
Supplementary Material

In this supplementary material, we provide the following information to sup-
port the main paper:

A Supervised Finetuning with Noisy Ground Truth.
B Domain Adaptation by Entropy Minimization.
C Domain Adaptation by Other Pseudo Label-based Approaches.
D Analysis of Prediction Errors after KD for GGCVT [9].
E Error Distribution of Teacher and Student Models.
F T-SNE Feature.
G Assumption on Orientation.
H Extra Qualitative Results.
I Potential Negative Impact.
J Limitations.

A. Supervised Finetuning with Noisy Ground Truth

As mentioned in Section 4.5 of the main paper, when the ground truth locations
for cross-area supervised finetuning contain errors, the finetuned model has large
test errors. We test this by applying random offsets to the ground truth locations.

In our experiments, offsets were sampled randomly and uniformly (in both
the north-south and east-west directions) within a defined range for each ground-
level image in the cross-area training set prior to finetuning. These offsets were
then applied to shift the ground truth locations of the training images. As Fig-
ure 1 demonstrates, inaccuracies in the ground truth markedly affect the local-
ization precision of the finetuned model. For the supervised finetuned model to
outperform the model trained with our weakly-supervised learning approach in
terms of both mean and median test errors, the maximum permissible error in
the ground truth for each direction should be under approximately 2.5 m. In
practice, acquiring ground truth with this level of accuracy on a large scale is
difficult, as standard GNSS positioning does not meet this requirement [2]. In-
stead, our proposed method requires only ground-aerial image pairs, making it
a more scalable solution in practice.

B. Domain Adaptation by Entropy Minimization

As noted in our main paper Section 4.7, we explore entropy minimization [4]
as an alternative approach to adapt a model from the source domain to the
target domain. Entropy minimization is often used for semi-supervised domain
adaptation [10]. In this setting, the model is trained with a combination of
samples with ground truth labels from the source domain and unlabeled samples
from the target domain. When a source domain sample is presented, the model is
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Fig. 1: VIGOR test set errors (vertical axis) of CCVPE models fintuned on noisy
ground truth. The horizontal axis denotes the upper bound for error sampling.
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Fig. 2: Errors of CCVPE models with different entropy minimization weights ω on
VIGOR validation set.

trained using its default supervised learning loss LM. When the input is from the
target domain, the training objective is to minimize the entropy of the output
prediction using an entropy minimization loss LEM .

We train a CCVPE model [12] on a combination of VIGOR source and target
domain data using loss Lfinal,

Lfinal =

{
LM(M(G,A), ŷ), if {G,A} ∈ Iα, ŷ ∈ Yα,

ω · LEM (HK), if {G,A} ∈ Iβ .
(1)

In Equation 1, LM is the default supervised learning loss of CCVPE [12], HK

is the final output heat map of the model M on image pair {G,A}, and ω is a
hyperparameter that weighs the entropy minimization loss LEM . As in [10], we
calculate the pixel-wise Shannon Entropy [8] in the dense output, and then use
the sum of all pixel-wise entropy as our LEM ,

LEM (HK) = −
∑
u,v

HK(u, v) · log(HK(u, v)), (2)

HK(u, v) denotes the value at each location in the output heat map HK .
We tuned ω and found that joint training with entropy minimiza-

tion always hurts the model performance. As shown in Figure 2, the mean
and median error on the validation set (target area) increases when the model
is trained using a larger weight ω, and the best model appears when ω = 0,
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equivalent to direct generalization of a model trained in a supervised manner on
only source domain images.

For completeness, we also tried directly finetuning a pre-trained model from
the source domain on images from the target domain using entropy minimization
(no joint supervised training with source domain samples). Since the model failed
completely, we did not include the plots.

Entropy minimization simply encourages the heat map to be sharper in the
target area. Therefore, it does not resolve multi-modal uncertainty. As shown in
Figure 3, compared to direct generalization, training with entropy minimization
makes the red region in the heat map smaller, but the peak of the heat map
stays in the same mode in the multi-modal distribution. Instead, our proposed
knowledge self-distillation adapts the model to the target domain by explic-
itly encouraging the model to disambiguate multiple modes using the proposed
single-modal pseudo ground truth. As a result, our proposed method can correct
the wrong mode and also reduce uncertainty.

C. Domain Adaptation by Other Pseudo Label-based
Approaches

Our proposed Coarse-only Supervision uses the model’s highest resolution output
to supervise low-resolution ones. Alternatively, we also studied fusing the outputs
at different levels to generate supervision signals.

Similar to [5], we fuse information in both top-down and bottom-up direc-
tions to generate pseudo ground truth at each level for the student model. We
achieved this by up/downsampling teacher’s matching volumes at different lev-
els and fusing them with averaging. The error of the resulting student (4.49 m)
is larger than ours (3.85 m) and the teacher model (4.38 m). We hypothesize
that for localization, fine-grained high-resolution heat maps can help supervise
low-resolution maps, but not vice versa, which may be why [5]’s top-down +
bottom-up approach does not work for our task.

As an alternative to our proposed outlier filtering, we also tried an uncertainty-
based outlier filtering approach while keeping other proposed modules unchanged.
Similar to [6,11,13], we use the entropy of teacher’s output heat maps as a mea-
sure of their uncertainty. The teacher’s heat maps are ranked based on their
entropy and we use the most certain T% for student training. For a fair compar-
ison, CCVPE uses top 80% and GGCVT uses top 70% (same as in our proposed
outlier detection). The resulting models have higher errors (CCVPE/GGCVT:
4.17/4.52 m) than ours (3.85/4.34 m). Entropy-based methods do not consider
the spatial order of classes, e.g. a two-mode heat map with 1 m between two
modes will have the same entropy as a two-mode heat map with 10 m between
modes. However, the latter results in larger errors.



4 Z. Xia et al.

GT
No EM, =0

GT
EM, =0.1

GT
EM, =1.0

GT
KD, ours

GT
No EM, =0

GT
EM, =0.1

GT
EM, =1.0

GT
KD, ours

Fig. 3: Adapting a CCVPE model to the target domain with different methods. Results
on the VIGOR test set. Comparison between direct generalization (No EM, ω = 0),
different entropy minimization weights (EM, ω = 0.1 and EM, ω = 1.0), and our
proposed knowledge self-distillation (KD, ours). The red color denotes the localization
probability (a darker color means a higher probability).

D. Analysis of Prediction Errors after KD for GGCVT

Similar to the analysis of the predictions of CCVPE in our main paper Section
4.6, we here provide the overall statistical relation between the GGCVT’s predic-
tion errors and the change in its predicted locations after knowledge distillation.
Overall, we observe the same trend for GGCVT as we had for CCVPE
in the main paper, see Figure 4.

First, a strong correlation between the teacher model’s prediction errors and
the amount of difference between the predicted locations of a teacher and its
auxiliary student model is observed from the diagonal line in Figure 4a left. This
again confirms that the outliers in the teacher’s prediction can be identified by
measuring the changes in the predicted location after knowledge self-distillation,
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no matter what the localization backbone is, demonstrating the effectiveness of
our proposed outlier filtering.

Figure 4a right plot has many scattered points along the horizontal axis,
representing the predictions that are corrected by the auxiliary student model.
The diagonal line in this plot then shows the samples in which the auxiliary
student model introduced an error in its predictions, i.e. the correct teacher’s
predictions being moved to a wrong location or the wrong teacher’s predictions
being moved to another wrong location.

On the VIGOR test set Itest, Figure 4b validated that the final GGCVT
student model reduces the error of its teacher, as shown by the less prominent
diagonal line and more points along the horizontal axis in the right plot compared
to those in the left plot.

s · dα,o

ϵα

s · dα,o

ϵo

(a) Teacher (left) vs. Auxiliary student (right)
models on Iβ

s · dα,β

ϵα

s · dα,β

ϵβ

(b) Teacher (left) vs. Final student (right) mod-
els on Itest

Fig. 4: GGCVT model, relation between error ϵ and change d in predicted locations
from teacher and student models on VIGOR. ϵα / ϵo / ϵβ : errors (m) of teacher model’s
/ auxiliary student model’s / final student model’s predictions. s · dα,o / s · dα,β : the
difference (m) between predicted locations of teacher and auxiliary / final student.

E. Error Distribution of Teacher and Student Models

Next, we compare the error in predictions of the teacher model and that of
the final student model for both CCVPE and GGCVT on the VIGOR test
set Itest. We calculate the error change after weakly-supervised knowledge self-
distillation and visualize the statistics. In Figure 5 (a) and (b), the left part
of the two histograms (in purple and magenta) shows the samples that have a
smaller error in the final student model’s prediction. Similarly, the right part of
the two histograms (in navy and orange) denotes the samples that the teacher
model has a more accurate prediction. Overall, we see that, for both CCVPE
and GGCVT, there are more samples located in the left part. It demonstrates
that the final student model reduces the error for the majority of
samples.

For completeness, we also compare the final student model to the auxiliary
student model, see Figure 5 (c) and (d). As expected, for CCVPE, it is difficult to
see from the histograms a clear performance gap between the auxiliary student
model and the final student model, since the improvement of the final student
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(a) CCVPE model
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(c) CCVPE model
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Fig. 5: Change in errors. Plots (a) and (b): Comparison between prediction errors
of the teacher model Mα and prediction errors of the final student model Mβ on
VIGOR test set Itest. Purple and Magenta region: The final student model has smaller
errors. Navy and Orange region: The teacher model has smaller errors. Plots (c) and
(d): Comparison between prediction errors of the auxiliary student model Mo and
prediction errors of the final student model Mβ on VIGOR test set Itest. Purple and
Magenta region: The final student model has smaller errors. Navy and Orange region:
The auxiliary student model has smaller errors.

model over the auxiliary student model is relatively small, i.e. ∼ 0.1 m mean
error reduction. For GGCVT, the final student model outperforms the auxiliary
student model by ∼ 0.4 m in mean error. It can be seen in Figure 5 (d) that the
magenta area has slightly more samples in the −40 to −20 m region compared
to the 20 to 40 m region in the orange area. This shows that the final student
model has fewer outliers than the auxiliary student.

F. T-SNE Feature

To study if the extracted features by the teacher and final student models differ,
we use t-SNE [7] to map the features to a two-dimensional space for visual-
ization. We collected CCVPE’s ground features and the aerial features at the
GT locations at the model bottleneck. Figure 6 shows their t-SNE plots be-
fore (teacher model) and after adaptation (final student model). For the teacher
model, ground and aerial samples are disjoint in the feature space, complicating
matching across views. For our student the plot shows more overlap between the
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two views, indicating better alignment. This result supports that the quantita-
tive improvement of our approach results from adaptation to the target domain.

teacher ground feature
teacher aerial feature

student ground feature
student aerial feature

Fig. 6: t-SNE, VIGOR test set: CCVPE teacher model (left) and final student model
(right).

G. Assumption on Orientation

Our practical objective is to adapt a trained fine-grained cross-view localization
model to a new target area with easy-to-collect data, which includes orientation
measurements (see footnote 1 in the main paper). The known orientation is used
for lifting the 2D pseudo ground truth heat map to 3D for the CCVPE method,
see main paper Section 4.4. As noted in Equation 5 in the main paper, our loss
at output level k is a weighted sum of infoNCE losses. Each infoNCE loss is
defined as,

LinfoNCE(H
β
k | (m,n)) = −log

exp(Hβ
k (m,n)/τ)∑

m′,n′ exp(H
β
k (m

′, n′)/τ)
. (3)

The infoNCE loss interprets the output heat map Hβ
k in the target area β as

similarity scores. (m′, n′) is the location index in Hβ
k and (m,n) is the given

location index of the positive class. τ is a hyperparameter and we use τ =
10 as in [12]. When the output heat map and pseudo ground truth are 3D,
i.e. including the orientation channels, the pseudo ground truth becomes a 3D
mask that weighs the infoNCE loss at each location-orientation combination, and
the infoNCE loss contrasts the given positive location-orientation combination
to all other location-orientation combinations.
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Since the ground truth orientation is used in the weakly-supervised learn-
ing in the target area, we are interested in whether this information largely
contributes to the superior performance of the learned student model. We per-
form two additional experiments to show that known orientation is not the
factor that boosts the student model’s performance. (1) We train the
CCVPE student model with only orientation loss using ground truth orien-
tation. For various learning rates, we find the localization test error increases
compared to the teacher model. Thus, simply exposing the student model to the
target domain orientation does not improve its localization performance. (2) We
simplify the CCVPE method into a localization-only method by removing its
orientation-related components and then use this setting for both teacher and
student models. Our method achieves a similar performance boost from 4.33 to
3.87 m (original with orientation: from 4.38 to 3.85 m). So, its gains are not due
to the student’s orientation supervision.

H. Extra qualitative results of teacher and student models

Then, we visualize more teacher and student models’ predictions. In Figure 7,
examples (a) to (e) show the situation where the teacher model’s prediction con-
tains multi-modal uncertainty, and the predicted location is in the wrong mode.
After knowledge distillation, our student model assigns a higher probability at
the correct mode. In example (f), the teacher’s prediction is accurate, and the
student model maintains this accurate prediction. Lastly, we showcase challeng-
ing scenarios where there is a lack of discriminative features. In Figure 7 (g),
the buildings in the aerial view mostly contain repetitive patterns. Although the
teacher model picks a location close to the ground truth and the student has a
higher error in this example, the inherent uncertainty in both the teacher’s and
student’s heat maps is large. In example (h), the teacher model focuses on the
street in the middle, and our student model explores more streets. The appear-
ance of the vegetation in the aerial view looks similar, and both teacher and
student models output a wrong location. We expect both challenging scenarios
can be addressed by using a sequence of ground-level images, and we will explore
this in future work.

I. Potential Negative Impact

Our paper proposed a weakly-supervised learning technique that enhances the
localization accuracy of pre-trained fine-grained cross-view localization models.
Fine-grained cross-view localization techniques raise the risk of exposing precise
location information of individuals. For instance, mobile phone images, such as
those from iPhones, often include a GNSS geo-tag in their metadata. This ap-
proximate location can be utilized to identify a local aerial image patch, thereby
allowing fine-grained cross-view localization to pinpoint the exact location where
the image was captured. Consequently, hackers could exploit this method to track
individuals, such as social media influencers, by accessing the images they share
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online. This presents security and privacy concerns. To counter these risks, social
media platforms should alert users to the potential for location data leakage and
provide features that enable the removal of geo-tags from images upon upload.

J. Limitations

In knowledge self-distillation, it is often required that the initial model is at a
“good enough” starting point, otherwise, it will not converge to a better solution.
This requirement also applies to the method we propose. We conducted experi-
ments where a teacher model, trained on one dataset such as KITTI [3], was used
to generate pseudo ground truth to train a student model on a different dataset,
for instance, the Ford dataset [1]. In this case, the teacher’s predictions on the
target dataset were not much better than random guesses, making our method
not applicable. When the training and test sets are from different datasets, the
teacher fails in the target area since the domain gap comes not only from dif-
ferent areas, but also from different sensors, and different resolutions of aerial
images. In our work, we target the domain gap between different areas but for
the same sensor setup.
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Fig. 7: Teacher and student models’ predictions on VIGOR test set. The red color
denotes the localization probability, and a darker color means a higher probability.
(a)-(f): success cases. (g) and (h): failure cases.
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