+RR ViT-B 16 77.4 92.3 35.3 31.3 32.5
ViT+TS+Lcon ViT-B 16 77.9 91.0 41.8 36.7 17.0

SRRM-ViT ViT-B 16 78.7 92.1 41.1 36.8 32.5

4.3 Results and Analysis

We compare with classic models and recent SOTA FGVC models on in-house
data and use ViT as our baseline. We test our proposed Rotation-invariant Re-
inforcement(RR), Token Selection module(TS), and the loss function(Lcon) to
detect their improvement effect on the baseline. From Table2, we can see that
the model performance with the SRRM-ViT is significantly improved over some
classic models and SOTA models in recent years. The baseline, reinforced with
the TS module, achieved a remarkable improvement in classification accuracy,
reaching 14.7%. The RR module enables the fine-grained classification model
to focus more on rotation-invariant texture features, leading to a further im-
provement of 1.1% in accuracy. Contrastive loss effectively increases the dis-
tance between representations of similar sub-categories and decreases it between
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Fig. 6: The Grad-CAM heatmaps visualization of ResNet-18, ResNet-50, VGG16, ViT
vs SRRM-ViT. The red-colored areas indicate high attention from the model.

Fig. 7: The t-SNE visualization of IELT, SIM-Trans, CrossX, AA-Trans, FFVT vs
SRRM-ViT implemented on test set.

identical categories, as observed in the comparison of the confusion matrix in
Fig.8. The metric of the confusion matrix is cosine similarity. Viewing in color
is recommended. The Lcon further optimizes the model, ultimately achieving
an accuracy of 78.7%. In medical image recognition tasks, model accuracy is
the most critical evaluation metric for doctors. Compared to other models, our
method also shows considerable advantages in other metrics. Although our ap-
proach introduces additional parameters, the FLOPs for testing a single image
remain within an acceptable range. At the same time, we compared the sota
model in recent years on public Brain Tumor MRI Dataset. As shown in Ta-
ble 3, SRRM-ViT achieved an accuracy of 99.2%, which is 2.3% higher than
the baseline ViT model(- stands for reference paper not provided). For a de-
tailed analysis, please refer to the supplementary materials. This demonstrates
the superiority of our proposed rotation-invariant texture enhancement mecha-
nism across different modalities, proving not only its effectiveness but also the
generalizability of SRRM-ViT.
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(a) Confusion matrices of ViT. (b) Confusion matrices of
SRRM-ViT.

Fig. 8: Confusion matrices.

Fig.6 shows Grad-CAM heatmap visualization of ResNet18, ResNet50, VGG16,
ViT and SRRM-ViT. ResNet18 and VGG16 recognize the origin of the lesion
area but lack precision. Although CNN-based methods can focus on the lesion
area in infiltrative data, the coverage is limited. It is evident that CNN-based
methods emphasize local features while neglecting global features, leading to
imprecise recognition of lesion areas. Although ViT exhibits global attention in
infiltrative images, its accuracy is relatively low. Additionally, it is challenging
for ViT to focus on lesions in origin-type images, aligning with its sensitivity to
rotation. Our proposed method identifies rotation-invariant features and pays at-
tention to the global information of the esophageal wall, which demonstrates the
superiority of our proposed approach. It can be seen from Fig.7 that our method
makes features of the same type more clustered than other methods. However,
there is some confusion between the Infiltration Propria and Infiltration submu-
cosa categories. We analyzed the original data and found that the irregularity
of the infiltrative tumors caused the multi-layer structure of the esophagus to
be destroyed at the same time, which affected the classification results. This
limitation provides an inspiring foundation for our future work.

4.4 Ablation Study

We conduct ablation studies on SRRM-ViT to analyze how its variants affect the
result of fine-grained classification tasks in esophageal cancer EUS images. All
ablation studies are done on test sets. We evaluate the influence of the follow-
ing designs: soft-histogram rotation-invariant reinforcement module, contrastive
loss. The detailed analysis is as follows.
Influence of number of bin. The influence of various bin settings in Equation1
is shown in Table4. It is observed that a small number of bin can result in a
reduction in rotation-invariant feature extraction capabilities, thereby reducing
performance. Conversely, a high number of bin can increase model complexity
and lead to model degradation. Empirically, we determine that 8 yields the best
results in our experiments.
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Table 3: Accuracy comparison with classic models and recent SOTA models on Brain
Tumor MRI Dataset(Unit: %).

Method Accuracy Precision Recall F1-score
ConvAttenMixer [2] 97.9 98.6 95.3 96.7

Ensemble Learning [15] 98.0 - - -
CSA-MLP [3] 98.6 98.6 98.5 98.3

ViT [9] 96.9 98.6 73.0 72.2
SRRM-ViT 99.2 99.6 87.8 87.6

Table 4: Ablation study on number of bin and value of α (Unit: %).

Variate Value Accuracy Precision Recall F1-score
4 75.6 91.2 35.7 31.3

Number of bin 8 78.7 92.1 41.1 36.8
12 77.9 91.5 41.4 36.8
16 76.2 91.4 36.1 31.7
0.3 75.6 91.0 38.0 33.0
0.5 75.3 91.0 35.4 30.6

α 0.7 78.7 92.1 41.1 36.8
0.8 77.4 91.8 40.5 36.3
0.9 76.5 91.2 36.5 31.8

Influence of threshold for similarity α. The influence of different settings
for the α in Equation7 is presented in Table4. It is observed that a small value
of α can result in training signals being dominated by easy negatives, thereby
reducing performance. Conversely, a high value of α can impede the model from
learning sufficient information to increase the distances between hard negatives.
Empirically, we determine that 0.7 yields the best results in our experiments.

5 Conclusion

In this paper, we first introduce the problem of the fine-grained classification
task in esophageal cancer EUS images include infiltrative tumors class, provide a
more comprehensive auxiliary diagnostic model for esophageal cancer detection.
The rotation-invariant texture ViT we proposed not only solves the sensitivity
problem of ViT models to lesion rotation, but also provides new ideas for hand-
crafted feature enhancement methods. Finally, we achieved significant advances
compared to classical models and recent SOTA models in both in-house data
public data.
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